Lactate Dehydrogenase Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea)—Phylogenetic Patterns and Molecular Characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Animals
2.3. Identification of SmLDH Family Members
2.4. Quantitative RT-PCR Analysis
2.5. Phylogenetic Analysis
2.6. Molecular Identification of rSmLDH
2.7. Enzyme Activity Assays
3. Results
3.1. The Lactate Dehydrogenase Gene Family in S. mansoni
3.2. LDHs in Medical Platyhelminthes
3.3. Molecular Characterization of rSmLDH
3.4. Enzyme Kinetics and Inhibition Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz, T.; Kuchta, R.; Brabec, J. Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: Recent progress and future challenges. Int. J. Parasitol. Parasites Wildl. 2019, 9, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gong, T.; Chen, S.; Liu, Q.; Zhou, H.; He, J.; Wu, Y.; Li, F.; Liu, Y. Epidemiology, Diagnosis, and Prevention of Sparganosis in Asia. Animals 2022, 12, 1578. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, R.; Kołodziej-Sobocińska, M.; Brabec, J.; Młocicki, D.; Sałamatin, R.; Scholz, T. Sparganosis (Spirometra) in Europe in the Molecular Era. Clin. Infect. Dis. 2021, 72, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Jin, W.; Ding, H.; Pang, Y.; Ma, S.; Yang, M.; Wu, S.; Jiang, M.; Pang, L.; Luo, S.; et al. Spirometra mansoni sparganosis identified by metagenomic next-generation sequencing: A case report. Int. Infect. Dis. 2023, 128, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Ito, D.; Tademoto, S.; Itami, N.; Nishikata, S.; Takashima, E.; Tsuboi, T.; Fukumoto, S.; Otsuki, H. Molecular cloning and characterization of plerocercoid-immunosuppressive factor from Spirometra erinaceieuropaei. Parasitol. Int. 2020, 76, 102062. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.J.; Li, W.; Liu, S.N.; Wang, S.Y.; Jiang, P.; Wang, Z.Q.; Zhang, X. Integrated transcriptomic and proteomic analyses of plerocercoid and adult Spirometra mansoni reveal potential important pathways in the development of the medical tapeworm. Parasit. Vectors. 2023, 16, 316. [Google Scholar] [CrossRef] [PubMed]
- Young, A.; Oldford, C.; Mailloux, R.J. Lactate dehydrogenase supports lactate oxidation in mitochondria isolated from different mouse tissues. Redox Biol. 2020, 28, 101339. [Google Scholar] [CrossRef]
- Kayamba, F.; Faya, M.; Pooe, O.J.; Kushwaha, B.; Kushwaha, N.D.; Obakachi, V.A.; Nyamori, V.O.; Karpoormath, R. Lactate dehydrogenase and malate dehydrogenase: Potential antiparasitic targets for drug development studies. Bioorg. Med. Chem. 2021, 50, 116458. [Google Scholar] [CrossRef]
- Miholjcic, T.B.S.; Halse, H.; Bonvalet, M.; Bigorgne, A.; Rouanne, M.; Dercle, L.; Shankar, V.; Marabelle, A. Rationale for LDH-targeted cancer immunotherapy. Eur. J. Cancer 2023, 181, 166–178. [Google Scholar] [CrossRef]
- Tan, A.F.; Sakam, S.S.B.; Rajahram, G.S.; William, T.; Abd Rachman Isnadi, M.F.; Daim, S.; Barber, B.E.; Kho, S.; Sutherland, C.J.; Anstey, N.M.; et al. Diagnostic accuracy and limit of detection of ten malaria parasite lactate dehydrogenase-based rapid tests for Plasmodium knowlesi and P. falciparum. Front. Cell. Infect. Microbiol. 2022, 12, 1023219. [Google Scholar] [CrossRef]
