Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Artemisia Ordosica Crude Polysaccharide
2.2. Experimental Animals, Diets, and Design
2.3. Sample Collection
2.4. Chemical Analysis
2.5. Rumen Fermentation Index Measurement
2.6. Analysis of Microbial Community in Ruminal Fluid
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Serum Oxidative Status
3.4. Serum Inflammatory Cytokines
3.5. Rumen Fermentation Characteristics
3.6. Rumen Bacterial Community Richness, Diversity, and Composition
3.7. Significantly Different Ruminal Bacteria between the CON and AOCP Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, R.; Liu, Y.; Shi, Y.; Qi, Y.; Li, Y.; Wang, Z.; Zhang, Y.; Zhao, Y.; Su, R.; Li, J. Study of genetic parameters for pre-weaning growth traits in inner Mongolia white Arbas cashmere goats. Front. Vet. Sci. 2023, 9, 1026528. [Google Scholar] [CrossRef]
- Kasapidou, E.; Basdagianni, Z.; Papadopoulos, V.; Karaiskou, C.; Kesidis, A.; Tsiotsias, A. Effects of Intensive and Semi-Intensive Production on Sheep Milk Chemical Composition, Physicochemical Characteristics, Fatty Acid Profile, and Nutritional Indices. Animals 2021, 11, 2578. [Google Scholar] [CrossRef] [PubMed]
- Moorby, J.M.; Fraser, M.D. Review: New feeds and new feedings systems in intensive and semi-intensive forage-fed ruminant livestock systems. Animal 2021, 15 (Suppl. S1), 100297. [Google Scholar] [CrossRef] [PubMed]
- Pépin, M.; Seow, H.F.; Corner, L.; Rothel, J.S.; Hodgson, A.L.; Wood, P.R. Cytokine gene expression in sheep following experimental infection with various strains of Corynebacterium pseudotuberculosis differing in virulence. Vet. Res. 1997, 28, 149–163. [Google Scholar] [PubMed]
- Nannoni, E.; Martelli, G.; Scozzoli, M.; Belperio, S.; Buonaiuto, G.; Vanetti, N.L.; Truzzi, E.; Rossi, E.; Benvenuti, S.; Sardi, L. Effects of Lavender Essential Oil Inhalation on the Welfare and Meat Quality of Fattening Heavy Pigs Intended for Parma Ham Production. Animals 2023, 13, 2967. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus artemisia. Arch. Pharm. Res. 2021, 44, 439–474. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.; Shah, S.M.M.; AI-Joufi, F.A.; Shah, S.W.A.; Shoaib, M.; Shah, I.; Zahoor, M.; Ahmed, M.N.; Ghias, M.; Shah, S.M.H.; et al. Artemisia macrocephala Jacquem on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Molecules 2022, 27, 2399. [Google Scholar] [CrossRef]
- Shi, L.; Jin, X.; Xu, Y.; Xing, Y.; Yan, S.; Guo, S.; Cheng, Y.; Shi, B. Effects of Total Flavonoids of Artemisia ordosica on Growth performance, Oxidative Stress, and Antioxidant Status of Lipopolysaccharide-Challenged Broilers. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, Y.; Mao, C.; Sun, D.; Guo, S.; Xu, Y.; Jin, X.; Yan, S.; Shi, B. Water extract of Artemisia ordosica enhances antioxidant capability and immune response without affecting growth performance in weanling piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1848–1856. [Google Scholar] [CrossRef]
- Suroowan, S.; Liorent-Martínez, E.J.; Zengin, G.; Dall’Acqua, S.; Sut, S.; Buskaran, K.; Fakurazi, S.; Mahomoodally, M.F. Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemsia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. Molecules 2022, 27, 5886. [Google Scholar] [CrossRef]
