Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp (Penaeus vannamei)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Facilities
2.2. Preparation and Analyses of the Pumpkin By-Products
2.3. Experimental Diets
2.4. Experimental Design
2.5. Water Quality Parameters
2.6. Data Collection and Assessed Variables
2.7. Whole-Body Proximate Composition
2.8. Biochemical Analyses
2.8.1. Determination of Total Polyphenol and Flavonoid Contents
2.8.2. Determination of Total Antioxidant Activity
2.8.3. Determination of Total Carotenoid Content
2.9. Color Parameters of Shrimp
2.10. Statistical Analyses
3. Results
3.1. Water Quality Parameters
3.2. Growth Performance
3.3. Whole-Body Proximal Composition
3.4. Total Polyphenol and Flavonoid Contents
3.5. Total Antioxidant Activity
3.6. Total Carotenoid Content (TCC)
3.7. Color Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerra, A.M.N.M.; Silva, M.G.M.; Evangelista, R.S.; Santos, E.B.; Rodrigues, I.J.S. Control of weeds in the Japanese pumpkin hybrids. J. Neotrop. Agric. 2020, 7, 27–33. [Google Scholar] [CrossRef]
- Karlović, S.; Dujmić, F.; Brnčić, S.R.; Sabolović, M.B.; Ninčević Grassino, A.; Škegro, M.; Šimić, M.A.; Brnčić, M. Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata). Processes 2023, 11, 469. [Google Scholar] [CrossRef]
- FAOSTAT Statistic Database. Available online: https://faostat.fao.org (accessed on 15 August 2023).
- Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017: Resultados Definitivos. Available online: https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/agricultura.html?localidade=0&tema=76409 (accessed on 20 September 2023).
- Amaro, G.B.; Silva, G.O.; Boiteux, L.S.; Carvalho, A.D.F.; Lopes, J.F. Agronomic performance of pumpkin type Tetsukabuto hybrids for fruits traits. Hortic. Bras. 2017, 35, 180–185. [Google Scholar] [CrossRef]
- Valdez-Arjona, L.P.; Ramírez-Mella, M. Pumpkin Waste as Livestock Feed: Impact on Nutrition and Animal Health and on Quality of Meat, Milk, and Egg. Animals 2019, 9, 769. [Google Scholar] [CrossRef]
- Garlock, T.; Asche, F.; Anderson, J.; Ceballos-Concha, A.; Love, D.C.; Osmundsen, T.C.; Pincinato, R.B.M. Aquaculture: The missing contributor in the food security agenda. Glob. Food Sec. 2022, 32, 100620. [Google Scholar] [CrossRef]
- Tacon, A.G.J. Trends in Global Aquaculture and Aquafeed Production: 2000–2017. Rev. Fish. Sci. Aquac. 2020, 28, 43–56. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Habotta, O.A.E.; Elsabagh, M.; Azra, M.N.; Doan, H.V.; Kari, Z.A.; Sewilam, H. Fruit processing by-products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Rev. Aquac. 2022, 14, 1945–1965. [Google Scholar] [CrossRef]
- Campanati, C.; Willer, D.; Schubert, J.; Aldridge, D.C. Sustainable Intensification of Aquaculture through Nutrient Recycling and Circular Economies: More Fish, Less Waste, Blue Growth. Rev. Fish. Sci. Aquac. 2022, 30, 143–169. [Google Scholar] [CrossRef]
