Growth Performance, Rumen Fermentation, In Vivo Digestibility, and Meat Quality of Pelibuey Lambs Fed a Diet with Ensiled Coffee Pulp
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Localization and Ethical Manifestation
2.2. Animals, Treatments, and Experimental Design
2.3. Performance, Backfat Thickness, Longissims Dorsi Area, and Blood Sampling
2.4. pH, Ammonia Nitrogen, Volatile Fatty Acid, and Total Ruminal Bacteria and Protozoa
2.5. In Vivo Digestibility and Nitrogen Balance
2.6. Carcass Characteristics and Meat Chemical Composition
2.7. Physicochemical Characteristics of the Meat
2.8. Chemical Analysis
2.9. Statistical Analyses
3. Results
3.1. Caffeine, Tannin, and Antioxidant Compounds in the Diets
3.2. Performance of Sheep
3.3. pH, Ammonia Nitrogen (NH3-N), and Volatile Fatty Acid (VFA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duangjai, A.; Suphrom, N.; Wungrath, J.; Ontawong, A.; Nuengchamnong, N.; Yosboonruang, A. Comparison of Antioxidant, Antimicrobial Activities and Chemical Profiles of Three Coffee (Coffea arabica L.) Pulp Aqueous Extracts. Integr. Med. Res. 2016, 5, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Heeger, A.; Kosińska-Cagnazzo, A.; Cantergiani, E.; Andlauer, W. Bioactives of Coffee Cherry Pulp and Its Utilisation for Production of Cascara Beverage. Food Chem. 2017, 221, 969–975. [Google Scholar] [CrossRef]
- Faulds, C.B.; Bartolomé, B.; Williamson, G. Novel Biotransformations of Agro-Industrial Cereal Waste by Ferulic Acid Esterases. Ind. Crops Prod. 1997, 6, 367–374. [Google Scholar] [CrossRef]
- Almeida, A.A.P.; Farah, A.; Silva, D.A.M.; Nunan, E.A.; Glória, M.B.A. Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria. J. Agric. Food Chem. 2006, 54, 8738–8743. [Google Scholar] [CrossRef]
- Nurfeta, A. Feed Intake, Digestibility, Nitrogen Utilization, and Body Weight Change of Sheep Consuming Wheat Straw Supplemented with Local Agricultural and Agro-Industrial by-Products. Trop. Anim. Health Prod. 2010, 42, 815–824. [Google Scholar] [CrossRef]
- Munguía-Ameca, G.; Ortega-Cerrilla, M.E.; Zetina-Córdoba, P.; Díaz-Cruz, A.; Soto-Hernández, M.; Herrera-Haro, J. Chemical Composition and Antioxidant Capacity of Coffee Pulp. Ciênc. Agrotecnol. 2018, 42, 307–313. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effective Reduction of Enteric Methane Production by a Combination of Nitrate and Saponin without Adverse Effect on Feed Degradability, Fermentation, or Bacterial and Archaeal Communities of the Rumen. Bioresour. Technol. 2013, 148, 352–360. [Google Scholar] [CrossRef]
- Jayeola, C.O.; Adebowale, B.A.; Yahaya, L.E.; Ogunwolu, S.O.; Olubamiwa, O. Production of Bioactive Compounds from Waste. In Therapeutic, Probiotic, and Unconventional Foods; Elsevier: Amsterdam, The Netherlands, 2018; pp. 317–340. [Google Scholar]
- Salinas-Rios, T.; Ortega-Cerrilla, M.E.; Sánchez-Torres-Esqueda, M.T.; Hernández-Bautista, J.; Díaz-Cruz, A.; Figueroa-Velasco, J.L.; Guinzberg-Perrusquía, R.; Cordero-Mora, J.L. Productive Performance and Oxidative Status of Sheep Fed Diets Supplemented with Coffee Pulp. Small Rumin. Res. 2015, 123, 17–21. [Google Scholar] [CrossRef]
- Hernández-Bautista, J.; Rodríguez-Magadán, H.M.; Villegas-Sánchez, J.A.; Salinas-Rios, T.; Ortiz-Muñoz, I.Y.; Aquino-Cleto, M.; Lozano-Trejo, S. Health Status and Productivity of Sheep Fed Coffee Pulp during Fattening. Austral J. Vet. Sci. 2018, 50, 95–99. [Google Scholar] [CrossRef]
- Gutiérrez-Prado, L.K.; Sánchez-Torres-Esqueda, M.T.; Salinas-Rios, T.; Figueroa-Velasco, J.L.; Martínez-Aispuro, J.A.; Contreras-Caro-Del-Castillo, D.A.; Cárdenas-León, M.; Nava-Cuellar, C.; Cordero-Mora, J.L.; García-Cue, J.L. Coffee Pulp Supplementation Prior to Breeding Improves Oxidative Status without Affecting Fertility of Primiparous Ewes. Rev. Colomb. Cienc. Pecu. 2019, 32, 261–273. [Google Scholar] [CrossRef]
