Effect of Miscellaneous Meal Replacements for Soybean Meal on Growth Performance, Serum Biochemical Parameters, and Gut Microbiota of 50–75 kg Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diets, and Management
2.2. Sample Collection
2.3. Growth Performance
2.4. Apparent Nutrient Digestibility
2.5. Serum Biochemical Parameters
2.6. Free Amino Acid Contents
2.7. Analysis of Gut Microbial Composition and Diversity
2.8. Statistical Analysis
3. Result
3.1. Growth Performance
3.2. Apparent Nutrient Digestibility
3.3. Serum Biochemical Parameters
3.4. Free Amino Acid Contents
3.5. Gut Microbiota Composition and Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cromwell, G.L. Utilization of soy products in swine diets. In Soy in Animal Nutrition; Drackley, J.K., Ed.; Federation of Animal Science Societies: Savoy, IL, USA, 2000; pp. 258–282. [Google Scholar]
- Kim, I.H.; Hancock, J.D.; Jones, D.B.; Reddy, P.G. Extrusion processing of low-inhibitor soybeans improves growth performance of early-weaned pigs. Asian-Australas. J. Anim. Sci. 1999, 12, 1251–1257. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.; Zhao, P.F.; Tian, Q.Y.; Zhang, S.; Li, P.; Li, Q.Y.; Piao, X.S. Evaluation of Energy Digestibility and Prediction of Digestible and Metabolisable Energy in Sunflower Seed Meal Fed to Growing Pigs. Ital. J. Anim. Sci. 2015, 1, 3533. [Google Scholar] [CrossRef]
- Shim, Y.H.; Chae, B.J.; Lee, J.H. Effects of Phytase and Carbohydrases Supplementation to Diet with a Partial Replacement of Soybean Meal with Rapeseed Meal and Cottonseed Meal on Growth Performance and Nutrient Digestibility of Growing Pigs. Asian Australas. J. Anim. Sci. 2003, 16, 1339–1347. [Google Scholar] [CrossRef]
- Grabež, V.; Egelandsdal, B.; Kjos, N.P.; Håkenåsen, I.M.; Mydland, L.T.; Vik, J.O.; Hallenstvedt, E.; Devle, H.; Øverland, M. Replacing soybean meal with rapeseed meal and faba beans in a growing-finishing pig diet: Effect on growth performance, meat quality and metabolite changes. Meat Sci. 2020, 166, 108134. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, J.; Nyachoti, C.M. Net Energy of high-protein sunflower meal fed to growing pigs and effect of dietary phosphorus on measured values of NE. J. Anim. Sci. 2020, 98, skz387. [Google Scholar] [CrossRef] [PubMed]
- National Research Council of The National Academies. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012; pp. 232–233.
- ISO 9831:1998; Animal feeding Stuffs, Animal Products, and Faeces or Urine: Determination of Gross Calorific Value—Bomb Calorimeter Method. International Organization for Standardization: Geneva, Switzerland, 1998.
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide1. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef]
- Duarte, M.E.; Zhou, F.X.; Dutra, W.M.; Kim, S.W. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim. Nutr. 2019, 5, 351–358. [Google Scholar] [CrossRef]
- McDonnell, P.; O’Shea, C.; Figat, S.; O’Doherty, J.V. Influence of incrementally substituting dietary soya bean meal for rapeseed meal on nutrient digestibility, nitrogen excretion, growth performance and ammonia emissions from growing-finishing pigs. Arch. Anim. Nutr. 2010, 64, 412–424. [Google Scholar] [CrossRef]