- Kari, Z.A.; Sukri, S.A.M.; Rusli, N.D.; Mat, K.; Mahmud, M.B.; Zakaria, N.N.A.; Wee, W.; Hamid, N.K.A.; Kabir, M.A.; Ariff, N.S.N.A.; et al. Recent Advances, Challenges, Opportunities, Product Development and Sustainability of Main Agricultural Wastes for the Aquaculture Feed Industry—A Review. Ann. Anim. Sci. 2023, 23, 25–38. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Quddoos, M.Y.; et al. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem. Adv. 2022, 1, 100067. [Google Scholar] [CrossRef]
- Kaur, S.; Panghal, A.; Garg, M.K.; Mann, S.; Khatkar, S.K.; Sharma, P.; Chhikara, N. Functional and nutraceutical properties of pumpkin—A review. Nutr. Food Sci. 2020, 50, 384–401. [Google Scholar] [CrossRef]
- Saavedra, M.J.; Aires, A.; Dias, C.; Almeida, J.A.; De Vasconcelos, M.C.B.M.; Santos, P.; Rosa, E.A. Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. J. Food Sci. Technol. 2015, 52, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, V. Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Front. 2022, 3, 182–193. [Google Scholar] [CrossRef]
- Krimer-Malešević, V.; Mađarev-Popović, S.; Vaštag, Ž.; Radulović, L.; Peričin, D. Phenolic Acids in Pumpkin (Cucurbita pepo L.) Seeds. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: Amsterdam, The Netherlands, 2011; pp. 925–932. [Google Scholar] [CrossRef]
- Chao, E.; Tian, J.; Fan, L.; Zhang, T. Drying methods influence the physicochemical and functional properties of seed-used pumpkin. Food Chem. 2022, 369, 130937. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef]
- Buzigi, E.; Pillay, K.; Siwela, M. Potential of pumpkino combat vitamin A deficiency during complementary feeding in low and middle income countries: Variety, provitamin A carotenoid content and retention, and dietary reference intakes. Crit. Rev. Food Sci. Nutr. 2022, 62, 6103–6112. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef]
- Greilling, A.M.; Schwarz, C.; Gierus, M.; Rodehutscord, M. Pumpkin seed cake as a fishmeal substitute in fish nutrition: Effects on growth performance, morphological traits and fillet colour of two freshwater salmonids and two catfish species. Arch. Anim. Nutr. 2018, 72, 239–259. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022; 266p. [Google Scholar] [CrossRef]
- Rosas, V.T.; Mureb, R.A.; Monserrat, J.M.; Wasielesky, W., Jr.; Tesser, M.B. Inclusion of grape bagasse (Vitis sp.) in the diet of white shrimp (Litopenaeus vannamei) and its effects on growth and antioxidant system. Aquac. Res. 2022, 53, 4805–4813. [Google Scholar] [CrossRef]
- Liu, X.; Ye, J.; Wang, K.; Kong, J.; Yang, W.; Zhou, L. Partial replacement of fish meal with peanut meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquac. Res. 2011, 43, 745–755. [Google Scholar] [CrossRef]
- Sun, H.; Tang, J.; Yao, X.; Wu, Y.; Wang, X.; Liu, Y. Effects of replacement of fish meal with fermented cottonseed meal on growth performance, body composition and haemolymph indexes of Pacific white shrimp, Litopenaeus vannamei Boone, 1931. Aquac. Res. 2015, 47, 2623–2632. [Google Scholar] [CrossRef]
- Sezgin, A.; Aydın, B. Effect of replacing dietary soybean meal with pumpkin (Cucurbita pepo) seed cake on growth, feed utilization, haematological parameters and fatty acid composition of mirror carp (Cyprinus carpio). Aquac. Res. 2021, 52, 5870–5881. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MA, USA, 2007. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons: New York, NY, USA, 2002; Volume 6, pp. 1–8. [Google Scholar] [CrossRef]