- Estrada-Flores, J.G.; Pedraza-Beltrán, P.E.; Yong-Ángel, G.; Avilés-Nova, F.; Rayas-Amor, A.-A.; Solís-Méndez, A.D.; González-Ronquillo, M.; Vázquez-Carrillo, M.F.; Castelán-Ortega, O.A. Effect of Increasing Supplementation Levels of Coffee Pulp on Milk Yield and Food Intake in Dual-Purpose Cows: An Alternative Feed Byproduct for Smallholder Dairy Systems of Tropical Climate Regions. Agriculture 2021, 11, 416. [Google Scholar] [CrossRef]
- Flórez-Delgado, D.F.; De Jesús Gil-Herrera, R.; Maza-Ortega, R.E. Effects of the Inclusion of Coffee Pulp Silage in the Diet on the Performance and Profitability of Crossbred Milk Cows in the Middle Tropics. Trop. Anim. Health Prod. 2023, 55, 78. [Google Scholar] [CrossRef] [PubMed]
- Bautista, E.O.; Pernia, J.; Barrueta, D.; Useche, M. Use of Ecological Coffee Pulp Silage in Feeding for Cachamay Fingerlings (Colossoma Macropomus x Piaractus Brachypomus). Rev. Científica Fac. Cienc. Vet. 2005, 15, 33–40. [Google Scholar]
- NRC. Nutrient Requirements of Sheep, 6th ed.; National Academy of Sciences: Washington, DC, USA, 1985. [Google Scholar]
- Silva, S.R.; Gomes, M.J.; Dias-da-Silva, A.; Gil, L.F.; Azevedo, J.M.T. Estimation in Vivo of the Body and Carcass Chemical Composition of Growing Lambs by Real-Time Ultrasonography1. J. Anim. Sci. 2005, 83, 350–357. [Google Scholar] [CrossRef]
- Delfa, R.; Teixeira, A.; Gonzalez, C.; Blasco, I. Ultrasonic Estimates of Fat Thickness and Longissimus Dorsi Muscle Depth for Predicting Carcass Composition of Live Aragon Lambs. Small Rumin. Res. 1995, 16, 159–164. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy. Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- SIGMA. Commonly Used Tissue Culture Terms. Technical Information. In Catalogue Sigma Cell Culture Reagents; Sigma-Aldrich: St. Louis, MO, USA, 1990; pp. 180–190. [Google Scholar]
- Baker, F.J.P. Procedimientos Bioquímicos En La Cuantificación de Microorganismos. In Manual de Técnicas Bacteriológicas; Acribia: Zaragoza, España, 1970. [Google Scholar]
- Harris, L.E. Nutrition Research Techniques for Domestic and Wild Animal; Utah State University: Logan, UT, USA, 1970. [Google Scholar]
- Norma Oficial Mexicana NOM-033-SAG/ZOO-1994. Métodos Para Dar Muerte a Los Animales Domésticos y Silvestres; Norma Oficial Mexiana: Mexico City, México, 1994. [Google Scholar]
- De Boer, H.; Dumont, B.L.; Pomeroy, R.W.; Weniger, J.H. Manual on E.A.A.P. Reference Methods for the Assessment of Carcass Characteristics in Cattle. Livest. Prod. Sci. 1974, 1, 151–164. [Google Scholar] [CrossRef]
- Santos, J.R.S.d.; Cezar, M.F.; Sousa, W.H.d.; Cunha, M.d.G.G.; Pereira Filho, J.M.; Sousa, D.O.d. Carcass Characteristics and Body Components of Santa Inês Lambs in Feedlot Fed on Different Levels of Forage Cactus Meal. Rev. Bras. Zootec. 2011, 40, 2273–2279. [Google Scholar] [CrossRef]
- Guerrero, L.I.; Ponce, A.E.; Pérez, C.M.L. Curso Práctico de Tecnología de Carnes y Pescado; Universidad Autónoma Metropolitana. Unidad Iztapalapa: México City, Mexico, 2002. [Google Scholar]
- Association of Official Analytical Chemists—AOAC. Official Methods of Analysis, 19th ed.; The William Byrd Press Inc.: Richmond, VA, USA, 2012. [Google Scholar]
- Commission International De L’ Eclairage—CIE. Colorimetry, 2nd ed.; CIE: Vienna, Austria, 1976. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC: Rockville, MD, USA, 2002; Volume 1. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 15–27. [Google Scholar]
- Uchiyama, M.; Mihara, M. Determination of Malonaldehyde Precursor in Tissues by Thiobarbituric Acid Test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Statistical Analysis Systems (SAS). SAS/STAT User’s Guide. In Statistical Analysis Systems Institute; SAS Institute Inc.: Cary, NC, USA, 2002; Version 9. [Google Scholar]
- Marinova, E.M.; Toneva, A.; Yanishlieva, N. Comparison of the Antioxidative Properties of Caffeic and Chlorogenic Acids. Food Chem. 2009, 114, 1498–1502. [Google Scholar] [CrossRef]
