Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening and Localization Analysis of Common Microsatellite Loci Based on the Genome
2.2. Collection of Samples for Screening of Potentially Universal Microsatellites
2.3. DNA Extraction
2.4. Screening of Potential Universal Microsatellite Markers
2.5. Genetic Diversity Assessment
3. Results
3.1. Common Microsatellite Loci Obtained Using Genome-Wide Data and the Functional Analysis of Localized Genes with Common Microsatellite Loci
3.2. Sample DNA Quality Control
3.3. Screening Results of Potential Universal Microsatellite Markers
3.4. Assessment of Genetic Diversity for Three Pheasants
4. Discussion
4.1. Universal Microsatellite Screening, Localization and Gene Function
4.2. The Feasibility of Using Universal Microsatellite Markers to Assess the Genetic Diversity of Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crowe, T.M.; Bowie, R.C.K.; Bloomer, P.; Mandiwana, T.G.; Hedderson, T.A.J.; Randi, E.; Pereira, S.L.; Wakeling, J. Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): Effects of character exclusion, data partitioning and missing data. Cladistics 2006, 22, 495–532. [Google Scholar] [CrossRef]
- Shen, Y.-Y.; Liang, L.; Sun, Y.-B.; Yue, B.-S.; Yang, X.-J.; Murphy, R.W.; Zhang, Y.-P. A mitogenomic perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae. BMC Evol. Biol. 2010, 10, 132. [Google Scholar] [CrossRef]
- IUCN. IUCN Red List of Threatened Species; Version 2022-2; IUCN: Gland, Switzerland, 2008; Available online: http://www.iucnredlist.org (accessed on 9 March 2023).
- Savini, T.; Namkhan, M.; Sukumal, N. Conservation status of Southeast Asian natural habitat estimated using Galliformes spatio-temporal range decline. Glob. Ecol. Conserv. 2021, 29, e01723. [Google Scholar] [CrossRef]
- Grainger, M.J.; Garson, P.J.; Browne, S.J.; McGowan, P.J.; Savini, T. Conservation status of Phasianidae in Southeast Asia. Biol. Conserv. 2018, 220, 60–66. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y. China Species Red List, 1st ed.; Higher Education Press: Beijing, China, 2004; pp. 222–226.
- Zheng, G. A Checklist on the Classification and Distribution of the Birds of China, 2nd ed.; Science Press: Beijing, China, 2011; pp. 401–402. [Google Scholar]
- National Forestry and Grassland Administration. List of National Key Wildlife Protection in China; National Forestry and Grassland Administration: Beijing, China, 2021; Version 2021-02-05. Available online: http://www.forestry.gov.cn/c/www/gkml.jhtml (accessed on 9 March 2023).
- Sodhi, N.S.; Posa, M.R.C.; Lee, T.M.; Bickford, D.; Koh, L.P.; Brook, B.W. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 2009, 19, 317–328. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, Y.; Connelly, J.W.; Li, J.; Xu, J. Current nature reserve management in China and effective conservation of threatened pheasant species. Wildl. Biol. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, J.; Zhang, Z. Dramatic decline of the vulnerable Reeves’s pheasant Syrmaticus reevesii, endemic to central China. Oryx 2014, 49, 529–534. [Google Scholar] [CrossRef]
- Buckland, S.T.; Goudie, I.B.J.; Borchers, D.L. Wildlife population assessment: Past developments and future directions. Biometrics 2000, 56, 1–12. [Google Scholar] [CrossRef]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef]
