Music and Tactile Stimuli during Daily Milking Affect the Welfare and Productivity of Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Property at Which the Management Routine Was Applied
2.2. Animals and Experimental Design
2.3. Tactile Stimuli
2.4. Sound Stimuli (Music)
2.5. Dairy Production, Residual Milk, and Milking Time
2.6. Presence of Subclinical Mastitis (CMT Test)
2.7. Respiratory Rate, Ocular Temperature, and Udder Surface Temperature
2.8. Behavior in the Milking Parlor
2.9. Forced Human Approach Test
2.10. Serum Serotonin Levels
2.11. Statistical Analyses
3. Results
3.1. Dairy Production, Residual Milk, and Milking Time
3.2. Presence of Subclinical Mastitis (CMT Test)
3.3. Respiratory Rate, Ocular Temperature, and Udder Surface Temperature
3.4. Behavior of Cows in the Milking Parlor
3.5. Forced Human Approach Test
3.6. Serum Levels of Serotonin (5-HT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macedo, G.G.; Zúccari, C.E.S.N.; de Abreu, U.G.P.; Negrão, J.A.; da Costa e Silva, E.V. Human-animal interaction, stress, and embryo production in Bos indicus embryo donors under tropical conditions. Trop. Anim. Health Prod. 2011, 43, 1175–1182. [Google Scholar] [CrossRef]
- Lammoglia, M.; Alarcón, M.; Mancera, B.; Cabrera, A.; Daniel, A. Effects of routinely oxytocin injection to induce milk ejection on some reproductive parameters of crossbred cows in the tropics of Veracruz. Annu. Res. Rev. Biol. 2015, 6, 297–303. [Google Scholar] [CrossRef]
- Lima, M.L.P.; Negrão, J.A.; de Paz, C.C.P.; Grandin, T. Minor corral changes and adoption of good handling practices can improve the behavior and reduce cortisol release in Nellore cows. Trop. Anim. Health Prod. 2018, 50, 525–530. [Google Scholar] [CrossRef]
- Ceballos, M.C.; Sant’Anna, A.C.; Góis, K.C.R.; Ferraudo, A.S.L.; Negrao, J.A.L.; da Costa, M.J.R.P. Investigating the relationship between human-animal interactions, reactivity, stress response and reproductive performance in Nellore heifers. Livest. Sci. 2018, 217, 65–75. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Coleman, G.J. Human-Livestock Interactions: The Stockperson and the Productivity of Intensively Farmed Animals, 2nd ed.; CABI International: Wallingford, UK, 2011; ISBN 978-184593673-0. [Google Scholar]
- Probst, J.K.; Neff, A.S.; Leiber, F.; Kreuzer, M.; Hillmann, E. Gentle touching in early life reduces avoidance distance and slaughter stress in beef cattle. Appl. Anim. Behav. Sci. 2012, 139, 42–49. [Google Scholar] [CrossRef]
- Martin, J.E.; Ison, S.H.; Baxter, E.M. The influence of neonatal environment on piglet play behaviour and post-weaning social and cognitive development. Appl. Anim. Behav. Sci. 2015, 163, 69–79. [Google Scholar] [CrossRef]
- Mandel, R.; Whay, H.R.; Klement, E.; Nicol, C.J. Invited review: Environmental enrichment of dairy cows and calves in indoor housing. J. Dairy Sci. 2016, 99, 1695–1715. [Google Scholar] [CrossRef]
- Ball, N.J.; Mercado, E.; Orduña, I. Enriched Environments as a Potential Treatment for Developmental Disorders: A Critical Assessment. Front. Psychol. 2019, 10, 466. [Google Scholar] [CrossRef]