- Smit, M.N.; Seneviratne, R.W.; Young, M.G.; Lanz, G.; Zijlstra, R.T.; Beltranena, E. Feeding increasing inclusions of canola meal with distillers dried grains and solubles to growing-finishing barrows and gilts. Anim. Feed Sci. Technol. 2014, 189, 107–116. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- González-Vega, J.C.; Stein, H.H. Amino acid digestibility in canola, cottonseed, and sunflower products fed to finishing pigs. J. Anim. Sci. 2012, 90, 4391. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, Z.; Wang, J.; Chen, J.; Jiang, Q.; Liu, N.; Liu, X.; Zhang, F.; Tan, B.; Li, H.; et al. Fermented Cottonseed Meal as a Partial Replacement for Soybean Meal Could Improve the Growth Performance, Immunity and Antioxidant Properties, and Nutrient Digestibility by Altering the Gut Microbiota Profile of Weaned Piglets. Front. Microbiol. 2021, 12, 734389. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.J.; Coit, R.N.; Sell, J.L. Sunflower seed meal as a replacement for soybean meal protein in laying hen rations. Poult. Sci. 1972, 51, 960–967. [Google Scholar] [CrossRef]
- Xie, P.; Huang, H.; Dong, X.; Zou, X. Evaluation of extruded or unextruded double-low rapeseed meal and multienzymes preparation in pigs nutrition during the finishing phase of production. Ital. J. Anim. Sci. 2012, 11, e34. [Google Scholar] [CrossRef]
- Li, D.; Yi, G.F.; Qiao, S.Y.; Zheng, C.T.; Xu, X.X.; Piao, X.S.; Han, I.K.; Thacker, P. Use of Chinese Sunflower Meal as a Nonconventional Protein Feedstuff for Growing-Finishing Pigs. Asian Australas. J. Anim. Sci. 2000, 13, 666–672. [Google Scholar] [CrossRef]
- Sevillano, C.A.; Nicolaiciuc, C.V.; Molist, F.; Pijlman, J.; Bergsma, R. Effect of feeding cereals-alternative ingredients diets or corn-soybean meal diets on performance and carcass characteristics of growing-finishing gilts and boars. J. Anim. Sci. 2018, 96, 4780–4788. [Google Scholar] [CrossRef]
- Choi, H.B.; Jeong, J.H.; Kim, D.H.; Lee, Y.; Kwon, H.; Kim, Y.Y. Influence of Rapeseed Meal on Growth Performance, Blood Profiles, Nutrient Digestibility and Economic Benefit of Growing-finishing Pigs. Asian Australas. J. Anim. Sci. 2015, 28, 1345–1353. [Google Scholar]
- Slominski, B.A.; Campbell, L.D. Non-starch polysaccharides of canola meal: Quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. J. Sci. Food. Agric. 1990, 53, 175–184. [Google Scholar] [CrossRef]
- Hansen, J.Ø.; Øverland, M.; Skrede, A.; Anderson, D.M.; Collins, S.A. A meta-analysis of the effects of dietary canola/double low rapeseed meal on growth performance of weanling and growing-finishing pigs. Anim. Feed Sci. Technol. 2020, 259, 114302. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Schuh, K.; Woyengo, T.A.; Sands, J.S.; Nyachoti, C.M. Effect of expeller extracted canola meal on growth performance, organ weights, and blood parameters of growing pigs. J. Anim. Sci. 2017, 95, 302–307. [Google Scholar] [CrossRef]
- Hong, J.; Ndou, S.P.; Adams, S.; Scaria, J.; Woyengo, T.A. Canola meal in nursery pig diets: Growth performance and gut health. J. Anim. Sci. 2020, 98, skaa338. [Google Scholar] [CrossRef] [PubMed]
- Torres-Pitarch, A.; Moset, V.; Ferrer, P.; Cambra-López, M.; Hernández, P.; Coma, J.; Pascual, M.; Serrano, P.; Cerisuelo, A. The inclusion of rapeseed meal in fattening pig diets, as a partial replacer of soybean meal, alters nutrient digestion, faecal composition and biochemical methane potential from faeces. Anim. Feed Sci. Technol. 2014, 198, 215–223. [Google Scholar] [CrossRef]