- Gilmore, S.; Peakall, R.; Robertson, J. Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: Implications for forensic investigations. Forensic Sci. Int. 2002, 131, 65–74. [Google Scholar] [CrossRef]
- Forcina, G.; Guerrini, M.; Panayides, P.; Hadjigerou, P.; Khan, A.A.; Barbanera, F. Molecular taxonomy and intra-Palaearctic boundary: New insights from the biogeography of the black francolin (Francolinus francolinus) by means of microsatellite DNA. Syst. Biodivers. 2019, 17, 759–772. [Google Scholar] [CrossRef]
- Kaya, S.; Kabasakal, B.; Erdoğan, A. Geographic genetic structure of Alectoris chukar in Türkiye: Post-LGM-induced hybridization and human-mediated contaminations. Biology 2023, 12, 401. [Google Scholar] [CrossRef]
- Angat, J.; Yusof, F.Z.M. A non-invasive technique to determine the effects of plucked feather type (size) on dna yield in pcr amplification. Malays. Appl. Biol. 2015, 44, 29–32. [Google Scholar]
- Hou, X.; Pan, S.; Lin, Z.; Xu, J.; Zhan, X. Performance comparison of different microbial DNA extraction methods on bird feces. Avian Res. 2021, 12, 247–254. [Google Scholar]
- Oskam, C.L.; Bunce, M. DNA extraction from fossil eggshell. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2012; pp. 65–70. [Google Scholar]
- Sophian, A. DNA Isolation of Chicken Feathers from the Base of the Young Feathers, the Base of the Old Feathers, and the Tip of the Feathers. Bioeduscience 2021, 5, 104–108. [Google Scholar] [CrossRef]
- Bigabwa, B.A.; Nyanjom, S.G.; Kyallo, M.; Juma, J.; Entfellner, J.-B.D.; Pelle, R. Diversity and population structure of indigenous chicken in Congo, using MHC-linked microsatellite LEI0258. Anim. Prod. Sci. 2022, 63, 213–226. [Google Scholar] [CrossRef]
- Canales, A.M.; Camacho, M.E.; Beltrán, A.H.; Delgado, J.V.; Landi, V.; Martínez, A.M. Genetic diversity in 10 populations of domestic Turkeys by using microsatellites markers. Poult. Sci. 2022, 102, 102311. [Google Scholar] [CrossRef]
- Farrag, S.A.; Tanatarov, A.B.; Soltan, M.E.; Ismail, M.; Zayed, A.M. Microsatellite Analysis of Genetic Diversity in Three Popu-lations of Japanese Quail (Coturnix coturnix japonica) from Kazakhstan. J. Anim. Vet. Adv. 2011, 10, 2376–2383. [Google Scholar]
- Shahbazi, S.; Mirhosseini, S.Z.; Romanov, M.N. Genetic diversity in five Iranian native chicken populations estimated by microsatellite markers. Biochem. Genet. 2007, 45, 63–75. [Google Scholar] [CrossRef]
- Bakır, M.; Kahraman, A. Development of New SSR (Simple Sequence Repeat) Markers for Lentils (Lens culinaris Medik.) from Genomic Library Enriched with AG and AC Microsatellites. Biochem. Genet. 2018, 57, 338–353. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Solomon, J.W.; Siller, S.; Jessell, L.; Duffy, J.E.; Rubenstein, D.R. Development of genome- and transcrip-tome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes. Mol. Ecol. Resour. 2017, 17, e160–e173. [Google Scholar] [CrossRef]
- Maradani, B.S.; Gudasalamani, R.; Setty, S.; Chandrasekaran, R. Development of microsatellite markers for the resin-yielding, non-timber forest product species Boswellia serrata (Burseraceae). Appl. Plant Sci. 2018, 6, e01180. [Google Scholar] [CrossRef]
- Glenn, T.C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 2011, 11, 759–769. [Google Scholar] [CrossRef]
- Ritchie, H.; Jamieson, A.J.; Piertney, S.B. Isolation and Characterization of Microsatellite DNA Markers in the Deep-Sea Amphipod Paralicella tenuipes by Illumina MiSeq Sequencing. J. Hered. 2016, 107, 367–371. [Google Scholar] [CrossRef]