- Andrioli, M.; Carvalhal, M.; Costa, F.; Costa, M.J.R.P. Efeitos da interação humano-animal no bem-estar de ruminantes leiteiros: Uma Revisão. Veterinária E Zootec. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Rault, J.L.; Waiblinger, S.; Boivin, X.; Hemsworth, P. The power of a positive human–animal relationship for animal welfare. Front. Vet. Sci. 2020, 7, 590867. [Google Scholar] [CrossRef]
- Kutzer, T.; Steilen, M.; Gygax, L.; Wechsler, B. Habituation of dairy heifers to milking routine-effects on human avoidance distance, behavior, and cardiac activity during milking. J. Dairy Sci. 2015, 98, 5241–5251. [Google Scholar] [CrossRef]
- Polikarpus, A.; Napolitano, F.; Grasso, F.; Di Palo, R.; Zicarelli, F.; Arney, D.; De Rosa, G. Effect of pre-partum habituation to milking routine on behaviour and lactation performance of buffalo heifers. Appl. Anim. Behav. Sci. 2014, 161, 1–6. [Google Scholar] [CrossRef]
- Shahin, M. The effects of positive human contact by tactile stimulation on dairy cows with different personalities. Appl. Anim. Behav. Sci. 2018, 204, 23–28. [Google Scholar] [CrossRef]
- Gorewit, R.C.; Gassman, K.B. Effects of Duration of Udder Stimulation on Milking Dynamics and Oxytocin Release. J. Dairy Sci. 1985, 68, 1813–1818. [Google Scholar] [CrossRef]
- Sagi, R.; Gorewit, R.C.; Merrill, W.G.; Wilson, D.B. Premilking effects on milking performance, oxytocin and prolactin release in cows. J. Dairy Sci. 1980, 63, 800. [Google Scholar] [CrossRef]
- Mayer, H.; Schams, D.; Wrostorff, H.; Prokopp, A. Secretion of oxytocin and milk removal as affected by milking cows with and without manual stimulation. J. Endocrinol. 1984, 103, 255. [Google Scholar] [CrossRef]
- Watters, R.D.; Bruckmaier, R.M.; Crawford, H.M.; Schuring, N.; Schukken, Y.H.; Galton, D.M. The effect of manual and mechanical stimulation on oxytocin release and milking characteristics in Holstein cows milked 3 times daily. J. Dairy Sci. 2015, 98, 1721–1729. [Google Scholar] [CrossRef]
- Das, K.S.; Das, N. Pre-partum udder massaging as a means for reduction of fear in primiparous cows at milking. Appl. Anim. Behav. Sci. 2004, 89, 17–26. [Google Scholar] [CrossRef]
- Kitaev, E.A. The influence of preparation of heifers for calving on the development of milk ejection characteristics and behaviour of cows during milking Dok. Ross Akad. Sel. Nauk 1991, 5, 60–64. [Google Scholar]
- Foris, B.; Sadrzadeh, N.; Krahn, J.; Weary, D.M.; von Keyserlingk, M.A.G. The Effect of Placement and Group Size on the Use of an Automated Brush by Groups of Lactating Dairy Cattle. Animals 2023, 13, 760. [Google Scholar] [CrossRef]
- De Vries, T.J.; Vankova, M.; Veira, D.M.; Von Keyserlingk, M.A.G. Use of mechanical brushes by lactating dairy cows. J. Dairy Sci. 2007, 90, 2241–2245. [Google Scholar] [CrossRef]
- Ujita, A.; El Faro, L.; Vicentini, R.R.; Lima, M.L.P.; Fernandes, L.O.; Oliveira, A.P.; Veroneze, R.; Negrão, J.A. Effect of positive tactile stimulation and prepartum milking routine training on behavior, cortisol and oxytocin in milking, milk composition, and milk yield in Gyr cows in early lactation. Appl. Anim. Behav. Sci. 2021, 234, 105205. [Google Scholar] [CrossRef]
- Ciborowska, P.; Michalczuk, M.; Bień, D. The Effect of Music on Livestock: Cattle, Poultry and Pigs. Animals 2021, 11, 3572. [Google Scholar] [CrossRef]