- Liu, L.; Dai, W.; Xiang, C.; Chi, J.; Zhang, M. 1,10-Secoguaianolidesfrom Artemisia austro-yunnanensis and Their Anti-Inflammatory Effects. Molecules 2018, 23, 1639. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, J.; Li, M.; Zhu, S.; Guo, S.; Guo, H.; Wang, T.; Zhang, Y.; Zhang, J.; Wang, J. The role of Se content in improving anti-tumor activities and its potential mechanism for selenized Artemisia sphaerocephala polysaccharides. Food Funct. 2021, 12, 2058–2074. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Zheng, Y.K.; Yang, S.; Zhang, L.H.; Guo, S.W.; Shi, L.L.; Xu, Y.Q.; Jin, X.; Yan, S.M.; Shi, B.L. Artemisia ordosica Polysaccharide Alleviated Lipopolysaccharide- induced Oxidative Stress of Broilers via Nrf2/Keap1 and TLR4/NF-κB Pathway. Ecotoxicol. Environ. Saf. 2021, 223, 112566. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ma, G.; Guo, X.; Zhao, Y.; Guo, Y.; Yan, S. Effects of Artemisia ordosica Polysaccharide on in Vitro Rumen Fermentation Function of Albas White Cashmere Goats. Chin. J. Anim. Nutr. 2023, 35, 3164–3173. [Google Scholar] [CrossRef]
- Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- MacArthur Clark, J.A.; Sun, D. Guidelines for the ethical review of laboratory animal welfare People’s Republic of China National Standard GB/T 35892-2018. Anim. Model. Exp. Med. 2020, 1, 103–113. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Xu, Y.Q.; Jin, X.; Shi, L.L.; Guo, S.W.; Yan, S.M.; Shi, B.L. Optimization extraction and characterization of Artemisia ordosica polysaccharide and its beneficial effects on antioxidant function and gut microbiota in rates. RSC Adv. 2020, 10, 26151–26164. [Google Scholar] [CrossRef] [PubMed]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists: 2. Food Composition, Additives, Natural Contaminants, 18th ed.; AOAC Int.: Arlington, VA, USA, 2006. [Google Scholar]
- Soest, P.J.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Reilly, L.M.; He, F.; Rodriguez-Zas, S.L.; Southey, B.R.; Hoke, J.M.; Davenport, G.M.; Godoy, M.R.C.D. Effects of graded inclusion levels of raw garbanzo beans on apparent total tract digestibility, fecal quality, and fecal fermentative end-products and microbiota in extruded feline diets. J. Anim. Sci. 2021, 99, skab297. [Google Scholar] [CrossRef]
- Miguel, M.; Lee, S.S.; Mamuad, L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [Google Scholar] [CrossRef]
- Chanjula, P.; Cherdthong, A. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats. J. Anim. Sci. 2018, 96, 1150–1158. [Google Scholar] [CrossRef]
- Seo, J.; Jung, J.K.; Seo, S. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation. PeerJ 2015, 3, e1343. [Google Scholar] [CrossRef] [PubMed]
- Yesilbag, D.; Biricik, H.; Cetin, I.; Kara, C.; Meral, Y.; Cengiz, S.S.; Orman, A.; Udum, D. Effects of juniper essential oil on growth performance, some rumen protozoa, rumen fermentation and antioxidant blood enzyme parameters of growing Saanen kids. J. Anim. Physiol. Anim. Nutr. 2017, 101, e67–e76. [Google Scholar] [CrossRef] [PubMed]
- Brewster, A.N.; Pless, L.A.; Mclean, D.J.; Armstrong, S.A. Time of rumen fluid collection relative to feeding alters in vitro fermentation gas parameters. Transl. Anim. Sci. 2018, 2 (Suppl. 1), S97. [Google Scholar] [CrossRef] [PubMed]