- Seki, R.; Li, C.; Fang, Q.; Hayashi, S.; Egawa, S.; Hu, J.; Xu, L.; Pan, H.; Kondo, M.; Sato, T.; et al. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 2017, 8, 14229. [Google Scholar] [CrossRef]
- Zhou, C.; Tu, H.; Yu, H.; Zheng, S.; Dai, B.; Price, M.; Wu, Y.; Yang, N.; Yue, B.; Meng, Y. The Draft Genome of the Endangered Sichuan Partridge (Arborophila rufipectus) with Evolutionary Implications. Genes 2019, 10, 677. [Google Scholar] [CrossRef]
- Zeng, T.; Tu, F.; Ma, L.; Yan, C.; Yang, N.; Zhang, X.; Yue, B.; Ran, J. Complete mitochondrial genome of blood pheasant (Ithaginis cruentus). Mitochondrial DNA 2013, 24, 484–486. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Yue, B.; Ran, J. Complete mitochondrial genome of the Chinese Monal pheasant Lophophorus lhuysii, with phylogenetic implication in Phasianidae. Mitochondrial DNA 2010, 21, 5–7. [Google Scholar] [CrossRef]
- Yan, C.; Zhou, Y.; Lu, L.; Tu, F.; Huang, T.; Zhang, X.; Yue, B. Complete mitochondrial genome of Hainan partridge, Arborophila ardens (Galliformes: Phasianidae). Mitochondrial DNA 2013, 25, 259–260. [Google Scholar] [CrossRef]
- He, L.; Dai, B.; Zeng, B.; Zhang, X.; Chen, B.; Yue, B.; Li, J. The complete mitochondrial genome of the Sichuan Hill Partridge (Arborophila rufipectus) and a phylogenetic analysis with related species. Gene 2009, 435, 23–28. [Google Scholar] [CrossRef]
- Liu, F.; Ma, L.; Yang, C.; Tu, F.; Xu, Y.; Ran, J.; Yue, B.; Zhang, X. Taxonomic status of Tetraophasis obscurus and Tetraophasis szechenyii (Aves: Galliformes: Phasianidae) based on the complete mitochondrial genome. Zool. Sci. 2014, 31, 160–167. [Google Scholar] [CrossRef]
- Du, L.; Zhang, C.; Liu, Q.; Zhang, X.; Yue, B. Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 2017, 34, 681–683. [Google Scholar] [CrossRef]
- Xia, E.; Yao, Q.; Zhang, H.; Jiang, J.; Zhang, L.; Gao, L. CandiSSR: An Efficient Pipeline used for Identifying Candidate Pol-ymorphic SSRs Based on Multiple Assembled Sequences. Front. Plant Sci. 2016, 6, 1171. [Google Scholar] [CrossRef]
- Qi, W.-H.; Jiang, X.-M.; Du, L.-M.; Xiao, G.-S.; Hu, T.-Z.; Yue, B.-S.; Quan, Q.-M. Genome-Wide Survey and Analysis of Microsatellite Sequences in Bovid Species. PLoS ONE 2015, 10, e0133667. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Z.; Wang, C.; Zhang, X.; Li, J.; Yue, B. Characterization of perfect microsatellite based on genome-wide and chromosome level in Rhesus monkey (Macaca mulatta). Gene 2016, 592, 269–275. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016, 44, W83–W89. [Google Scholar] [CrossRef]
- Meng, Y.; Dai, B.; Ran, J.; Li, J.; Yue, B. Phylogenetic position of the genus Tetraophasis (Aves, Galliformes, Phasianidae) as inferred from mitochondrial and nuclear sequences. Biochem. Syst. Ecol. 2008, 36, 626–637. [Google Scholar] [CrossRef]
- VAN Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Marshall, T.C.; Slate, J.; Kruuk, L.E.B.; Pemberton, J.M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 1998, 7, 639–655. [Google Scholar] [CrossRef]
- Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Kofler, R.; Schlötterer, C.; Lelley, T. SciRoKo: A new tool for whole genome microsatellite search and investigation. Bioinformatics 2007, 23, 1683–1685. [Google Scholar] [CrossRef]