- Lippi, I.C.C.; Caldara, F.R.; Almeida-Paz, I.C.D.L.; Morais, H.B.; Odakura, A.M.; Konkiewitz, E.C.; Ferreira, W.S.; Fraga, T.L.; Burbarelli, M.F.C.; Felix, G.A.; et al. Effects of Music Therapy on Neuroplasticity, Welfare, and Performance of Piglets Exposed to Music Therapy in the Intra- and Extra-Uterine Phases. Animals 2022, 12, 2211. [Google Scholar] [CrossRef]
- Lippi, I.C.C.; Caldara, F.R.; Morais, H.B.; Vargas, L.B.; Odakura, A.M.; Burbarelli, M.F.C.; Felix, G.A.; Garcia, R.G.; Almeida-Paz, I.C.L.; Santos, L.S. Effects of Auditory Enrichment on Welfare and Performance of Sows during Pregnancy and Farrowing/lactation Periods. J. Appl. Anim. Welf. Sci. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Mendes, J.P.; Caldara, F.R.; Burbarelli, M.F.C.; Valentim, J.K.; Mandú, D.F.B.; Garcia, R.G.; Almeida-Paz, I.C.L.; Odakura, A.M.; Lourenço da Silva, M.I. Performance and Welfare of Sows Exposed to Auditory Environmental Enrichment in Mixed or Collective Housing Systems. Animals 2023, 13, 1226. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C.; Li, C.; Zhang, B.; Wang, Z.; Wang, C.; Yu, X. Effects of Different Types of Music on Lactation and Antioxidant Capacity of Dairy Cows. China Anim. Husb. Vet. Med. 2017, 44, 1388–1392. [Google Scholar] [CrossRef]
- Lemcke, M.C.; Ebinghaus, A.; Knierim, U. Impact of music played in an automatic milking system on cows’ milk yield and behavior—A pilot study. Dairy 2021, 2, 73–78. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Leite, L.O.; Bezerra, B.M.O.; Kogitzki, T.R.; Polo, G.; Freitas, V.J.D.F.; Hötzel, M.J.; Nunes-Pinheiro, D.C.S. Impact of massage on goats on the human-animal relationship and parameters linked to physiological response. Ciência Rural 2020, 50, e20200105. [Google Scholar] [CrossRef]
- Weber, A. Os 5 Elementos Da Música Clássica. Musicoterapia Dos 5 Elementos. Musicoterapia dos 5 Elementos da Medicina Tradicional Chinesa. Ed. Andreoli 151p, 2010. São Paulo, Brazil. ISBN: 9788560416134. Available online: https://www.livrariaandreoli.com.br/item/Os-5-Elementos-da-Musica-Classica--%252d-Musicoterapia-dos-5-elementos.-Augusto-Weber-8560416137.html (accessed on 19 November 2023).
- Alworth, L.C.; Buerkle, S.C. The effects of music on animal physiology, behavior and welfare. Lab. Anim. 2013, 42, 54–61. [Google Scholar] [CrossRef]
- Lees, A.M.; Lees, J.C.; Sejian, V.; Wallage, A.L.; Gaughan, J.B. Using infrared thermography as an in-situ measure of core body temperature in lot-fed angus steers. Int. J. Biometeorol. 2018, 62, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Rezende, E.D.S.J.; Moura, D.J.; Pereira, J.L.D.A.R.; Ferraz, M.A.J.; Ferraz, G.A.J.; Faria, J.E.; Ferreira, Y.D.G. Analysis of association between thermographic images and diagnosis of mastitis. Braz. J. Dev. 2022, 8, 15532–15542. [Google Scholar] [CrossRef]
- Kim, S.M.; Cho, G.J. Validation of Eye Temperature Assessed Using Infrared Thermography as an Indicator of Welfare in Horses. Appl. Sci. 2021, 11, 7186. [Google Scholar] [CrossRef]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.L.; Webster, J.R. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef]
- Cavallina, R.; Roncoroni, C.; Campagna, M.C.; Minero, M.; Canali, E. Buffalo behavioural response to machine milking in early lactation. Ital. J. Anim. Sci. 2008, 7, 287–295. [Google Scholar] [CrossRef]