- Barney, R.; Velasco, M.; Cooper, C.A.; Rashid, A.; Kyle, D.E.; Moon, R.W.; Domingo, G.J.; Jang, I.K. Diagnostic Characteristics of Lactate Dehydrogenase on a Multiplex Assay for Malaria Detection Including the Zoonotic Parasite Plasmodium knowlesi. Am. J. Trop. Med. Hyg. 2021, 106, 275–282. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Bastos, R.G.; Yu, L.; Laughery, J.M.; Suarez, C.E. Lactate Dehydrogenase as a Potential Therapeutic Drug Target to Control Babesia bigemina. Front. Cell. Infect. Microbiol. 2022, 12, 870852. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Hu, F.; Yang, Y.; Hu, D.; Hu, X.; Yu, X.; Xu, J.; Dai, J.; Liao, X.; Huang, J. Molecular cloning, characterization, and immunolocalization of two lactate dehydrogenase homologous genes from Taenia solium. Parasitol. Res. 2011, 109, 567–574. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, Z.; Lv, G.; Xu, H.; Zeng, S.; Li, Y.; Wu, W.; Hu, X. The topological structure and function of Echinococcus granulosus lactate dehydrogenase, a tegumental transmembrane protein. Mol. Biochem. Parasitol. 2012, 184, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Bennett, H.M.; Mok, H.P.; Gkrania-Klotsas, E.; Tsai, I.J.; Stanley, E.J.; Antoun, N.M.; Coghlan, A.; Harsha, B.; Traini, A.; Ribeiro, D.M.; et al. The genome of the sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain lesion. Genome Biol. 2014, 15, 510. [Google Scholar] [CrossRef]
- Liu, S.N.; Su, X.Y.; Chen, W.Q.; Yu, J.W.; Li, J.R.; Jiang, P.; Cui, J.; Wang, Z.Q.; Zhang, X. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop. 2022, 232, 106483. [Google Scholar] [CrossRef]
- Liu, S.; Gao, F.; Wang, R.; Li, W.; Wang, S.; Zhang, X. Molecular characteristics of the fatty-acid binding protein (FABP) family in Spirometra mansoni—A neglected medical tapeworm. Animals 2023, 13, 2855. [Google Scholar] [CrossRef]
- Greenfield, E.A. Standard Immunization of Mice, Rats, and Hamsters. Cold Spring Harbor Protoc. 2020, 2020, 100297. [Google Scholar] [CrossRef]
- Zhang, X.; Hong, X.; Liu, S.N.; Jiang, P.; Zhao, S.C.; Sun, C.X.; Wang, Z.Q.; Cui, J. Large-scale survey of a neglected agent of sparganosis Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) in wild frogs in China. PLoS Negl. Trop. Dis. 2020, 14, e0008019. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Johansson, M.U.; Zoete, V.; Michielin, O.; Guex, N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform. 2012, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Nava, G.; Robert, L.; Plancarte, A. Characterization of Taenia solium cysticerci microsomal glutathione S-transferase activity. Parasitol. Res. 2007, 101, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gan, W.; Zhan, W.; Feng, P.; Chen, H.; Zheng, Y.; Hu, X. Antibodies against Schistosoma japonicum lactate dehydrogenase B enhance enzyme active. Mol. Biochem. Parasitol. 2018, 226, 1–8. [Google Scholar] [CrossRef]
- Lozano Terol, G.; Gallego-Jara, J.; Sola Martínez, R.A.; Martínez Vivancos, A.; Cánovas Díaz, M.; de Diego Puente, T. Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front. Microbiol. 2021, 12, 682001. [Google Scholar] [CrossRef]
- Kesidis, A.; Depping, P.; Lodé, A.; Vaitsopoulou, A.; Bill, R.M.; Goddard, A.D.; Rothnie, A.J. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 2020, 180, 3–18. [Google Scholar] [CrossRef]
- Bork, S.; Okamura, M.; Boonchit, S.; Hirata, H.; Yokoyama, N.; Igarashi, I. Identification of Babesia bovis L-lactate dehydrogenase as a potential chemotherapeutical target against bovine babesiosis. Mol. Biochem. Parasitol. 2004, 136, 165–172. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Wu, X.; Du, W.; Yu, X.; Hu, X. Identification, expression, characterization, and immunolocalization of lactate dehydrogenase from Taenia asiatica. Parasitol. Res. 2009, 104, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Ura, T.; Sakakibara, N.; Hirano, Y.; Tamada, T.; Takakusagi, Y.; Shiraki, K.; Mikawa, T. Activation of oxidoreductases by the formation of enzyme assembly. Sci. Rep. 2023, 13, 14381. [Google Scholar] [CrossRef] [PubMed]