- Han, H.; Dye, L.; Mackie, A. The Impact of Processing on the Release and Antioxidant Capacity of Ferulic Acid from Wheat: A Systematic Review. Food Res. Int. 2023, 164, 112371. [Google Scholar] [CrossRef]
- Daglia, M.; Di Lorenzo, A.; Nabavi, S.F.; Talas, Z.S.; Nabavi, S.M. Polyphenols: Well Beyond the Antioxidant Capacity: Gallic Acid and Related Compounds as Neuroprotective Agents: You Are What You Eat! Curr. Pharm. Biotechnol. 2014, 15, 362–372. [Google Scholar] [CrossRef]
- Larraín, R.E.; Schaefer, D.M.; Richards, M.P.; Reed, J.D. Finishing Steers with Diets Based on Corn, High-Tannin Sorghum or a Mix of Both: Color and Lipid Oxidation in Beef. Meat Sci. 2008, 79, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, W.; Zhao, Y. Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods 2021, 10, 1921. [Google Scholar] [CrossRef]
- Oleszek, M.; Kowalska, I.; Bertuzzi, T.; Oleszek, W. Phytochemicals Derived from Agricultural Residues and Their Valuable Properties and Applications. Molecules 2023, 28, 342. [Google Scholar] [CrossRef]
- Araya, H.; Clavijo, R.C.; Herrera, C. Capacidad Antioxidante de Frutas y Verduras Cultivados En Chile. Arch. Latinoam. Nutr. 2006, 56, 361–365. [Google Scholar]
- Vitto, R.; Ciria, J.; Bonilla, A.; Asenjo, B.; Calvo, J.L. Utilización Del Subproducto Pulpa de Café Ensilada En Dietas de Ovinos en una finca del estado Táchira Venezuela. In Producción ovina y caprina: XXVI Jornadas Científicas y V Internacionales de la Sociedad Española de Ovinotecnia y Caprinotecnia: Sevilla, 20, 21 y 22 de Septiembre de 2001; Decanato de Investigación; Consejería de Agricultura y Pesco: Sevilla, Spain, 2001; pp. 635–640. [Google Scholar]
- Garcia, I.F.F.; Olalquiaga Perez, J.R.; Teixeira, J.C.; Barbosa, C.M.P. Desempenho de Cordeiros Texel x Bergamácia, Texel x Santa Inês e Santa Inês Puros, Terminados Em Confinamento, Alimentados Com Casca de Café Como Parte Da Dieta. Rev. Bras. Zootec. 2000, 29, 564–572. [Google Scholar] [CrossRef]
- Souza, A.L.d.; Garcia, R.; Valadares Filho, S.d.C.; Rocha, F.C.; Campos, J.M.d.S.; Cabral, L.d.S.; Gobbi, K.F. Casca de Café Em Dietas de Vacas Em Lactação: Consumo, Digestibilidade e Produção de Leite. Rev. Bras. Zootec. 2005, 34, 2496–2504. [Google Scholar] [CrossRef]
- Pedraza-Beltrán, P.; Estrada-Flores, J.G.; Martínez-Campos, A.R.; Estrada-López, I.; Rayas-Amor, A.A.; Yong-Angel, G.; Figueroa-Medina, M.; Nova, F.A.; Castelán-Ortega, O.A. On-Farm Evaluation of the Effect of Coffee Pulp Supplementation on Milk Yield and Dry Matter Intake of Dairy Cows Grazing Tropical Grasses in Central Mexico. Trop. Anim. Health Prod. 2012, 44, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Lohsiriwat, S.; Hirunsai, M.; Chaiyaprasithi, B. Effect of Caffeine on Bladder Function in Patients with Overactive Bladder Symptoms. Urol. Ann. 2011, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Marsden, K.A.; Lush, L.; Holmberg, J.A.; Whelan, M.J.; King, A.J.; Wilson, R.P.; Charteris, A.F.; Cardenas, L.M.; Jones, D.L.; Chadwick, D.R. Sheep Urination Frequency, Volume, N Excretion and Chemical Composition: Implications for Subsequent Agricultural N Losses. Agric. Ecosyst. Environ. 2020, 302, 107073. [Google Scholar] [CrossRef]
- Méndez-Ortiz, F.A.; Sandoval-Castro, C.A.; Ventura-Cordero, J.; Sarmiento-Franco, L.A.; Torres-Acosta, J.F.J. Condensed Tannin Intake and Sheep Performance: A Meta-Analysis on Voluntary Intake and Live Weight Change. Anim. Feed. Sci. Technol. 2018, 245, 67–76. [Google Scholar] [CrossRef]
- Vargas, E.; Cabezas, M.T.; Bressani, R. Pulpa de Café En La Alimentación de Rumiantes. Absorción y Retención de Nitrógeno En Novillos Alimentados Con Concentrados Elaborados Con Pulpa de Café Deshidratada. Agron. Costarric. 1977, 1, 101–106. [Google Scholar]