- Cerqueira, J.L.; Araújo, J.P.; Sorensen, J.T.; Niza-Ribeiro, J. Some indicators for the assessment of welfare in dairy cows—A review. Rev. Port. Ciências Veterinárias 2011, 110, 5–19. [Google Scholar]
- Juozaitienė, V.; Antanaitis, R.; Urbonavičius, G.; Urbutis, M.; Tušas, S.; Baumgartner, W. Can Milk Flow Traits Act as Biomarkers of Lameness in Dairy Cows? Agriculture 2021, 11, 227. [Google Scholar] [CrossRef]
- Mungube, E.O.; Tenhagen, B.A.; Regassa, F.; Kyule, M.N.; Shiferaw, Y.; Kassa, T.; Baumann, M.P.O. Reduced milk production in udder quarters with subclinical mastitis and associated economic losses in crossbred dairy cows in Ethiopia. Trop. Anim. Health Prod. 2005, 37, 503–512. [Google Scholar] [CrossRef]
- Bari, M.S.; Rahman, M.M.; Persson, Y.; Derks, M.; Sayeed, M.A.; Hossain, D.; Singha, S.; Hoque, M.A.; Sivaraman, S.; Fernando, P.; et al. Subclinical mastitis in dairy cows in south-Asian countries: A review of risk factors and etiology to prioritize control measures. Vet. Res. Commun. 2022, 46, 621–640. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Schams, D.; Blum, J.W. Continuously elevated concentrations of oxytocin during milking are necessary for complete milk removal in dairy cows. J. Dairy Res. 1994, 61, 323–334. [Google Scholar] [CrossRef]
- Schams, D.; Mayer, H.; Prokopp, A.; Worstorff, H. Oxytocin secretion during milking in dairy cows with regard to the variation and importance of a threshold level for milk removal. J. Endocrinol. 1984, 102, 337–343. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Blum, J.W. Simultaneous recording of oxytocin release, milk ejection and milk flow during milking of dairy cows with and without prestimulation. J. Dairy Res. 1996, 63, 201–208. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Wellnitz, O.; Blum, J.W. Blum Inhibition of milk ejection in cows by oxytocin receptor blockade, alpha-adrenergic receptor stimulation and in unfamiliar surroundings. J. Dairy Res. 1997, 64, 315–325. [Google Scholar] [CrossRef]
- Rault, J.L. Effects of positive and negative human contacts and intranasal oxytocin on cerebrospinal fluid oxytocin. Psychoneuroendocrinology 2016, 69, 60–66. [Google Scholar] [CrossRef]
- Borghese, A.; Rasmussen, M.; Thomas, C.S. Milking management of dairy buffalo. Ital. J. Anim. Sci. 2007, 6 (Suppl. S2), 39–50. [Google Scholar] [CrossRef]
- Boselli, C.; De Marchi, M.; Costa, A.; Borghese, A. Study of milkability and Its relation with milk yield and somatic cell in Mediterranean Italian Water Buffalo. Front. Vet. Sci. 2020, 7, 432. [Google Scholar] [CrossRef]
- Barowicz, T. Inhibitory effect of adrenaline on oxytocin release in the ewe during the milk-ejection reflex. J. Dairy Res. 1979, 46, 41–46. [Google Scholar] [CrossRef]
- Faraz, A.; Waheed, A.; Nazir, M.M.; Hameed, A.; Tauqir, N.A.; Mirza, R.H.; Bilal, R.M. Impact of oxytocin administration on milk quality, reproductive performance and residual effects in dairy animals—A review. Punjab Univ. J. Zool. 2020, 35, 61–67. [Google Scholar] [CrossRef]
- Faraz, A.; Tauqir, N.A.; Waheed, A.; Hameed, A. Effect of exogenous oxytocin administration on the performance of lactating Nili Ravi buffalo. Iran. J. Appl. Anim. Sci. 2021, 11, 517–525. [Google Scholar]