- Yanar, Y.; Celik, M.; Yanar, M. Seasonal changes in total carotenoid contents of wild marine shrimps (Penaeus semisulcatus and Metapenaeus monoceros) inhabiting the eastern Mediterranean. Food Chem. 2004, 88, 267–269. [Google Scholar] [CrossRef]
- Rosas, V.T.; Monserrat, J.M.; Bessonart, M.; Magnone, L.; Romano, L.A.; Tesser, M.B. Fish oil and meal replacement in mullet (Mugil liza) diet with Spirulina (Arthrospira platensis) and linseed oil. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 218, 46–54. [Google Scholar] [CrossRef]
- Medina-González, R.; Ortiz-Milán, A.; Elias-Iglesias, A.; Álvarez-Villar, V.M.; Brea-Maure, O. Effect of fermented pumpkin (Cucurbita pepo) on the productive and health parameters in pre-fattening pigs. Rev. Cien. Agric. 2019, 16, 79–97. [Google Scholar] [CrossRef]
- Ribadeneira, F.A.M.; Zambrano, P.A.V.; Arturo, W.F.V.; Llanos, N.F.V.; López, C.D.V.; Rivadeneira, A.A.D. Sustitución parcial de maíz por harina integral de Cucurbita moschata y su efecto sobre las variables productivas de pollos Cobb 500. Cienc. Tecnol. Agropecu. 2020, 21, e1298. [Google Scholar] [CrossRef]
- Jory, D.E.; Cabrera, T.R.; Dugger, D.; Fegan, D.; Lee, P.G.; Lawrence, A.L.; Jackson, C.J.; McIntosh, R.P.; Castañeda, J. A global review of shrimp feed management: Status and perspectives. In The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture; Browdy, C.L., Jory, D.E., Eds.; The World Aquaculture Society: Baton Rouge, LA, USA, 2001; pp. 104–152. [Google Scholar]
- Intergovernmental Oceanographic Comission. Chemical methods for use in marine environment monitoring. In Intergovernmental Oceanographic Commission Manual and Guides; UNESCO: Paris, France, 1983; Volume 12, 53p. [Google Scholar]
- Aminot, A.; Chaussepied, M. Manuel Des Analyses Chimiques en Milieu Marin; CNEXO: Paris, France, 1983; 395p. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R.B., Eaton, A.D., Rice, E.W., Eds.; American Public Health Association (APHA): Washington, DC, USA; American Water Works Association (AWWA): Denver, CO, USA; Water Environment Federation (WEF): Chicago, IL, USA, 2017. [Google Scholar]
- Gajula, D.; Verghese, M.; Boateng, J.; Walker, L.T.; Shackelford, L.; Mentreddy, S.R.; Cedric, S. Determination of Total Phenolics, Flavonoids and Antioxidant and Chemopreventive Potential of Basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). Int. J. Cancer Res. 2009, 5, 130–143. [Google Scholar] [CrossRef]
- Vianna, D.R.; Bubols, G.; Meirelles, G.; Silva, B.V.; Da Rocha, A.; Lanznaster, M.; Monserrat, J.M.; Garcia, S.C.; Von Poser, G.; Eifler-Lima, V.L. Evaluation of the Antioxidant Capacity of Synthesized Coumarins. Int. J. Mol. Sci. 2012, 13, 7260–7270. [Google Scholar] [CrossRef]
- Hunt, R.W.G. The Specification of Colour Appearance. I. Concepts and Terms. Color Res. Appl. 1977, 2, 55–68. [Google Scholar] [CrossRef]