- Nakov, D.; Hristov, S.; Stankovic, B.; Pol, F.; Dimitrov, I.; IIieski, V.; Mormede, P.; Hervé, J.; Terenina, E.; Lieubeau, B.; et al. Methodologies for Assessing Disease Tolerance in pigs. Front. Vet. Sci. 2019, 5, 329. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, Y.; Ji, S.; Xue, X.; Wang, L.; Zhang, M.; Chang, Y.; Wang, X. Protective effect of ginsenoside Rd on military aviation noise-induced cochlear hair cell damage in guinea pigs. Environ. Sci. Pollut. Res. Int. 2023, 30, 23965–23981. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Dec, K.; Kalduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species-sources, functions, oxidative damage. Pol. Merkur. Lekarski. 2020, 48, 124–127. [Google Scholar] [PubMed]
- Hamidzadeh, K.; Christensen, S.M.; Dalby, E.; Chandrasekaran, P.; Mosser, D.M. Macrophages and the Recovery from Acute and Chronic Inflammation. Annu. Rev. Physiol. 2017, 79, 567–592. [Google Scholar] [CrossRef]
- Liu, S.J.; Wang, J.; He, T.F.; Liu, H.S.; Piao, X.S. Effects of natural capsicum extract on growth performance, nutrient utilization, antioxidant status, immune function, and meat quality in broilers. Poult. Sci. 2021, 100, 101301. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Jiang, Y.; Xu, Y.Q.; Jin, X.; Yan, S.M.; Shi, B.L. Effects of Artemisia argyi flavonoids on growth performance and immune function in broilers challenged with lipopolysaccharide. Anim. Biosci. 2021, 34, 1169–1180. [Google Scholar] [CrossRef]
- Schären, M.; Frahm, J.; Kersten, S.; Meyer, U.; Hummel, J.; Breves, G.; Dänicke, S. Interrelation between the rumen microbiota and production, behavioral, rumen-fermentation, metabolic, and immunological attributes of dairy cows. J. Dairy Sci. 2018, 101, 4615–4637. [Google Scholar] [CrossRef] [PubMed]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmaen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids(SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Seljeset, S.; Siehler, S. Receptor-specific regulation of ERK1/2 activation by members of the “free fatty acid receptor” family. J. Recept. Signal Transduct. Res. 2012, 32, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xiong, A.; Pan, Y.; Wang, Y.; Zhang, Y.; Jiang, L.; Xiong, B. Effects of Artemisia annua L. Extracts on Lactation Performance, Plasma Immune and Antioxidant Indexes of Dairy Cows. Chin. J. Anim. Nutr. 2021, 33, 3896–3903. [Google Scholar] [CrossRef]
- Yu, S.; Xiong, A.; Pan, Y.; Zhang, Y.; Wang, Y.; Jiang, L.; Xiong, B. Effects of Artemisia annua L. Extracts on Rumen Fermentation Parameters and Microflora of Lactating Dairy Cows. Chin. J. Anim. Nutr. 2021, 33, 6431–6444. [Google Scholar] [CrossRef]
- Faryabi, R.; Mousaie, A.; Bahrampour, J.; Barazandeh, A. The effects of dietary inclusion of Artemisia sieberi leaves on growth performance, feeding behaviors, ruminal fermentation, feed digestibility, and blood hemato-biochemical profile of growing male lambs. Trop. Anim. Health Prod. 2023, 55, 41. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Yin, Y.; Zhu, W.; Mao, S. Rumen microbial and fermentation characteristics are affected differently by acarbose addition during two nutritional types of simulated severe subacute ruminal acidosis in vitro. Anaerobe 2017, 47, 9–46. [Google Scholar] [CrossRef]
- Zhang, L.; Piao, X. Different dietary protein sources influence growth performance, antioxidant capacity, immunity, fecal microbiota and metabolites in weaned piglets. Anim. Nutr. 2022, 8, 71–81. [Google Scholar] [CrossRef]
- Dankwa, A.S.; Humagain, U.; Ishaq, S.L.; Yeoman, C.J.; Clark, S.; Beitz, D.C.; Testroet, E.D. Bacterial communities in the rumen and feces of lactating Holstein dairy cows are not affected when fed reduced-fat dried distillers’ grains with solubles. Animal 2021, 15, 100281. [Google Scholar] [CrossRef]