- Faircloth, B.C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 2008, 8, 92–94. [Google Scholar] [CrossRef]
- Du, L.; Li, Y.; Zhang, X.; Yue, B. MSDB: A user-friendly program for reporting distribution and building databases of microsatellites from genome sequences. J. Hered. 2013, 104, 154–157. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L. GMATA: An integrated software package for genome-scale SSR mining, marker development and viewing. Front. Plant Sci. 2016, 7, 1350. [Google Scholar] [CrossRef]
- Wen, M.; Wang, H.; Xia, Z.; Zou, M.; Lu, C.; Wang, W. Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res. Notes 2010, 3, 42. [Google Scholar] [CrossRef]
- Lee, G.; Sung, J.; Lee, S.; Chung, J.; Yi, J.; Kim, Y.; Lee, M. Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol. Ecol. Resour. 2013, 14, 69–78. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Robinson, A.J.; Love, C.G.; Batley, J.; Barker, G.; Edwards, D. Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 2004, 20, 1475–1476. [Google Scholar] [CrossRef]
- Duran, C.; Singhania, R.; Raman, H.; Batley, J.; Edwards, D. Predicting polymorphic EST-SSRs in silico. Mol. Ecol. Resour. 2013, 13, 538–545. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, C.-Y.; Cao, D.-C.; Xu, P.; Wang, S.; Li, H.-D.; Zhao, Z.-X. Rates and patterns of microsatellite mutations in common carp (Cyprinus carpio L.). Zool. Res. 2010, 31, 561–564. [Google Scholar]
- Kelkar, Y.D.; Tyekucheva, S.; Chiaromonte, F.; Makova, K.D. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res. 2007, 18, 30–38. [Google Scholar] [CrossRef]
- Lin, W.-H.; Kussell, E. Evolutionary pressures on simple sequence repeats in prokaryotic coding regions. Nucleic Acids Res. 2011, 40, 2399–2413. [Google Scholar] [CrossRef]
- Shao, W.; Cai, W.; Qiao, F.; Lin, Z.; Wei, L. Comparison of microsatellite distribution in the genomes of Pteropus vampyrus and Miniopterus natalensis (Chiroptera). BMC Genom. Data 2023, 24, 5. [Google Scholar] [CrossRef]
- Verbiest, M.; Maksimov, M.; Jin, Y.; Anisimova, M.; Gymrek, M.; Sonay, T.B. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J. Evol. Biol. 2022, 36, 321–336. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- Maudet, C.; Miller, C.; Bassano, B.; Breitenmoser-Würsten, C.; Gauthier, D.; Obexer-Ruff, G.; Michallet, J.; Taberlet, P.; Luikart, G. Microsatellite DNA and recent statistical methods in wildlife conservation management: Applications in Alpine ibex [Capra ibex(ibex)]. Mol. Ecol. 2002, 11, 421–436. [Google Scholar] [CrossRef]
- Schmidt, K.; Jensen, K. Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am. J. Bot. 2000, 87, 678–689. [Google Scholar] [CrossRef]
- Triantafyllidis, A.; Krieg, F.; Cottin, C.; Abatzopoulos, T.J.; Triantaphyllidis, C.; Guyomard, R. Genetic structure and phyloge-ography of European catfish (Silurus glanis) populations. Mol. Ecol. 2002, 11, 1039–1055. [Google Scholar] [CrossRef]
- Wu, A.; Zhang, X.-Y.; Yang, N.; Ran, J.-H.; Yue, B.-S.; Li, J. Isolation and characterization of twenty dinucleotide microsatellite loci in the buff-throated partridge, Tetraophasis szechenyii. Conserv. Genet. Resour. 2010, 2, 85–87. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, X.; Yang, N.; Xu, Y.; Yue, B.; Ran, J. Isolation and characterization of twelve polymorphic microsatellite loci in the buff-throated partridge (Tetraophasis szechenyii). Russ. J. Genet. 2011, 47, 201–204. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, D.; Song, X.; Chen, B.; Zeng, C.; Moermond, T.; Zhang, X.; Yue, B. High-throughput Microsatellite markers discovery for the Sichuan Hill Partridge (Arborophila rufipectus) and assessment of genetic diversity in the Laojunshan population. Biochem. Syst. Ecol. 2015, 60, 266–272. [Google Scholar] [CrossRef]