- Van Der Walt, J.G.; Boomker, E.A.; Meintjes, A.; Schultheiss, W.A. Effect of Water Intake on the Nitrogen Balance of Sheep Fed a Low or a Medium Protein Diet. S. Afr. J. Anim. Sci. 1999, 29, 105–115. [Google Scholar] [CrossRef]
- Teixeira, R.M.A.; Campos, J.M.d.S.; Valadares Filho, S.d.C.; Valadares, R.F.D.; Oliveira, A.S.d.; Pina, D.d.S. Balanço de Compostos Nitrogenados e Produção de Proteína Microbiana Em Novilhas Leiteiras Alimentadas Com Casca de Café Em Substituição à Silagem de Milho. Rev. Bras. Zootec. 2007, 36, 1691–1698. [Google Scholar] [CrossRef]
- Oliveira, A.S.d.; Campos, J.M.d.S.; Valadares Filho, S.d.C.; Assis, A.J.d.; Teixeira, R.M.A.; Rennó, L.N.; Pina, D.d.S.; Oliveira, G.S.d. Substituição Do Milho Pela Casca de Café Ou de Soja Em Dietas Para Vacas Leiteiras: Comportamento Ingestivo, Concentração de Nitrogênio Uréico No Plasma e No Leite, Balanço de Compostos Nitrogenados e Produção de Proteína Microbiana. Rev. Bras. Zootec. 2007, 36, 205–215. [Google Scholar] [CrossRef]
- Krueger, W.K.; Gutierrez-Bañuelos, H.; Carstens, G.E.; Min, B.R.; Pinchak, W.E.; Gomez, R.R.; Anderson, R.C.; Krueger, N.A.; Forbes, T.D.A. Effects of Dietary Tannin Source on Performance, Feed Efficiency, Ruminal Fermentation, and Carcass and Non-Carcass Traits in Steers Fed a High-Grain Diet. Anim. Feed. Sci. Technol. 2010, 159, 1–9. [Google Scholar] [CrossRef]
- Goiri, I.; Díaz de Otálora, X.; Ruiz, R.; Rey, J.; Atxaerandio, R.; Lavín, J.L.; San Martin, D.; Orive, M.; Iñarra, B.; Zufia, J.; et al. Spent Coffee Grounds Alter Bacterial Communities in Latxa Dairy Ewes. Microorganisms 2020, 8, 1961. [Google Scholar] [CrossRef]
- Geron, L.J.V.; Garcia, J.; Costa, F.G.; Aguiar, S.C.d.; Oliveira, E.B.; Silva, M.I.L.d.; Cabral, L.D.S.; Pierangeli, M.A.P.; Zeoula, L.M.; Mexia, A.A. Ruminal Parameters and Nitrogen Balance in Sheep Fed Diets Containing Residue from the Extraction of Tamarind Pulp. Semin. Cienc. Agrar. 2015, 36, 3411. [Google Scholar] [CrossRef]
- Prabhudessai, V.; Ganguly, A.; Mutnuri, S. Effect of Caffeine and Saponin on Anaerobic Digestion of Food Waste. Ann. Microbiol. 2009, 59, 643–648. [Google Scholar] [CrossRef]
- Portela Díaz, D.F. Evaluación in Vitro de Subproductos Agrícolas y Plantas Con Capacidad Desfaunante Sobre La Producción de Metano. Master´s Thesis, Colegio de Postgraduados, Montecillo, México, 2012. [Google Scholar]
- Smith, A.H.; Zoetendal, E.; Mackie, R.I. Bacterial Mechanisms to Overcome Inhibitory Effects of Dietary Tannins. Microb. Ecol. 2005, 50, 197–205. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial Interactions with Tannins: Nutritional Consequences for Ruminants. Anim. Feed. Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Andrade-Rivero, E.; Martínez-Campos, A.R.; Castelán-Ortega, O.A.; Ríos-Quezada, J.; Pacheco-Ortega, Y.; Estrada-Flores, J.G. Producción de Metano Utilizando Plantas Taniferas Como Substrato En Fermentación Ruminal in Vitro y Efecto de Extractos Fe-Nólicos En La Microflora Ruminal. Trop. Subtrop. Agroecosystems 2012, 15, 301–312. [Google Scholar]
- Patra, A.K.; Saxena, J. Exploitation of Dietary Tannins to Improve Rumen Metabolism and Ruminant Nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Animut, G.; Puchala, R.; Goetsch, A.L.; Patra, A.K.; Sahlu, T.; Varel, V.H.; Wells, J. Methane Emission by Goats Consuming Diets with Different Levels of Condensed Tannins from Lespedeza. Anim. Feed. Sci. Technol. 2008, 144, 212–227. [Google Scholar] [CrossRef]
- Jayanegara, A.; Wina, E.; Soliva, C.R.; Marquardt, S.; Kreuzer, M.; Leiber, F. Dependence of Forage Quality and Methanogenic Potential of Tropical Plants on Their Phenolic Fractions as Determined by Principal Component Analysis. Anim. Feed. Sci. Technol. 2011, 163, 231–243. [Google Scholar] [CrossRef]
- Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de Diversos Métodos Químicos Para Determinar Actividad Antioxidante En Pulpa de Frutos. Ciênc. Tecnol. Aliment. 2005, 25, 726–732. [Google Scholar] [CrossRef]