- Ferreira, N.C.; Bonetti, C.; Seiffert, W.Q. Hydrological and Water Quality Indices as management tools in marine shrimp culture. Aquaculture 2011, 318, 425–433. [Google Scholar] [CrossRef]
- Lovatto, N.M.; Goulart, F.R.; Loureiro, B.B.; Adorian, T.J.; Freitas, S.T.; Pianesso, D.; Dalcin, M.O.; Athayde, M.L.; Silva, L.P. Effects of phosphorylated protein concentrate of pumpkin seed meal on growth and digestive enzymes activity of silver catfish (Rhamdia quelen). Aquac. Nutr. 2016, 23, 201–209. [Google Scholar] [CrossRef]
- Murray, D.S.; Hager, H.; Tocher, D.R.; Kainz, M.J. Effect of partial replacement of dietary fish meal and oil by pumpkin kernel cake and rapeseed oil on fatty acid composition and metabolism in Arctic charr (Salvelinus alpinus). Aquaculture 2014, 431, 85–91. [Google Scholar] [CrossRef]
- Malcorps, W.; Kok, B.; van‘t Land, M.; Fritz, M.; van Doren, D.; Servin, K.; van der Heijden, P.; Palmer, R.; Auchterlonie, N.A.; Rietkerk, M.; et al. The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability 2019, 11, 1212. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, M.; Atluri, S.C.; Chen, J.; Gilbert, R.G. Relations between digestibility and structures of pumpkin starches and pectins. Food Hydrocoll. 2020, 106, 105894. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Rashidian, G.; Ghafarifarsani, H.; Jahazi, M.A.; Soltani, M.; Doan, H.V.; El-Haroun, E.; Paolucci, M. Effects of Apple (Malus pomila) Pomace-Derived Pectin on the Innate Immune Responses, Expressions of Key Immune-Related Genes, Growth Performance, and Digestive Enzyme Activity of Rainbow Trout (Oncorhynchus mykiss). Animals 2021, 11, 2117. [Google Scholar] [CrossRef]
- Lee, C.-L.; Chang, C.-C.; Kuo, H.-W.; Cheng, W. Pectin of cacao pod husk, an efficient immunostimulant for white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 107 Pt A, 357–366. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Hoseinifar, S.H.; Mazandarani, M.; Paknejad, H.; Van Doan, H.; El-Haroun, E.R. The potential benefits of orange peels derived pectin on serum and skin mucus immune parameters, antioxidant defence and growth performance in common carp (Cyprinus carpio). Fish Shellfish Immunol. 2020, 103, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Penglase, S.; Ackery, T.; Kitchen, B.; Flavel, M.; Condon, K. The Effects of a Natural Polyphenol Extract from Sugarcane (Saccharum officinarum) on the Growth, Survival, and Feed Conversion Efficiency of Juvenile Black Tiger Shrimp (Penaeus monodon). Appl. Sci. 2022, 12, 8090. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- González-Sarrías, A.; Tomás-Barberán, F.A.; García-Villalba, R. Structural Diversity of Polyphenols and Distribution in Foods. In Dietary Polyphenols: Their Metabolism and Health Effects; Tomás-Barberán, F.A., González-Sarrías, A., García-Villalba, R., Eds.; Wiley: Chichester, UK, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Matsui, T. Polyphenols-absorption and occurrence in the body system. Food Sci. Technol. Res. 2022, 28, 13–33. [Google Scholar] [CrossRef]
- Silva, F.O.; Perrone, D. Characterization and stability of bioactive compounds from soybean meal. LWT—Food Sci. Technol. 2015, 63, 992–1000. [Google Scholar] [CrossRef]