- Pushpanathan, P.; Mathew, G.S.; Selvarajan, S.; Seshadri, K.G.; Srikanth, P. Gut microbiota and its mysteries. Indian J. Med. Microbiol. 2019, 37, 268–277. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, Y.; Dong, M.; Xia, T.; Li, D.; Xie, M.; Wu, J.; Wen, A.; Wang, Q.; Zhu, G.; et al. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol. 2020, 20, 68. [Google Scholar] [CrossRef]
- Mirzaei, R.; Dehkhodaie, E.; Bouzari, B.; Rahimi, M.; Gholestani, A.; Hosseini-Fard, S.R.; Keyvani, H.; Teimoori, A.; Karampoor, S. Dual role of microbioate-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 2022, 145, 112352. [Google Scholar] [CrossRef] [PubMed]
- Rizzatti, G.; Lopetuso, L.R.; Gibiino, G.; Binda, C.; Gasbarrini, A. Proteobacteria: A Common Factor in Human Diseases. Biomed. Res. Int. 2017, 2017, 9351507. [Google Scholar] [CrossRef] [PubMed]
- Priyanka; Meena, P.R.; Meghwanshi, K.K.; Rana, A.; Singh, A.P. Leafy greens as a potential source of multidrug-resistant diarrhoeagenic Escherichia coli and Salmonella. Microbiology 2021, 167, 001059. [Google Scholar] [CrossRef] [PubMed]
- Fazlollahi, M.; Lee, T.D.; Andrade, J.; Oguntuyo, K.; Chun, Y.; Grishina, G.; Grishin, A.; Bunyavanich, S. The nasal microbiome in asthma. J. Allergy Clin. Immunol. 2018, 142, 834–843.e2. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Zhang, L.; Shang, Y.; Wang, M.; Phillips, C.J.C.; Wang, Y.; Su, C.; Lian, H.; Fu, T.; Gao, T. Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals 2022, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Abdad, M.Y.; Abdallah, R.A.; Fournier, P.; Stenos, J.; Vasoo, S. Concise Review of the Epidemiology and Diagnostics of Rickettsioses: Rickettsia and Orientia spp. J. Clin. Microbiol. 2018, 56, e01728-17. [Google Scholar] [CrossRef]
- Adler, G.; Hornik, E.S.; Murray, G.; Bhandari, S.; Yadav, Y.; Heydarpour, M.; Basu, R.; Garg, R.; Tirosh, A. Acute effects of the food preservative propionic acid on glucose metabolism in humans. BMJ Open Diabetes Res. Care 2021, 9, e002336. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Luo, Q.; Zhou, D.; Long, Q.; Wang, X.; Lu, Q.; Wen, G. Effects of Purple Corn Anthocyanin on Blood Biochemical Indexes, Ruminal Fluid Fermentation, and Rumen Microbiota in Goats. Front. Vet. Sci. 2021, 8, 71750–71762. [Google Scholar] [CrossRef]
- Rettenmaier, R.; Thieme, N.; Streubel, J.; Bello, L.D.; Kowollik, M.; Huang, L.; Maus, I.; Klingl, A.; Liebl, W.; Zverlov, V.V. Variimorphobacter saccharofermentans gen. nov., sp. nov., a new member of the family Lachnospiraceae, isolated from a maize-fed biogas fermenter. Int. J. Syst. Evol. Microbiol. 2021, 71, 005044. [Google Scholar] [CrossRef]
- Calik, A.; Emami, N.K.; Schyns, G.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: Oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult. Sci. 2022, 101, 101858. [Google Scholar] [CrossRef]
- Marie-Etancelin, C.; Tortereau, F.; Gabinaud, B.; Boggio, G.M.; Graverand, Q.L.; Marcon, D.; Almeida, M.D.; Pascal, G.; Weisbecker, J.; Meynadier, A. Apart from the Diet, the Ruminal Microbiota of Lambs Is Modified in Relation to Their Genetic Potential for Feed Efficiency or Feeding Behavior. Front. Microbiol. 2021, 12, 759432. [Google Scholar] [CrossRef]