- Parrado, J.; Bautista, J.; Machado, A. Production of Soluble Enzymatic Protein Hydrolysate from Industrially Defatted Nondehulled Sunflower Meal. J. Agric. Food. Chem. 1991, 3, 447–450. [Google Scholar] [CrossRef]
- Nyblom, H.B.U.B.J.; Berggren, U.; Balldin, J.; Olsson, R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 2004, 39, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.F.; Yang, G.L.; Liu, G.N.; Wang, J.P.; Bai, S.P.; Ding, X.M.; Luo, Y.H.; Zhang, K.Y. Effects of dietary gossypol concentration on growth performance, blood profiles, and hepatic histopathology in meat ducks. Poult. Sci. 2014, 93, 2000–2009. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Pan, Z.Y.; Qin, J.F.; Zhong, W.J.; Wang, W.C.; Yang, L. Relative toxicity of dietary free gossypol concentration in ducklings from 1 to 21 d of age. Anim. Feed Sci. Technol. 2017, 228, 32–38. [Google Scholar] [CrossRef]
- Wang, H.; Ran, J.; Jiang, T. Urea. Subcell Biochem. 2014, 73, 7–29. [Google Scholar]
- Xu, F.Z.; Zeng, X.G.; Ding, X.L. Effects of Replacing Soybean Meal with Fermented Rapeseed Meal on Performance, Serum Biochemical Variables and Intestinal Morphology of Broilers. Asian Australas. J. Anim. Sci. 2012, 25, 1734–1741. [Google Scholar]
- Khovidhunkit, W.; Kim, M.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Thematic review series: The Pathogenesis of Atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host. J. Lipid. Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef]
- Morales, A.; Buenabad, L.; Castillo, G.; Vázquez, L.; Espinoza, S.; Htoo, J.K.; Cervantes, M. Dietary levels of protein and free amino acids affect pancreatic proteases activities, amino acids transporters expression and serum amino acid concentrations in starter pigs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 723–732. [Google Scholar] [CrossRef]
- Morales, A.; Chávez, M.; Vásquez, N.; Camacho, L.; Avelar, E.; Arce, N.; Htoo, J.K.; Cervantes, M. Extra dietary protein-bound or free amino acids differently affect the serum concentrations of free amino acids in heat-stressed pigs. J. Anim. Sci. 2019, 97, 1734–1744. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Buenabad, L.; Castillo, G.; Espinoza, S.; Arce, N.; Bernal, H.; Htoo, J.K.; Cervantes, M. Serum concentration of free amino acids in pigs of similar performance fed diets containing protein-bound or protein-bound combined with free amino acids. Anim. Feed Sci. Technol. 2020, 267, 114552. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Chen, X.; Fang, C.; Zhao, L.; Chen, F. The Maturing Development of Gut Microbiota in Commercial Piglets during the Weaning Transition. Front. Microbiol. 2017, 8, 1688. [Google Scholar] [CrossRef]
- Niu, Q.; Li, P.; Hao, S.; Zhang, Y.; Kim, S.W.; Li, H.; Ma, X.; Gao, S.; He, L.; Wu, W.; et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci. Rep. 2015, 5, 9938. [Google Scholar] [CrossRef]
- Umu, Ö.C.O.; Mydland, L.T.; Øverland, M.; Press, C.M.; Sørum, H. Rapeseed-based diet modulates the imputed functions of gut microbiome in growing-finishing pigs. Sci. Rep. 2020, 10, 9372. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, D.; Yu, B.; Luo, Y.; Zheng, P.; Huang, Z.; Yu, J.; Mao, X.; Huiyan; He, J. Effect of fermented rapeseed meal on growth performance, nutrient digestibility, and intestinal health in growing pigs. Anim. Nutr. 2023; in press. [Google Scholar]