- Salinas-Rios, T.; Sánchez-Torres-Esqueda, M.T.; Hernández-Bautista, J.; Díaz-Cruz, A.; Nava-Cuellar, C.; Ortega-Cerrilla, M.E.; Cordero-Mora, J.L.; Vaquera-Huerta, H.; Velasco, J.L.F. Carcass Characteristics, Physicochemical Changes and Oxidative Stress Indicators of Meat from Sheep Fed Diets with Coffee Pulp. Arq. Bras. Med. Vet. Zootec. 2014, 66, 1901–1908. [Google Scholar] [CrossRef]
- Bueno, I.C.S.; Brandi, R.A.; Fagundes, G.M.; Benetel, G.; Muir, J.P. The Role of Condensed Tannins in the In Vitro Rumen Fermentation Kinetics in Ruminant Species: Feeding Type Involved? Animals 2020, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.L.d.; Garcia, R.; Bernardino, F.S.; Rocha, F.C.; Valadares Filho, S.d.C.; Pereira, O.G.; Pires, A.J.V. Casca de Café Em Dietas de Carneiros: Consumo e Digestibilidade. Rev. Bras. Zootec. 2004, 33, 2170–2176. [Google Scholar] [CrossRef]
- Maldonado, G.; Benezra, M.A. Uso Fresco y Ensilado de La Cereza Del Café En Pruebas de Consumo y Digestibilidad Con Ovinos. In Proceedings of the Jornadas Técnicas 1; Centro Nacional de Investigaciones de Café, (CENICAFE): Maracay, Venezuela, 1986; p. 43. [Google Scholar]
- Poornahavandi, H.R.; Zamiri, M.J. Effects of Ephedrine and Its Combination with Caffeine on Body Composition and Blood Attributes of Fat-Tailed Mehraban Lambs. Iran. J. Vet. Res. 2008, 9, 51–58. [Google Scholar] [CrossRef]
- Resendiz, C.V. Finalización de Borregos Pelibuey Utilizando Dietas Con Diferentes Niveles de Alfalfa: Respuesta En Producción y Calidad de Carne. Master’s Thesis, Colegio de Postgraduados, Montecillo, Mexico, 2011. [Google Scholar]
- Ayala Monter, M.A. Inclusión de Taninos En La Dieta de Ovinos En Finalización: Respuesta En Calidad de La Carne. Master’s Thesis, Colegio de Postgraduados Campus Montecillo, Montecillo, Mexico, 2013. [Google Scholar]
- Carrasco-García, A.A.; Pardío-Sedas, V.T.; León-Banda, G.G.; Ahuja-Aguirre, C.; Paredes-Ramos, P.; Hernández-Cruz, B.C.; Murillo, V.V. Effect of Stress during Slaughter on Carcass Characteristics and Meat Quality in Tropical Beef Cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Majdoub-Mathlouthi, L.; Saïd, B.; Say, A.; Kraiem, K. Effect of Concentrate Level and Slaughter Body Weight on Growth Performances, Carcass Traits and Meat Quality of Barbarine Lambs Fed Oat Hay Based Diet. Meat Sci. 2013, 93, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Albertí, P.; Ripoll, G.; Casasús, I.; Chapullé, J.L.G.; Santamaría, J. Efecto de La Inclusión de Antioxidantes En Dietas de Acabado Sobre La Calidad de La Carne de Terneros. Inf. Técnica Económica Agrar. 2005, 101, 91–100. [Google Scholar]
- Frutos, P.; Raso, M.; Hervás, G.; Mantecón, Á.R.; Pérez, V.; Javier Giráldez, F. Is There Any Detrimental Effect When a Chestnut Hydrolysable Tannin Extract Is Included in the Diet of Finishing Lambs? Anim. Res. 2004, 53, 127–136. [Google Scholar] [CrossRef]
- Velázquez, M.M.; Ayala, M.M.A.; Barragán, G.H.; Hernández, M.O. Los Taninos Como Antioxidantes Naturales En La Carne. AGROProductividad 2013, 6, 3–10. [Google Scholar]
- Zhang, Y.; Luo, H.; Chen, Y.; Yan, L.; Chang, Y.; Jiao, L.; Liu, K. Effects of Liquorice Extract on the PH Value, Temperature, Drip Loss, and Meat Color during Aging of Longissimus Dorsi Muscle in Tan Sheep. Small Rumin. Res. 2013, 113, 98–102. [Google Scholar] [CrossRef]
- Moreno, I.; Lipová, P.; Ladero, L.; Fernández-García, J.L.; Cava, R. Glycogen and Lactate Contents, PH and Meat Quality and Gene Expression in Muscle Longissimus Dorsi from Iberian Pigs under Different Rearing Conditions. Livest. Sci. 2020, 240, 104167. [Google Scholar] [CrossRef]
- Watanabe, A.; Daly, C.C.; Devine, C.E. The Effects of the Ultimate PH of Meat on Tenderness Changes during Ageing. Meat Sci. 1996, 42, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Stempa, T.; Bradley, G. Post-Mortem Energy Metabolites, Glycolytic Potential, and Meat Quality Attributes from of Dorper and Merino Lambs. In Proceedings of the The 1st International Electronic Conference on Animals—Global Sustainability and Animals: Science, Ethics and Policy; MDPI: Basel, Switzerland, 2020; p. 6. [Google Scholar]