- Hernádi, A.; Kis, A.; Kanizsár, O.; Tóth, K.; Miklósi, B.; Topál, J. Intranasally administered oxytocin affects how dogs (Canis familiaris) react to the threatening approach of their owner and an unfamiliar experimenter. Behav. Process. 2015, 119, 1–5. [Google Scholar] [CrossRef]
- Chen, S.; Sato, S. Role of oxytocin in improving the welfare of farm animals—A review. Asian-Australas J. Anim. Sci. 2017, 30, 449–454. [Google Scholar] [CrossRef]
- Chanda, M.L.; Levitin, D.J. The neurochemistry of music. Trends Cogn. Sci. 2013, 17, 179–193. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Salimpoor, V.N. From perception to pleasure: Music and its neural substrates. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. S2), 10430–10437. [Google Scholar] [CrossRef]
- Koelsch, S. Investigating the neural encoding of emotion with music. Neuron 2018, 98, 1075–1079. [Google Scholar] [CrossRef]
- Boso, M.; Politi, P.; Barale, F.; Emanuele, E. Neurophysiology and neurobiology of the musical experience. Funct. Neurol. 2006, 21, 187–191. [Google Scholar]
- Koelsch, S. Brain correlates of music-evoked emotions. Nature reviews. Neuroscience 2014, 15, 170–180. [Google Scholar] [CrossRef]
- Harvey, A.R. Links between the Neurobiology of Oxytocin and Human Musicality. Front. Hum. Neurosci. 2020, 14, 350. [Google Scholar] [CrossRef]
- Khalfa, S.; Isabelle, P.; Jean-Pierre, B.; Manon, R. Event-related skin conductance responses to musical emotions in humans. Neurosci. Lett. 2002, 328, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Bernatzky, G.; Presch, M.; Anderson, M.; Panksepp, J. Emotional foundations of music as a non-pharmacological pain management tool in modern medicine. Neurosci. Biobehav. Rev. 2011, 35, 1989–1999. [Google Scholar] [CrossRef]
- Ooishi, Y.; Mukai, H.; Watanabe, K.; Kawato, S.; Kashino, M. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music. PLoS ONE 2017, 12, e0189075. [Google Scholar] [CrossRef]
- Fredrickson, B.L. The broaden–and–build theory of positive emotions. Philos. Trans. R Soc. London Ser. B Biol. Sci. 2004, 359, 1367–1377. [Google Scholar] [CrossRef]
- Travain, T.; Colombo, E.S.; Grandi, L.C.; Heinzl, E.; Pelosi, A.; Previde, E.P.; Valsecchi, P. How good is this food? A study on dogs’ emotional responses to a potentially pleasant event using infrared thermography. Physiol. Behav. 2016, 159, 80–87. [Google Scholar] [CrossRef]
- Iwanaga, M.; Kobayashi, A.; Kawasaki, C. Heart rate variability with repetitive exposure to music. Biol. Psychol. 2005, 70, 61–66. [Google Scholar] [CrossRef]
- Jia, T.; Ogawa, Y.; Miuram, M.; Ito, O.; Kohzuki, M. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise. PLoS ONE 2016, 11, e0148648. [Google Scholar] [CrossRef]
- Travain, T.; Valsecchi, P. Infrared thermography in the study of animals’ emotional responses: A critical review. Animals 2021, 11, 2510. [Google Scholar] [CrossRef]
- Hao, J.; Jiang, K.; Wu, M.; Yu, J.; Zhang, X. The effects of music therapy on amino acid neurotransmitters: Insights from an animal study. Physiol. Behav. 2020, 224, 113024. [Google Scholar] [CrossRef]
- Park, J.B.; Skalska, S.; Stern, J.E. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia. Endocrinology 2006, 147, 3746–3760. [Google Scholar] [CrossRef]