- Wlazło, A.; Nowakowicz-Dębek, B.; Ossowski, M.; Łukaszewicz, M.; Czech, A. Effect of Fermented Rapeseed Meal in Diets for Piglets on Blood Biochemical Parameters and the Microbial Composition of the Feed and Faeces. Animals 2022, 12, 2972. [Google Scholar] [CrossRef] [PubMed]
Ingredients, % | CON | CSM | CM | Calculated Nutrient Levels | CON | CSM | CM |
---|---|---|---|---|---|---|---|
Corn | 75.38 | 72.37 | 69.72 | Digestive energy (Kcal/kg) | 3427 | 3410 | 3394 |
Soybean meal | 20.99 | 10.00 | Metabolic energy (Kcal/kg) | 3320 | 3303 | 3289 | |
Rapeseed meal | 4.04 | 7.69 | Net energy (Kcal/kg) | 2508 | 2508 | 2508 | |
Cottonseed meal | 4.04 | 7.69 | Crude Protein *, % | 15.3 | 15.0 | 14.7 | |
Sunflower seed meal | 4.04 | 7.68 | Ca *, % | 0.62 | 0.59 | 0.57 | |
Soybean oil | 0.42 | 2.15 | 3.67 | STTD P *, % | 0.25 | 0.27 | 0.29 |
Limestone | 0.92 | 0.89 | 0.87 | SID Lysine, % | 0.85 | 0.85 | 0.85 |
CaHPO4 | 0.25 | 0.23 | 0.21 | SID Met, % | 0.24 | 0.24 | 0.24 |
NaCl | 0.40 | 0.40 | 0.40 | SID Thr, % | 0.52 | 0.52 | 0.52 |
L-lysine sulfate | 0.26 | 0.41 | 0.56 | SID Trp, % | 0.15 | 0.15 | 0.15 |
DL-Met | 0.02 | 0.01 | SID Val, % | 0.58 | 0.56 | 0.55 | |
L-Thr | 0.05 | 0.09 | 0.12 | ||||
L-Trp | 0.02 | 0.03 | |||||
L-Val | 0.01 | ||||||
L-Ile | 0.04 | ||||||
TiO2 | 0.4 | 0.4 | 0.4 | ||||
Vitamin–mineral premix (1) | 1.27 | 1.27 | 1.27 | ||||
Total | 100 | 100 | 100 |
Items | Crude Protein, % | Ether Extract, % | Crude Fiber, % | Ca, % | STTD P, % |
---|---|---|---|---|---|
Rapeseed meal | 38.6 | 1.4 | 11.8 | 0.65 | 0.25 |
Cottonseed meal | 47.0 | 0.5 | 10.2 | 0.25 | 0.28 |
Sunflower seed meal | 36.5 | 1.0 | 10.5 | 0.27 | 0.29 |
Items | CON | CSM | CM | SEM | p-Value (1) |
---|---|---|---|---|---|
IBW (kg) | 49.99 | 50.30 | 51.64 | 0.493 | 0.368 |
FBW (kg) | 75.76 | 76.99 | 78.13 | 0.645 | 0.342 |
ADG (kg/d) | 1.10 | 1.14 | 1.17 | 0.024 | 0.450 |
ADFI (kg/d) | 2.57 | 2.64 | 2.66 | 0.032 | 0.478 |
F/G | 2.35 | 2.32 | 2.29 | 0.033 | 0.827 |
Items | Degrees of Freedom | FBW | ADG | ||||||
---|---|---|---|---|---|---|---|---|---|
Sum of Squares | Mean Square | F | p (1) | Sum of Squares | Mean Square | F | p (1) | ||
IBW | 1 | 0.008 | 0.008 | 0.001 | 0.975 | 0.0005 | 0.0005 | 0.043 | 0.839 |
Items | CON | CSM | CM | p-Value (1) | |||||
---|---|---|---|---|---|---|---|---|---|
Barrows | Gilts | Barrows | Gilts | Barrows | Gilts | Treatment | Sex | Treatment × Sex | |
FBW | 76.76 | 74.76 | 76.84 | 77.13 | 77.78 | 78.49 | 0.561 | 0.854 | 0.804 |
ADG | 1.10 | 1.07 | 1.13 | 1.15 | 1.16 | 1.19 | 0.236 | 0.934 | 0.782 |
Items | CON | CSM | CM | SEM | p-Value (1) |
---|---|---|---|---|---|
Crude Protein, % | 73.27 | 71.83 | 70.73 | 0.916 | 0.553 |
Crude Fat, % | 79.89 | 80.26 | 80.47 | 0.429 | 0.854 |
Gross Energy, % | 82.82 | 82.50 | 80.80 | 0.428 | 0.113 |
Items | CON | CSM | CM | SEM | p-Value (1) |
---|---|---|---|---|---|
TP (g/L) | 63.50 | 63.61 | 65.44 | 0.613 | 0.369 |
CRE (umol/L) | 119.97 | 124.62 | 133.29 | 3.284 | 0.256 |
AST (U/L) | 44.25 | 47.11 | 42.24 | 2.660 | 0.776 |
ALP (U/L) | 164.17 | 155.19 | 155.95 | 6.557 | 0.843 |