- Mills, J.P.; Rao, K.; Young, V.B. Probiotics for prevention of Clostridium difficile infection. Curr. Opin. Gastroenterol. 2018, 34, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yao, Y.; Gao, P.; Bu, S. The Therapeutic Efficacy of Curcumin vs. Metformin in Modulating the Gut Microbiota in NAFLD Rats: A Comparative Study. Front. Microbiol. 2021, 11, 555293. [Google Scholar] [CrossRef] [PubMed]
- Christine, K.I.J.; Rebecca, L.B.; Max, L.Y.L.; Richard, P.S.; Andrew, M.E.; Thomas, B.C. Symbiotic Firmicutes establish mutualism with the host via innate tolerance and resistance to control systemic immunity. Cell Host Microbe 2023, 31, 1433–1449.e9. [Google Scholar] [CrossRef]
- Tourlousse, D.M.; Sakamoto, M.; Miura, T.; Narita, K.; Ohashi, A.; Uchino, Y.; Yamazoe, A.; Kameyama, K.; Terauchi, J.; Ohkuma, M.; et al. Complete Genome Sequence of Megamonas funiformis JCM 14723 T. Microbiol. Resour. Announc. 2020, 9, e00142-20. [Google Scholar] [CrossRef]
- Jie, T.T.Z.; Shelat, V.G. Aeromonas caviae and Aeromonas veronii Causing Acute Cholecystitis. Surg. Infect. 2021, 22, 873–874. [Google Scholar] [CrossRef]
- Mey, A.R.; Gómez-Garzón, C.; Payne, S.M. Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. EcoSal. Plus 2021, 9, Eesp00342020. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Zhang, H.; Wang, J.; Fu, Q.; Qiao, H.; Wang, Q. Insight into antibacterial mechanism of polysaccharides: A review. LWT-Food Sci. Technol. 2021, 150, 111929. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Z.L.; Guo, L.; Li, F.; Li, F. Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs. Transl. Anim. Sci. 2021, 5, txab065. [Google Scholar] [CrossRef] [PubMed]
- Meenatchi, R.; Brindangnanam, P.; Hassan, S.; Rathna, K.; Kiran, G.S.; Selvin, J. Diversity of a bacterial community associated with Cliona lobata Hancock and Gelliodes pumila (Lendenfeld, 1887) sponges on the South-East coast of India. Sci. Rep. 2020, 10, 11558. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, P.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Cheng, G.Q.; Zhang, L.; Xia, J.Y.; Zhou, J.; Yuan, M.M.; Zhan, J.F.; Hong, Y. Dietary addition of Astragalus polysaccharide (APS) in dogs: Palatability, blood biochemistry and immunity. J. Appl. Anim. Res. 2022, 50, 1687–1694. [Google Scholar] [CrossRef]
- Kim, S.C.; Adesogan, A.T.; Kim, J.H.; Ko, Y.D. Influence of replacing rice straw with wormwood (Artemisia montana) silage on feed intake, digestibility and ruminal fermentation characteristics of sheep. Anim. Feed Sci. Technol. 2006, 128, 1–13. [Google Scholar] [CrossRef]
- Kim, C.H.; Kim, G.B.; Chang, M.B.; Bae, G.S.; Paik, I.K.; Kil, D.Y. Effect of dietary supplementation of Lactobacillus- fermented Artemisia princeps on growth performance, meat lipid peroxidation, and intestinal microflora in Hy-line Brown male chickens. Poult. Sci. 2012, 91, 2845–2851. [Google Scholar] [CrossRef]
Nutrient Composition | Content, % |
---|---|
Crude protein | 9.03 |
Ether extract | 7.63 |
NDF | 48.56 |
ADF | 32.01 |
Calcium | 1.14 |
Phosphorus | 0.18 |
Items | AOCP |
---|---|
Arabinose | 6.87 |
Galactose | 10.67 |
Glucose | 54.13 |
Xylose | 2.49 |
Mannose | 18.37 |
Galacturonic acid | 4.83 |
Glucuronic acid | 2.64 |
Item | Content |
---|---|
Ingredient, g/kg air dry basis | |
Millet straw | 58.80 |
Alfalfa hay | 2.96 |
Tall oat grass | 8.08 |
Corn | 14.72 |
Soybean meal | 5.30 |
Distillers dried grains with solubles | 3.30 |
Linseed cake | 5.30 |
Limestone | 0.12 |
CaHPO4 | 0.12 |
Premix | 0.50 |
NaCl | 0.30 |
NaHCO3 | 0.50 |
Total | 100.00 |
Nutrient composition | |
Digestible energy (MJ/Kg) | 10.95 |