- Busnardo, C.; Crestani, C.C.; Resstel, L.B.; Tavares, R.F.; Antunes-Rodrigues, J.; Corrêa, F.M. Ionotropic glutamate receptors in hypothalamic paraventricular and supraoptic nuclei mediate vasopressin and oxytocin release in unanesthetized rats. Endocrinology 2012, 153, 2323–2331. [Google Scholar] [CrossRef]
- Connelly, M.K.; Henschel, S.R.; Kuehnl, J.M.; Cheng, A.A.; Nashold, F.; Hernandez, L.L. Physiological adaptations in early-lactation cows result in differential responses to calcium perturbation relative to nonlactating, nonpregnant cows. J. Dairy Sci. 2022, 105, 904–920. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Lippolis, J.D.; McCluskey, B.J.; Goff, J.P.; Horst, R.L. Prevalence of subclinical hypocalcemia in dairy herds. Vet. J. 2011, 188, 122–124. [Google Scholar] [CrossRef]
- Reinhardt, T.A.; Lippolis, J.D.; Shull, G.E.; Horst, R.L. Null mutation in thegene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J. Biol. Chem. 2004, 279, 42369–42373. [Google Scholar] [CrossRef]
- VanHouten, J.N.; Neville, M.C.; Wysolmerski, J.J. The calcium-sensing receptor regulates plasma membrane calcium adenosine triphosphatase isoform 2 activity in mammary epithelial cells: A mechanism for calcium-regulated calcium transport into milk. Endocrinology 2007, 148, 5943–5954. [Google Scholar] [CrossRef]
- Hernandez, L.L. Triennial Lactation Symposium/BOLFA: Serotonin and the regulation of calcium transport in dairy cows. J. Anim. Sci. 2017, 95, 5711–5719. [Google Scholar] [CrossRef]
- Connelly, M.K.; Cheng, A.A.; Hernandez, L.L. Graduate Student Literature Review: Serotonin and calcium metabolism: A story unfolding. J. Dairy Sci. 2021, 104, 13008–13019. [Google Scholar] [CrossRef] [PubMed]
- Rodney, R.M.; Martinez, N.; Block, E.; Hernandez, L.L.; Celi, P.; Nelson, C.D.; Santos, J.E.P.; Lean, I.J. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Vitamin D, mineral, and bone metabolism. J. Dairy Sci. 2018, 101, 2519–2543. [Google Scholar] [CrossRef]
- Slater, C.J.; Endres, E.L.; Weaver, S.R.; Cheng, A.A.; Lauber, M.R.; Endres, S.F.; Olstad, E.; DeBruin, A.; Crump, P.M.; Block, E.; et al. Interaction of 5-hydroxy-l-tryptophan and negative dietary cation-anion difference on calcium homeostasis in multiparous peripartum dairy cows. J. Dairy Sci. 2018, 101, 5486–5501. [Google Scholar] [CrossRef]
Variable | Tactile Stimuli | Mean | MSE | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Music | With | Without | Tactile Stimuli | Music | Tac × Mus | |||
Milk production (L/day) | With | 5.78 Aa | 5.63 Aa | 5.71 | 0.21 | 0.0086 | 0.0030 | 0.0316 |
Without | 5.24 Aa | 3.49 Bb | 4.36 | |||||
Mean | 5.51 | 4.52 | 5.02 | |||||
Residual milk (L/day) | With | 1.84 Aa | 1.76 Aa | 1.80 | 0.11 | 0.0096 | 0.0209 | 0.0025 |
Without | 1.71 Aa | 3.02 Bb | 2.38 | |||||
Mean | 1.86 | 2.54 | 2.09 | |||||
Milking time (s) | With | 705.82 | 654.53 | 680.33 | 1.650 | 0.0060 | 0.8341 | 0.6220 |
Without | 760.70 | 633.07 | 696.88 | |||||
Mean | 733.26 a | 643.73 b | 688.63 |
Variable | Tactile Stimuli | Mean | MSE | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Music | With | Without | Tactile Stimuli | Music | Tac × Mus | |||
CMT | With | 1.47 | 0.98 | 1.23 | 0.14 | 0.0065 | 0.103 | 0.422 |
Without | 2.05 | 1.18 | 1.61 | |||||