- Park, J.M.; Lee, S.H.; Koh, J.H.; Kim, J.M. Determination of Shelf Life Model of Pork Cutlet and Pork Lard during Accelerated Storage Conditions. Korean J. Food Sci. Anim. Resour. 2018, 38, 664. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Hunt, M.C. Current Research in Meat Color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Luciano, G.; Monahan, F.J.; Vasta, V.; Biondi, L.; Lanza, M.; Priolo, A. Dietary Tannins Improve Lamb Meat Colour Stability. Meat Sci. 2009, 81, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Cherian, G.; Stitt, P.; Ahn, D. Effect of Dietary Sorghum Cultivars on the Storage Stability of Broiler Breast and Thigh Meat. Poult. Sci. 2002, 81, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Nasri, S.; Luciano, G.; Vasta, V.; Aouadi, D.; Priolo, A.; Makkar, H.P.S.; Ben Salem, H. Effect of Quillaja Saponaria Dietary Administration on Colour, Oxidative Stability and Volatile Profile of Muscle Longissimus Dorsi of Barbarine Lamb. Meat Sci. 2012, 92, 582–586. [Google Scholar] [CrossRef]
- Zhong, R.Z.; Tan, C.Y.; Han, X.F.; Tang, S.X.; Tan, Z.L.; Zeng, B. Effect of Dietary Tea Catechins Supplementation in Goats on the Quality of Meat Kept under Refrigeration. Small Rumin. Res. 2009, 87, 122–125. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of Water-Holding Capacity of Meat: The Role of Postmortem Biochemical and Structural Changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Tomisaka, Y.; Ahhmed, A.M.; Tabata, S.; Kawahara, S.; Mugurama, M. Changes in Water-Holding Capacity and Textural Properties of Chicken Gizzard Stored at 4 °C. Anim. Sci. J. 2010, 81, 362–368. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, D.-W. Factors Affecting the Water Holding Capacity of Red Meat Products: A Review of Recent Research Advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Bezerra, L.S.; Barbosa, A.M.; Carvalho, G.G.P.; Simionato, J.I.; Freitas, J.E.; Araújo, M.L.G.M.L.; Pereira, L.; Silva, R.R.; Lacerda, E.C.Q.; Carvalho, B.M.A. Meat Quality of Lambs Fed Diets with Peanut Cake. Meat Sci. 2016, 121, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.J.; Oksbjerg, N.; Young, J.F.; Therkildsen, M. Feeding and Meat Quality—A Future Approach. Meat Sci. 2005, 70, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Morán, L.; Andrés, S.; Bodas, R.; Prieto, N.; Giráldez, F.J. Meat Texture and Antioxidant Status Are Improved When Carnosic Acid Is Included in the Diet of Fattening Lambs. Meat Sci. 2012, 91, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, R.A.; Ledward, D.A. Lawrie’s Meat Science. In Lawrie’s Meat Science; Lawrie, R.A., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 71–73. [Google Scholar]
- Purchas, R.W.; Sobrinho, A.G.S.; Garrick, D.J.; Lowe, K.I. Effects of Age at Slaughter and Sire Genotype on Fatness, Muscularity, and the Quality of Meat from Ram Lambs Born to Romney Ewes. New Zealand J. Agric. Res. 2002, 45, 77–86. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. In Vivo Total Antioxidant Capacity: Comparison of Different Analytical Methods1. Free Radic. Biol. Med. 1999, 27, 1173–1181. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic Compounds and Their Role in Oxidative Processes in Fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Satué-Gracia, M.T.; Heinonen, M.; Frankel, E.N. Anthocyanins as Antioxidants on Human Low-Density Lipoprotein and Lecithin−Liposome Systems. J. Agric. Food Chem. 1997, 45, 3362–3367. [Google Scholar] [CrossRef]
Items | Treatments | ||
---|---|---|---|
ECP0 | ECP10 | ECP20 | |
Ingredients (%) | |||
Soybean meal | 21 | 22 | 20 |
Ground sorghum | 39 | 38 | 40 |
Hay corn | 35 | 25 | 15 |