Crude protein | 10.04 |
Ether extract | 2.24 |
Neutral detergent fiber | 54.71 |
Acid detergent fiber | 30.98 |
Calcium | 0.63 |
Phosphorous | 0.29 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
Initial BW, kg | 38.54 | 38.15 | 0.870 | 0.769 |
ADG, g/d | 37.43 a | 57.50 b | 11.711 | 0.007 |
DMI, g/d | 1201 | 1248 | 97.522 | 0.715 |
F/G | 32.09 a | 21.70 b | 6.634 | 0.016 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
DM | 85.46 | 86.64 | 0.316 | 0.052 |
CP | 79.13 a | 81.58 b | 0.555 | 0.022 |
EE | 81.60 | 80.41 | 0.353 | 0.079 |
NDF | 70.96 | 71.76 | 0.270 | 0.148 |
ADF | 67.57 a | 69.73 b | 0.365 | 0.016 |
Ca | 56.58 | 62.00 | 2.732 | 0.262 |
P | 71.34 | 69.64 | 1.043 | 0.325 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
MDA, nmol/mL | 2.85 | 2.78 | 0.204 | 0.819 |
CAT, U/mL | 5.18 a | 6.39 b | 0.172 | 0.006 |
GSH-Px, U/mL | 36.93 a | 45.97 b | 2.323 | 0.036 |
TrxR, U/mL | 22.45 | 21.11 | 1.053 | 0.375 |
T-AOC, U/mL | 2.57 | 2.48 | 0.217 | 0.173 |
T-SOD, U/mL | 20.16 a | 22.34 b | 0.537 | 0.039 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
IL-1β, pg/mL | 35.54 | 39.72 | 1.953 | 0.199 |
IL-6, pg/mL | 44.41 a | 60.88 b | 1.439 | 0.003 |
ROS, pg/mL | 37.03 | 36.90 | 0.695 | 0.922 |
TNF-α, pg/mL | 40.69 | 41.17 | 0.595 | 0.687 |
NO, µmol/L | 7.17 a | 9.40 b | 0.299 | 0.002 |
iNOS, U/mL | 3.21 | 3.64 | 0.209 | 0.421 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
pH | 6.96 | 6.90 | 0.071 | 0.603 |
NH3-N, mg/100 mL | 18.93 | 20.33 | 1.009 | 0.369 |
BCP, mg/100 mL | 34.43 a | 53.42 b | 3.878 | 0.030 |
Protozoon, ×104/mL | 10.84 a | 5.64 b | 3.750 | 0.004 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
Acetate | 35.95 b | 28.32 a | 1.759 | 0.025 |
Propionate | 7.87 a | 12.23 b | 0.333 | 0.004 |
Butyrate | 7.84 a | 10.39 b | 0.487 | 0.015 |
Iso-butyrate | 1.08 a | 1.24 b | 0.038 | 0.021 |
Valerate | 0.69 a | 0.80 b | 0.021 | 0.022 |
Iso-valerate | 1.36 | 1.51 | 0.243 | 0.341 |
TVFA | 47.18 a | 64.76 b | 1.364 | 0.004 |
A/P | 4.63 b | 2.32 a | 0.204 | <0.001 |
Item | CON | AOCP | SEM | p-Value |
---|---|---|---|---|
Firmicutes | 56.53 | 44.07 | 6.363 | 0.224 |
Bacteroidota | 33.76 | 47.20 | 7.135 | 0.242 |
Patescibacteria | 3.67 | 3.34 | 1.400 | 0.754 |
Proteobacteria | 2.39 | 1.63 | 0.608 | 1.000 |
Cyanobacteria | 0.90 | 0.78 | 0.486 | 0.936 |
Verrucomicrobiota | 0.85 | 0.37 | 0.216 | 0.128 |
Spirochaetota | 0.51 | 0.54 | 0.188 | 0.894 |
Synergistota | 0.22 | 0.84 | 0.343 | 0.470 |
Actinobacteriota | 0.56 | 0.50 | 0.212 | 0.631 |
other | 0.61 | 0.91 | 0.190 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Guo, Y.; Guo, X.; Shi, B.; Ma, G.; Yan, S.; Zhao, Y. Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals 2023, 13, 3575. https://doi.org/10.3390/ani13223575
Li S, Guo Y, Guo X, Shi B, Ma G, Yan S, Zhao Y. Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals. 2023; 13(22):3575. https://doi.org/10.3390/ani13223575
Chicago/Turabian StyleLi, Shuyi, Yongmei Guo, Xiaoyu Guo, Binlin Shi, Guoqiang Ma, Sumei Yan, and Yanli Zhao. 2023. "Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats" Animals 13, no. 22: 3575. https://doi.org/10.3390/ani13223575
APA StyleLi, S., Guo, Y., Guo, X., Shi, B., Ma, G., Yan, S., & Zhao, Y. (2023). Effects of Artemisia ordosica Crude Polysaccharide on Antioxidant and Immunity Response, Nutrient Digestibility, Rumen Fermentation, and Microbiota in Cashmere Goats. Animals, 13(22), 3575. https://doi.org/10.3390/ani13223575