- Soleymani, S.; Habtemariam, S.; Rahimi, R.; Nabavi, S.M. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends Food Sci. Technol. 2020, 106, 382–390. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11, 1321–1342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fan, D.; Pan, L.; Su, C.; Ding, Y.; Lu, M. Study of effects of dietary quercetin (Que) on growth performance and disease resistance mechanism of Litopenaeus vannamei. Aquaculture 2023, 563, 738887. [Google Scholar] [CrossRef]
- Quiroz-Guzmán, E.; Morreeuw, Z.P.; Peña-Rodríguez, A.; Barajas-Sandoval, D.R.; Magallón-Servín, P.; Mejía, A.; Reyes, A.G. Flavonoid-enriched extract of Agave lechuguilla bagasse as a feed supplement to prevent vibriosis in Pacific white shrimp Penaeus vannamei. Aquaculture 2023, 562, 738867. [Google Scholar] [CrossRef]
- Prommaban, A.; Kuanchoom, R.; Seepuan, N.; Chaiyana, W. Evaluation of Fatty Acid Compositions, Antioxidant, and Pharmacological Activities of Pumpkin (Cucurbita moschata) Seed Oil from Aqueous Enzymatic Extraction. Plants 2021, 10, 1582. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.M.K.; Huang, H.X.; Huang, W.J.; Xue, S.D.; Yan, S.J.; Wu, T.Q.; Li, J.X.; Zhong, Y.J. Evaluation of Metabolites and Antioxidant Activity in Pumpkin Species. Nat. Prod. Commun. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Parisenti, J.; Beirão, L.H.; Tramonte, V.L.C.G.; Ourique, F.; Brito, C.C.S.; Moreira, C.C. Preference ranking of colour in raw and cooked shrimps. Int. J. Food Sci. Technol. 2011, 46, 2558–2561. [Google Scholar] [CrossRef]
- Hara, K.Y.; Yagi, S.; Hirono-Hara, Y.; Kikukawa, H. A Method of Solubilizing and Concentrating Astaxanthin and Other Carotenoids. Mar. Drugs 2021, 19, 462. [Google Scholar] [CrossRef]
- Chen, H.; Ji, H.; Pan, C.; Zhang, D.; Su, W.; Liu, S.; Deng, Y.; Huang, X. Purification and Characterisation of Two Novel Pigment Proteins from the Carapace of Red Swamp Crayfish (Procambarus clarkii). Foods 2022, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Hatta, F.A.M.; Othman, R. Carotenoids as potential biocolorants: A case study of astaxanthin recovered from shrimp waste. In Carotenoids: Properties, Processing and Applications; Galanakis, C.M., Ed.; Academic Press: Chania, Greece, 2020; pp. 289–325. [Google Scholar] [CrossRef]
- Yang, S.; Xhou, Q.; Yang, L.; Xue, Y.; Xu, J.; Xue, C. Effect of Thermal Processing on Astaxanthin and Astaxanthin Esters in Pacific White Shrimp Litopenaeus vannamei. J. Oleo Sci. 2015, 64, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, B.; Szulc, P. Astaxanthin for the Food Industry. Molecules 2021, 26, 2666. [Google Scholar] [CrossRef]
- Basri, N.A.; Shaleh, S.R.M.; Matanjun, P.; Noor, N.M.; Shapawi, R. The potential of microalgae meal as na ingredient in the diets of early juvenile Pacific White shrimp, Litopenaeus vannamei. J. Appl. Phycol. 2015, 27, 857–863. [Google Scholar] [CrossRef]
- Boonyaratpalin, M.; Thongrod, S.; Supamattaya, K.; Britton, G.; Schlipalius, L.E. Effects of β-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus Monodon. Aquac. Res. 2001, 32, 182–190. [Google Scholar] [CrossRef]