- Corner, S.; Yuzbasiyan-Gurkan, V.; Agnew, D.; Venta, P.J. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. Conserv. Genet. Resour. 2018, 11, 487–497. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Darwell, C.T.; Peng, Y. Development of 19 universal microsatellite loci for three closely related Ficus species (Moraceae) by high-throughput sequencing. Genes Genet. Syst. 2020, 95, 21–27. [Google Scholar] [CrossRef]
- Levin, I.; Cheng, H.H.; Baxter-Jones, C.; Hillel, J. Turkey Microsatellite DNA Loci Amplified by Chicken-Specific Primers. Anim. Genet. 2009, 26, 107–110. [Google Scholar] [CrossRef]
- Radosavljević, I.; Jakse, J.; Javornik, B.; Satovic, Z.; Liber, Z. New microsatellite markers for Salvia officinalis (Lamiaceae) and cross-amplification in closely related species. Am. J. Bot. 2011, 98, e316–e318. [Google Scholar] [CrossRef]
Loci | Ho | He | PIC | ||||||
---|---|---|---|---|---|---|---|---|---|
Sichuan Hill Partridge | Blood Pheasant | Buff-Throated Partridge | Sichuan Hill Partridge | Blood Pheasant | Buff-Throated Partridge | Sichuan Hill Partridge | Blood Pheasant | Buff-Throated Partridge | |
pha51 | 0.429 | 1.000 | 0.357 | 0.480 | 0.706 | 0.304 | 0.415 | 0.636 | 0.250 |
pha53 | 0.571 | 0.789 | 0.929 | 0.418 | 0.491 | 0.653 | 0.325 | 0.364 | 0.552 |
pha79 | 0.905 | 0.947 | 0.929 | 0.666 | 0.622 | 0.627 | 0.585 | 0.534 | 0.537 |
pha55 | 0.952 | 0.895 | 0.714 | 0.577 | 0.508 | 0.476 | 0.466 | 0.372 | 0.354 |
pha80 | 0.095 | 0.526 | 0.857 | 0.093 | 0.398 | 0.508 | 0.087 | 0.313 | 0.370 |
pha77 | 0.571 | 1.000 | 0.929 | 0.431 | 0.582 | 0.516 | 0.350 | 0.473 | 0.374 |
phaA1 | 0.429 | 0.158 | 0.500 | 0.591 | 0.149 | 0.389 | 0.488 | 0.135 | 0.305 |
phaA7 | 0.524 | 0.737 | 0.286 | 0.396 | 0.478 | 0.254 | 0.312 | 0.357 | 0.215 |
phaG1 | 0.190 | 0.211 | 0.714 | 0.180 | 0.193 | 0.521 | 0.166 | 0.171 | 0.407 |
phaJ8 | 0.857 | 0.947 | 0.857 | 0.502 | 0.512 | 0.508 | 0.370 | 0.374 | 0.370 |
Average | 0.5523 | 0.7210 | 0.7072 | 0.4334 | 0.4639 | 0.4756 | 0.3564 | 0.3729 | 0.3734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, D.; Yang, N.; Xu, W.; Jiang, X.; Luo, L.; Hou, Y.; Zhao, G.; Shen, F.; Zhang, X. Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species. Animals 2023, 13, 3601. https://doi.org/10.3390/ani13233601
Xie D, Yang N, Xu W, Jiang X, Luo L, Hou Y, Zhao G, Shen F, Zhang X. Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species. Animals. 2023; 13(23):3601. https://doi.org/10.3390/ani13233601
Chicago/Turabian StyleXie, Daxin, Nan Yang, Wencai Xu, Xue Jiang, Lijun Luo, Yusen Hou, Guangqing Zhao, Fujun Shen, and Xiuyue Zhang. 2023. "Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species" Animals 13, no. 23: 3601. https://doi.org/10.3390/ani13233601
APA StyleXie, D., Yang, N., Xu, W., Jiang, X., Luo, L., Hou, Y., Zhao, G., Shen, F., & Zhang, X. (2023). Development and Application of Potentially Universal Microsatellite Markers for Pheasant Species. Animals, 13(23), 3601. https://doi.org/10.3390/ani13233601