ALT (U/L) | 45.40 b | 48.16 ab | 59.07 a | 2.431 | 0.041 * |
ALB (g/L) | 3.65 | 3.82 | 4.13 | 0.119 | 0.258 |
UREA (mmol/L) | 5.12 a | 4.15 ab | 3.45 b | 0.255 | 0.017 * |
GLU (mmol/L) | 3.35 | 4.15 | 4.18 | 0.180 | 0.098 |
TG (mmol/L) | 0.42 b | 0.59 b | 1.51 a | 0.166 | 0.007 * |
CHO (mmol/L) | 0.82 | 0.79 | 0.81 | 0.022 | 0.906 |
HDL-C (mmol/L) | 0.86 | 0.89 | 0.91 | 0.026 | 0.699 |
LDL-C (mmol/L) | 1.57 | 1.57 | 1.76 | 0.059 | 0.330 |
Item | CON | CSM | CM | SEM | p-Value (1) |
---|---|---|---|---|---|
Essential amino acids | |||||
Lys | 449.01 | 533.19 | 559.66 | 53.660 | 0.891 |
Met | 65.99 | 64.34 | 68.42 | 2.660 | 0.922 |
Thr | 212.19 | 239.19 | 229.82 | 20.031 | 0.870 |
Val | 350.01 | 397.17 | 387.51 | 23.412 | 0.711 |
Ile | 138.34 | 168.09 | 159.01 | 10.145 | 0.499 |
Leu | 274.09 | 323.87 | 305.44 | 18.662 | 0.574 |
Phe | 117.22 | 130.07 | 131.90 | 6.809 | 0.659 |
Trp | 70.24 | 83.69 | 65.47 | 4.704 | 0.257 |
His | 75.72 | 72.39 | 70.79 | 3.714 | 0.873 |
Arg | 259.71 | 335.07 | 302.91 | 23.565 | 0.450 |
Non-essential amino acids | |||||
Ser | 215.86 | 197.90 | 213.12 | 12.622 | 0.840 |
Ala | 876.05 | 862.56 | 972.06 | 74.304 | 0.825 |
Gly | 1600.36 | 1450.84 | 1530.49 | 62.899 | 0.652 |
Tyr | 109.11 | 115.93 | 107.62 | 6.237 | 0.861 |
Glu | 325.18 | 313.77 | 462.57 | 32.034 | 0.102 |
Asp | 27.86 | 26.87 | 36.35 | 2.315 | 0.190 |
Cys | 31.48 | 28.31 | 24.17 | 2.331 | 0.477 |
Hypro | 67.33 | 75.33 | 77.60 | 4.155 | 0.600 |
Pro | 393.60 | 364.00 | 411.20 | 23.478 | 0.728 |
Non-protein amino acids and derivatives/metabolites of amino acids | |||||
Tau | 115.19 | 110.43 | 118.17 | 6.260 | 0.891 |
NH3 | 263.26 | 295.56 | 348.38 | 20.494 | 0.242 |
Cit | 84.05 | 85.14 | 85.63 | 4.908 | 0.992 |
Orn | 110.09 | 110.57 | 120.05 | 7.464 | 0.845 |
∑EAA | 1942.30 | 2263.38 | 2215.46 | 150.325 | 0.670 |
∑NEAA | 3575.99 | 3435.53 | 3753.72 | 201.260 | 0.829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhan, X.; Cao, S.; Wen, X.; Hou, L.; Liu, S.; Zheng, H.; Gao, K.; Yang, X.; Jiang, Z.; et al. Effect of Miscellaneous Meal Replacements for Soybean Meal on Growth Performance, Serum Biochemical Parameters, and Gut Microbiota of 50–75 kg Growing Pigs. Animals 2023, 13, 3499. https://doi.org/10.3390/ani13223499
He Z, Zhan X, Cao S, Wen X, Hou L, Liu S, Zheng H, Gao K, Yang X, Jiang Z, et al. Effect of Miscellaneous Meal Replacements for Soybean Meal on Growth Performance, Serum Biochemical Parameters, and Gut Microbiota of 50–75 kg Growing Pigs. Animals. 2023; 13(22):3499. https://doi.org/10.3390/ani13223499
Chicago/Turabian StyleHe, Zhentao, Xianliang Zhan, Shuting Cao, Xiaolu Wen, Lei Hou, Shuai Liu, Huayu Zheng, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, and et al. 2023. "Effect of Miscellaneous Meal Replacements for Soybean Meal on Growth Performance, Serum Biochemical Parameters, and Gut Microbiota of 50–75 kg Growing Pigs" Animals 13, no. 22: 3499. https://doi.org/10.3390/ani13223499
APA StyleHe, Z., Zhan, X., Cao, S., Wen, X., Hou, L., Liu, S., Zheng, H., Gao, K., Yang, X., Jiang, Z., & Wang, L. (2023). Effect of Miscellaneous Meal Replacements for Soybean Meal on Growth Performance, Serum Biochemical Parameters, and Gut Microbiota of 50–75 kg Growing Pigs. Animals, 13(22), 3499. https://doi.org/10.3390/ani13223499