- Muñoz, A.F.; Amaya, L.Q.; Reyes-Avalos, W. Body pigmentation of shrimp Cryphiops caementarius (Palaemonidae) with diets supplemented with marigold (Calendula officinalis). Rev. Investig. Vet. del Peru 2021, 31, e18344. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Ortega-Regules, A.E.; Anaya de Parrodi, C.; Lozada-Ramírez, J.D. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids—A Review. Plants 2023, 12, 313. [Google Scholar] [CrossRef]
- Tejera, N.; Cejas, J.R.; Rodríguez, C.; Bjerkeng, B.; Jerez, S.; Bolaños, A.; Lorenzo, A. Pigmentation, carotenoids, lipid peroxides and lipid composition of skin of red porgy (Pagrus pagrus) fed diets supplemented with different astaxanthin sources. Aquaculture 2007, 270, 218–230. [Google Scholar] [CrossRef]
- Fawzy, S.; Wang, W.; Zhou, Y.; Xue, Y.; Yi, G.; Wu, M.; Huang, X. Can dietary β-carotene supplementation provide an alternative to astaxanthin on the performance of growth, pigmentation, biochemical, and immuno-physiological parameters of Litopenaeus vannamei? Aquac. Rep. 2022, 23, 101054. [Google Scholar] [CrossRef]
Nutrient | Seeds | Pomace |
---|---|---|
Moisture (%) | 9.33 ± 0.45 | 16.34 ± 1.05 |
Ash (%) | 5.01 ± 0.09 | 8.15 ± 0.23 |
Crude protein (%) | 21.85 ± 0.38 | 14.40 ± 0.28 |
Crude fiber (%) | 28.66 ± 0.19 | 6.71 ± 0.10 |
Total lipid content (%) | 8.32 ± 0.15 | 2.38 ± 0.05 |
NFE 1 (%) | 36.16 | 68.36 |
Polyphenols (µg·g−1) | 685.43 ± 34.92 | 1650.00 ± 85.85 |
TCC 2 (µg·g−1) | 0.72 ± 0.03 | 1.25 ± 0.04 |
Diets | |||||
---|---|---|---|---|---|
Control | PS50 | PS100 | PP50 | PP100 | |
Ingredients | |||||
Fish meal 1 | 350 | 350 | 350 | 350 | 350 |
Pumpkin seeds 2 | 0 | 50 | 100 | 0 | 0 |
Pumpkin pomace 2 | 0 | 0 | 0 | 50 | 100 |
Corn starch 3 | 216.5 | 191.7 | 166.8 | 181.1 | 145.7 |
Wheat bran 4 | 100 | 100 | 100 | 100 | 100 |
Soybean meal 4 | 258.0 | 236.6 | 215.3 | 244.0 | 230.1 |
Fish oil 5 | 40.5 | 36.6 | 32.8 | 39.8 | 39.2 |
Cholesterol 6 | 5 | 5 | 5 | 5 | 5 |
Calcium phosphate 7 | 20 | 20 | 20 | 20 | 20 |
Mineral and vitamin premix 8 | 10 | 10 | 10 | 10 | 10 |
Proximal composition | |||||
Moisture | 5.09 ± 0.13 | 5.03 ± 0.04 | 4.85 ± 0.14 | 4.91 ± 0.09 | 4.85 ± 0.06 |
Ash | 12.62 ± 0.25 | 13.08 ± 0.04 | 12.87 ± 0.15 | 13.38 ± 0.06 | 13.91 ± 0.13 |
Crude protein | 34.88 ± 0.45 | 33.94 ± 0.57 | 34.18 ± 0.48 | 34.37 ± 1.13 | 34.89 ± 1.13 |
Crude fiber | 1.45 ± 0.47 | 3.14 ± 0.26 | 5.21 ± 1.93 | 2.62 ± 0.29 | 2.44 ± 0.13 |
Total lipid content | 9.40 ± 0.27 | 9.13 ± 0.30 | 9.37 ± 0.28 | 9.71 ± 0.27 | 9.82 ± 0.34 |
NFE | 41.65 | 40.71 | 38.37 | 39.92 | 38.94 |
Treatments | |||||
---|---|---|---|---|---|
Parameters | Control | PS50 | PS100 | PP50 | PP100 |
D.O. (mg·L−1) | 6.20 ± 0.38 | 6.21 ± 0.37 | 6.20 ± 0.37 | 6.20 ± 0.38 | 6.28 ± 0.38 |
Temperature (°C) | 26.7 ± 0.69 | 26.6 ± 0.68 | 26.5 ± 0.69 | 26.7 ± 0.68 | 26.6 ± 0.69 |
pH | 8.15 ± 0.07 | 8.17 ± 0.07 | 8.17 ± 0.07 | 8.15 ± 0.08 | 8.11 ± 0.09 |
Salinity (ppm) | 33.0 ± 2.16 | 33.0 ± 2.16 | 33 ± 2.16 | 33.0 ± 2.16 | 33.0 ± 2.16 |
TAN (mg·L−1) | 0.46 ± 0.16 | 0.42 ± 0.16 | 0.47 ± 0.17 | 0.49 ± 0.18 | 0.50 ± 0.19 |