Molasses | 3 | 3 | 3 |
Mineral supplement * | 2 | 2 | 2 |
Ensiled coffee pulp | 0 | 10 | 20 |
Chemical composition on a dry basis (%) | |||
Dry matter | 88.5 | 88.2 | 87.0 |
Organic matter | 81.2 | 80.2 | 80.0 |
Crude protein | 15.1 | 16.0 | 16.4 |
Neutral detergent fiber | 22.2 | 23.4 | 25.1 |
Acid detergent fiber | 37.9 | 36.9 | 38.9 |
Ether extract | 2.2 | 2.9 | 2.4 |
Ash | 8.2 | 7.4 | 8.2 |
Energy (Kcal/kg DM) | |||
Digestible energy | 2878.59 | 3004.96 | 2846.93 |
Metabolizable energy | 2360.45 | 2464.07 | 2334.48 |
Item | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
ECP0 | ECP10 | ECP20 | |||
Caffeine (mg/g DM) | 0.00 b | 7.20 a | 7.27 a | 0.105 | <0.0001 |
Tannins (mg/g DM) | 3.42 a | 2.06 c | 2.99 b | 0.011 | <0.0001 |
Antioxidant capacity | |||||
FRAP (nmol Trolox/mL) | 1396.68 | 1386.18 | 1415.07 | 41.92 | 0.8896 |
Antioxidant compounds (mg/g DM) | |||||
p-hydroxybenzoic acid | 0.23 c | 0.55 b | 1.15 a | 0.029 | 0.0004 |
Chlorogenic acid | 5.27 | 7.34 | 14.98 | 3.94 | 0.3242 |
Ferulic acid | 0.95 | 0.98 | 1.06 | 0.018 | 0.0540 |
Caffeic acid | 0.00 c | 0.65 b | 1.32 a | 0.008 | <0.0001 |
Syringic acid | 0.12 c | 0.34 b | 0.57 a | 0.022 | 0.0018 |
Gallic acid | 0.09 | 0.53 | 0.47 | 0.212 | 0.3994 |
Vanillic acid | 0.19 c | 0.44 b | 0.71 a | 0.024 | 0.0015 |
p-cumaric acid | 0.18 b | 0.28 ab | 0.33 a | 0.018 | 0.0228 |
Item | 15 Days | 30 Days | 45 Days | 60 Days | Treat | Per | Treat × Per | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | SEM | 0% | 10% | 20% | SEM | 0% | 10% | 20% | SEM | 0% | 10% | 20% | SEM | ||||
DMI (kg) | 1.20 ax | 1.20 ax | 1.20 ax | 0.007 | 1.35 ay | 1.35 ay | 1.35 ay | 0.007 | 1.48 az | 1.49 az | 1.46 az | 0.007 | 1.53 aw | 1.54 aw | 1.51 aw | 0.006 | 0.2622 | <0.0001 | 0.7489 |
DWG (g/d) | 186.18 ax | 192.50 ax | 181.25 ax | 10.81 | 196.82 ay | 208.25ay | 200.87 ay | 10.81 | 234.91 az | 225.25 az | 226.00 az | 10.81 | 190.73 aw | 190.62 aw | 181.87 aw | 10.81 | 0.9071 | 0.0202 | 0.9978 |
FC | 6.86 ax | 7.21 ax | 7.36 ax | 0.36 | 7.44 ay | 6.92 | 6.85 ay | 0.36 | 6.79 az | 7.02 az | 6.47 az | 0.36 | 8.13 aw | 8.27 aw | 8.85 aw | 0.36 | 0.9881 | 0.0045 | 0.8808 |
WI (L/d) | 2.63 ax | 2.54 ax | 1.82 ax | 0.09 | 2.99 ay | 2.84 | 2.56 ay | 0.09 | 3.35 az | 3.20 az | 3.01 az | 0.09 | 3.43 aw | 3.17 aw | 3.19 aw | 0.09 | 0.0884 | <0.0001 | 0.0807 |
Item | 30 Days | 60 Days | Treat | Per | Treat × Per | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECP0 | ECP10 | ECP20 | SEM | ECP0 | ECP10 | ECP20 | SEM | ||||
Rumen pH | 6.37 | 6.30 | 6.37 | 0.03 | 6.40 | 6.42 | 6.28 | 0.03 | 0.6870 | 0.5754 | 0.1754 |
NH3-N (mg/dL) | 16.48 | 13.61 | 16.57 | 0.99 | 17.17 | 16.23 | 9.58 | 0.99 | 0.1586 | 0.3340 | 0.0095 |
Volatile acid fatty (mmol/L) | |||||||||||
Acetic acid | 40.63 ax | 42.80 ax | 39.20 ax | 1.65 | 22.26 ay | 26.26 ay | 36.56 ay | 1.65 | 0.0892 | <0.0001 | 0.0153 |
Propionic acid | 13.36 | 12.16 | 10.20 | 0.55 | 12.19 | 12.07 | 12.28 | 0.55 | 0.3196 | 0.7112 | 0.2069 |
Butyric acid | 7.16 | 7.50 | 6.73 | 0.36 | 6.30 | 6.92 | 6.19 | 0.36 | 0.5586 | 0.1717 | 0.9533 |
Backfat thickness (mm) | 2 ax | 2 ax | 1 ax | 0.06 | 2 ay | 2 ay | 2 ay | 0.1 | 0.113 | <0.0001 | 0.1953 |
Loin eye area (cm2) | 679.82 ax | 707.58 ax | 650.83 ax | 28.46 | 826.73 ax | 833.17 ax | 771.00 ax | 28.46 | 0.499 | <0.0001 | 0.4416 |
Item | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
IV | ECP0 | ECP10 | ECP20 | |||
Antioxidant activity in blood serum | ||||||
FRAP (nmol Trolox/mL) | 415.00 b | 457.65 ab | 459.08 ab | 519.06 a | 21.99 | 0.0075 |
TBARS (nmol MDA/mL) | 4.160 | 5.643 | 6.294 | 10.442 | 1.80 | 0.0990 |
Retained nitrogen (%) | 8.498 | 9.362 | 7.987 | 3.370 | 0.1955 | |
Rumen microorganisms | ||||||
Total bacteria (1 × 109/mL) | 23.68 | 23.57 | 23.50 | 0.310 | 0.1522 | |
Protozoa (1 × 104/mL) | 13.33 | 14.20 | 14.14 | 0.064 | 0.1007 | |
In vivo digestibility (%) | ||||||