- Dando, C.; Schroeder, E.R.; Hunsaker, L.A.; Deck, L.M.; Royer, R.E.; Zhou, X.; Parmley, S.F.; Vander Jagt, D.L. The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from Toxoplasma gondii: Comparisons with pLDH from Plasmodium falciparum. Mol. Biochem. Parasitol. 2001, 118, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Conners, R.; Schambach, F.; Read, J.; Cameron, A.; Sessions, R.B.; Vivas, L.; Easton, A.; Croft, S.L.; Brady, R.L. Mapping the binding site for gossypol-like inhibitors of Plasmodium falciparum lactate dehydrogenase. Mol. Biochem. Parasitol. 2005, 142, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Hu, X.; Peng, Z.; Xie, H.; Li, Y.; Wu, Z.; Yu, X. Expression and characterization of lactate dehydrogenase from Schistosoma japonicum. Parasitol. Res. 2006, 99, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Jing, C.; Zhu, P.; Hu, X.; Xu, J.; Wu, Z.; Yu, X. Molecular cloning and characterization of a novel lactate dehydrogenase gene from Clonorchis sinensis. Parasitol. Res. 2006, 99, 55–64. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Q.; Luo, W.; Zhao, J.; Alzan, H.F.; He, L. The Structural Basis of Babesia orientalis Lactate Dehydrogenase. Front. Cell. Infect. Microbiol. 2022, 11, 790101. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, F.; Zhu, G. Cryptosporidium Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics. PLoS Pathog. 2015, 11, e1005250. [Google Scholar] [CrossRef]
Sequences | Gene ID | LDH Domain Coordinates | Domain Length (aa) | Protein Length (aa) |
---|---|---|---|---|
SmLDH1 | ADK62519.1 | 23–162, 165–333 | 139,168 | 338 |
SmLDH2 | SPER_0001136701 | 23–162, 165–332 | 139,167 | 334 |
SmLDH3 | SPER_0001938001 | 23–162, 165–287 | 139,122 | 289 |
SmLDH4 | SPER_0002127101 | 14–86 | 72 | 140 |
SmLDH5 | SPER_0002457401 | 1–92 | 91 | 93 |
SmLDH6 | SPER_0002847401 | 17–78, 97–153 | 61,56 | 156 |
SmLDH7 | TRINITY_DN30655_c0_g1_i1 | 24–163, 166–334 | 139,168 | 335 |
SmLDH8 | TRINITY_DN32812_c0_g1_i11 | 3–89, 92–150 | 86,58 | 152 |
SmLDH9 | TRINITY_DN32812_c0_g1_i9 | 3–89, 92–259 | 86,167 | 261 |
SmLDH10 | TRINITY_DN32812_c0_g1_i8 | 92–231, 234–353 | 139,119 | 358 |
SmLDH11 | TRINITY_DN32812_c0_g1_i4 | 11–96 | 85 | 97 |
SmLDH12 | TRINITY_DN32812_c0_g1_i7 | 26–122 | 96 | 123 |
SmLDH13 | TRINITY_DN32812_c0_g1_i6 | 26–69, 72–192 | 43,120 | 196 |
SmLDH14 | TRINITY_DN32812_c0_g1_i1 | 21–147 | 126 | 148 |
SmLDH15 | TRINITY_DN32812_c0_g1_i10 | 1–105, 108–275 | 104,167 | 277 |
SmLDH16 | TRINITY_DN32381_c0_g2_i1 | 7–50, 53–221 | 43,168 | 222 |
SmLDH17 | TRINITY_DN32381_c0_g2_i2 | 56–195, 198–366 | 139,168 | 367 |
SmLDH18 | TRINITY_DN29226_c0_g1_i1 | 2–88, 91–265 | 86,174 | 266 |
SmLDH19 | TRINITY_DN29226_c0_g1_i4 | 41–180, 183–357 | 139,174 | 358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhou, K.; Gao, F.; Li, W.; Wang, Z.; Zhang, X. Lactate Dehydrogenase Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea)—Phylogenetic Patterns and Molecular Characteristics. Animals 2023, 13, 3642. https://doi.org/10.3390/ani13233642
Liu S, Zhou K, Gao F, Li W, Wang Z, Zhang X. Lactate Dehydrogenase Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea)—Phylogenetic Patterns and Molecular Characteristics. Animals. 2023; 13(23):3642. https://doi.org/10.3390/ani13233642
Chicago/Turabian StyleLiu, Shasha, Ke Zhou, Fei Gao, Wen Li, Zhongquan Wang, and Xi Zhang. 2023. "Lactate Dehydrogenase Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea)—Phylogenetic Patterns and Molecular Characteristics" Animals 13, no. 23: 3642. https://doi.org/10.3390/ani13233642
APA StyleLiu, S., Zhou, K., Gao, F., Li, W., Wang, Z., & Zhang, X. (2023). Lactate Dehydrogenase Gene Family in Spirometra mansoni (Cestoda: Diphyllobothriidea)—Phylogenetic Patterns and Molecular Characteristics. Animals, 13(23), 3642. https://doi.org/10.3390/ani13233642