NO2− (mg·L−1) | 0.43 ± 0.48 | 0.50 ± 0.46 | 0.41 ± 0.50 | 0.40 ± 0.46 | 0.39 ± 0.47 |
NO3− (mg·L−1) | 0.54 ± 0.36 | 0.55 ± 0.35 | 0.53 ± 0.38 | 0.56 ± 0.36 | 0.55 ± 0.37 |
Pumpkin Seeds | Pumpkin Pomace | |||||||
---|---|---|---|---|---|---|---|---|
Parameters | Control | PS50 | PS100 | p-Value | Control | PP50 | PP100 | p-Value |
IW (g) | 0.59 ± 0.02 | 0.60 ± 0.02 | 0.59 ± 0.01 | 0.212 | 0.59 ± 0.02 | 0.58 ± 0.01 | 0.57 ± 0.01 | 0.911 |
FW (g) | 4.18 ± 0.11 a | 3.89 ± 0.17 b | 3.88 ± 0.29 b | 0.009 | 4.18 ± 0.11 | 4.22 ± 0.26 | 4.13 ± 0.19 | 0.657 |
WG (g) | 3.58 ± 0.12 a | 3.29 ± 0.15 b | 3.28 ± 0.29 b | 0.007 | 3.58 ± 0.12 | 3.64 ± 0.27 | 3.56 ± 0.18 | 0.673 |
FI (g) | 6.94 ± 0.40 | 6.83 ± 0.66 | 6.40 ± 0.22 | 0.054 | 6.94 ± 0.40 | 6.62 ± 0.32 | 6.63 ± 0.27 | 0.099 |
PER (%) | 1.55 ± 0.25 | 1.46 ± 0.28 | 1.56 ± 0.27 | 0.050 | 1.55 ± 0.25 b | 1.65 ± 0.30 ab | 1.67 ± 0.34 a | 0.028 |
FCR (g·g−1) | 1.93 ± 0.04 b | 2.06 ± 0.10 a | 1.96 ± 0.11 ab | 0.015 | 1.93 ± 0.04 a | 1.82 ± 0.12 b | 1.86 ± 0.01 ab | 0.020 |
Survival (%) | 92.2 ± 7.08 | 91.1 ± 4.62 | 96.6 ± 1.99 | 0.064 | 92.2 ± 7.08 | 93.3 ± 5.08 | 97.7 ± 2.20 | 0.831 |
SGR (%) | 3.25 ± 0.08 a | 3.09 ± 0.02 b | 3.11 ± 0.14 b | 0.004 | 3.25 ± 0.08 | 3.30 ± 0.13 | 3.28 ± 0.05 | 0.528 |
RWG (%) | 605.75 ± 35.69 a | 542.49 ± 10.42 b | 552.43 ± 54.03 ab | 0.003 | 605.75 ± 35.68 | 630.52 ± 58.65 | 617.29 ± 21.45 | 0.460 |
Pumpkin Seeds | Pumpkin Pomace | |||||||
---|---|---|---|---|---|---|---|---|
Composition | Control | PS50 | PS100 | p-Value | Control | PP50 | PP100 | p-Value |
Moisture | 76.36 ± 0.28 | 79.35 ± 0.23 | 79.42 ± 0.28 | 0.819 | 79.36 ± 0.28 | 79.34 ± 0.40 | 79.09 ± 0.04 | 0.120 |
Ash | 2.83 ± 0.08 b | 2.89 ± 0.06 ab | 2.97 ± 0.08 a | 0.001 | 2.83 ± 0.08 | 2.87 ± 0.06 | 2.82 ± 0.07 | 0.300 |
Crude protein | 15.01 ± 0.24 | 14.64 ± 0.42 | 14.61 ± 0.85 | 0.275 | 15.01 ± 0.24 | 15.46 ± 0.98 | 14.94 ± 0.64 | 0.246 |
Total lipid | 0.58 ± 0.01 | 0.59 ± 0.02 | 0.56 ± 0.01 | 0.074 | 0.58 ± 0.01 | 0.60 ± 0.04 | 0.63 ± 0.08 | 0.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zancan, T.D.; Monserrat, J.M.; Marreiro Gomes, R.M.; Martins, V.G.; Wasielesky, W., Jr.; Tesser, M.B. Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp (Penaeus vannamei). Animals 2023, 13, 3480. https://doi.org/10.3390/ani13223480
Zancan TD, Monserrat JM, Marreiro Gomes RM, Martins VG, Wasielesky W Jr., Tesser MB. Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp (Penaeus vannamei). Animals. 2023; 13(22):3480. https://doi.org/10.3390/ani13223480
Chicago/Turabian StyleZancan, Thaise Dalferth, José María Monserrat, Robson Matheus Marreiro Gomes, Vilásia Guimarães Martins, Wilson Wasielesky, Jr., and Marcelo Borges Tesser. 2023. "Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp (Penaeus vannamei)" Animals 13, no. 22: 3480. https://doi.org/10.3390/ani13223480
APA StyleZancan, T. D., Monserrat, J. M., Marreiro Gomes, R. M., Martins, V. G., Wasielesky, W., Jr., & Tesser, M. B. (2023). Effects of including of Japanese Pumpkin Seeds and Pomace in the Diets of Pacific White Shrimp (Penaeus vannamei). Animals, 13(22), 3480. https://doi.org/10.3390/ani13223480