Dry matter | 69.99 | 72.95 | 70.68 | 2.33 | 0.6378 | |
Organic matter | 76.33 | 77.20 | 72.43 | 2.12 | 0.2874 | |
Crude Protein | 67.13 b | 74.99 a | 60.40 b | 2.36 | 0.0042 | |
Neutral detergent fiber | 62.41 | 64.57 | 63.45 | 2.07 | 0.7612 | |
Acid detergent fiber | 58.75 | 47.51 | 51.28 | 3.13 | 0.0754 |
Item | Treatments | SEM | p-Value | ||
---|---|---|---|---|---|
ECP0 | ECP10 | ECP20 | |||
Slaughtering data | |||||
Fasting body weight (kg) | 36.07 | 35.20 | 33.72 | 0.871 | 0.2247 |
Hot carcass weight (kg) | 17.70 | 17.32 | 16.03 | 0.544 | 0.1386 |
Cold carcass weight (kg) | 17.07 | 16.76 | 15.52 | 0.497 | 0.1251 |
Mesenteric fat (kg) | 0.55 | 0.50 | 0.19 | 0.139 | 0.1955 |
pH (slaughter) | 6.27 | 6.21 | 6.32 | 0.113 | 0.7757 |
pH24h | 6.02 | 5.59 | 5.43 | 0.235 | 0.2488 |
Hot carcass temperature (°C) | 18.05 b | 18.56 a | 18.32 ab | 0.111 | 0.0250 |
Cold carcass temperature (°C) | 12.52 | 14.22 | 12.40 | 0.598 | 0.0896 |
Carcass length (cm) | 57.5 | 56.00 | 55.62 | 1.160 | 0.5222 |
Yields (%) | |||||
Hot carcass yield | 49.00 | 49.18 | 47.54 | 0.195 | 0.4460 |
Cold carcass yield | 47.35 | 47.60 | 46.03 | 0.918 | 0.4611 |
Chemical composition of meat | |||||
Moisture | 74.16 | 73.72 | 75.22 | 1.411 | 0.7433 |
Protein | 21.52 | 21.85 | 22.15 | 0.201 | 0.1266 |
Ash | 4.23 | 4.05 | 4.39 | 0.135 | 0.2144 |
Item | 24 h | 7 d | Significance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECP0 | ECP10 | ECP20 | SEM | ECP0 | ECP10 | ECP20 | SEM | Treat | Per | Treat × Per | |
pH | 6.27 ax | 6.17 ax | 6.30 ax | 0.18 | 6.00 ay | 5.57 ay | 5.46 ay | 0.18 | 0.2596 | 0.0007 | 0.2927 |
Temperature (°C) | 17.97 ax | 18.55 ax | 18.32 ax | 0.25 | 21.81 ay | 20.98 ay | 19.81 by | 0.25 | 0.0285 | <0.0001 | 0.0019 |
Color | |||||||||||
Lightness (L*) | 37.72 | 38.93 | 39.57 | 1.69 | 36.95 | 39.78 | 43.56 | 1.69 | 0.2013 | 0.1152 | 0.0971 |
Redness (a*) | 20.70 | 20.16 | 20.83 | 0.63 | 19.50 b | 21.26 ab | 23.49 a | 0.63 | 0.0299 | 0.0988 | 0.0266 |
Yellowness (b*) | 6.04 | 5.00 | 4.91 | 19.6 | 3.52 | 4.98 | 7.71 | 19.6 | 0.2965 | 0.9047 | 0.0675 |
WHC (mL/100 g) | 61.08 | 46.13 | 42.86 | 19.94 | 56.19 | 26.36 | 35.97 | 19.94 | 0.6698 | 0.0952 | 0.5112 |
Texture (g/cm2) | 2388.28 | 2597.63 | 2483.40 | 339.53 | 2668.01 | 2307.50 | 2675.39 | 339.53 | 0.9412 | 0.7841 | 0.4990 |
Antioxidant activity | |||||||||||
FRAP | 31.47 | 31.75 | 33.66 | 7.70 | 39.08 | 43.96 | 46.22 | 7.70 | 0.8331 | 0.0910 | 0.9360 |
TBARS | 0.41 ax | 0.47 ax | 0.52 ax | 0.10 | 4.74 ay | 4.23 ay | 5.18 ay | 2.66 | 0.9635 | 0.0162 | 0.9668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munguía-Ameca, G.; Ortega-Cerrilla, M.E.; Herrera-Haro, J.G.; Bárcena-Gama, R.; Nava-Cuéllar, C.; Zetina-Córdoba, P. Growth Performance, Rumen Fermentation, In Vivo Digestibility, and Meat Quality of Pelibuey Lambs Fed a Diet with Ensiled Coffee Pulp. Animals 2023, 13, 3462. https://doi.org/10.3390/ani13223462
Munguía-Ameca G, Ortega-Cerrilla ME, Herrera-Haro JG, Bárcena-Gama R, Nava-Cuéllar C, Zetina-Córdoba P. Growth Performance, Rumen Fermentation, In Vivo Digestibility, and Meat Quality of Pelibuey Lambs Fed a Diet with Ensiled Coffee Pulp. Animals. 2023; 13(22):3462. https://doi.org/10.3390/ani13223462
Chicago/Turabian StyleMunguía-Ameca, Graciela, María Esther Ortega-Cerrilla, José Guadalupe Herrera-Haro, Ricardo Bárcena-Gama, Cuauhtémoc Nava-Cuéllar, and Pedro Zetina-Córdoba. 2023. "Growth Performance, Rumen Fermentation, In Vivo Digestibility, and Meat Quality of Pelibuey Lambs Fed a Diet with Ensiled Coffee Pulp" Animals 13, no. 22: 3462. https://doi.org/10.3390/ani13223462
APA StyleMunguía-Ameca, G., Ortega-Cerrilla, M. E., Herrera-Haro, J. G., Bárcena-Gama, R., Nava-Cuéllar, C., & Zetina-Córdoba, P. (2023). Growth Performance, Rumen Fermentation, In Vivo Digestibility, and Meat Quality of Pelibuey Lambs Fed a Diet with Ensiled Coffee Pulp. Animals, 13(22), 3462. https://doi.org/10.3390/ani13223462