Mean | 1.76 | 1.08 | 1.42 |
Variable | Tactile Stimuli | Mean | MSE | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Music | With | Without | Tactile Stimuli | Music | Tac × Mus | |||
Respiratory rate (BPM) | With | 30.29 | 29.23 | 29.76 | 0.27 | 0.0003 | 0.3984 | 0.0651 |
Without | 30.80 | 27.72 | 29.26 | |||||
Mean | 30.29 a | 28.48 b | 29.51 | |||||
Ocular temperature (°C) | With | 34.16 Aa | 33.03 Aa | 33.60 | 0.19 | 0.1111 | <0.0001 | 0.0144 |
Without | 31.30 Ba | 31.63 Aa | 31.46 | |||||
Mean | 32.72 | 32.33 | 32.53 | |||||
Udder Temperature (°C) | With | 32.69 | 32.67 | 32.68 | 0.2 | 0.2147 | 0.7277 | 0.2689 |
Without | 33.39 | 32.30 | 32.84 | |||||
Mean | 33.04 | 32.48 | 32.76 |
Variable | Tactile Stimuli | Mean | MSE | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Music | With | Without | Tactile Stimuli | Music | Tac × Mus | |||
Urinate | With | 0.280 | 0.310 | 0.30 | 0.055 | 0.2923 | 0.1649 | 0.5321 |
Without | 0.670 | 0.620 | 0.65 | |||||
Mean | 0.481 | 0.474 | 0.48 | |||||
Defecate | With | 0.530 | 0.289 | 0.42 | 0.045 | 0.0233 | 0.7146 | 0.3313 |
Without | 0.425 | 0.550 | 0.49 | |||||
Mean | 0.481 a | 0.423 b | 0.45 | |||||
Vocalize | With | 0.153 | 0.157 | 0.16 | 0.034 | - | - | - |
Without | 0.000 | 0.300 | 0.15 | |||||
Mean | 0.070 | 0.230 | 0.15 | |||||
Dripping | With | 0.282 | 0.570 | 0.428 A | 0.04 | 0.6029 | 0.0497 | 0.591 |
Without | 0.320 | 0.350 | 0.337 B | |||||
Mean | 0.303 | 0.461 | 0.38 | |||||
Stereotypes | With | 0.000 | 0.157 | 0.08 | 0.031 | - | - | - |
Without | 0.000 | 0.200 | 0.10 | |||||
Mean | 0.000 | 0.179 | 0.09 | |||||
Hoof | With | 0.410 | 0.078 | 0.25 | 0.064 | 0.1164 | 0.152 | 0.7263 |
Without | 0.300 | 0.420 | 0.36 | |||||
Mean | 0.354 | 0.250 | 0.31 | |||||
Negative social interactions | With | 0.690 | 0.105 | 0.40 | 0.13 | 0.4216 | 0.9418 | 0.5448 |
Without | 0.150 | 0.125 | 0.14 | |||||
Mean | 0.417 | 0.115 | 0.27 | |||||
Positive social interactions | With | 0.131 | 0.105 | 0.12 | 0.03 | - | - | - |
Without | 0.000 | 0.070 | 0.04 | |||||
Mean | 0.064 | 0.890 | 0.08 | |||||
Scratch | With | 0.342 | 0.078 | 0.21 | 0.064 | 0.6891 | 0.4723 | 0.2411 |
Without | 0.400 | 0.400 | 0.40 | |||||
Mean | 0.371 | 0.243 | 0.31 |
Variable | Tactile Stimuli | Mean | MSE | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Music | With | Without | Tactile Stimuli | Music | Tac × Mus | |||
Flight distance (m) | with | 0.249 Bb | 0.593 Aa | 0.42 | 0.06 | 0.309 | 0.0001 | 0.0004 |
without | 0.808 Aa | 0.615 Aa | 0.71 | |||||
Mean | 0.52 | 0.60 | 0.57 |
Variable | Tactile Stimuli | MEAN | MSE | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Music | With | Without | Tactile Stimuli | Music | Tac × Mus | |||
Serotonin (ng/mL) | with | 515.44 | 383.75 | 449.60 A | 18.60 | <0.0001 | <0.0001 | 0.6219 |
without | 354.30 | 213.62 | 283.96 B | |||||
Mean | 434.87 a | 298.69 b | 366.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos Lemes Lechuga, K.K.; Caldara, F.R.; de Castro Burbarelli, M.F.; Odakura, A.M.; dos Ouros, C.C.; Garcia, R.G.; Félix, G.A.; de Lima Almeida Paz, I.C.; Oliveira dos Santos, V.M.; Braz, J.M. Music and Tactile Stimuli during Daily Milking Affect the Welfare and Productivity of Dairy Cows. Animals 2023, 13, 3671. https://doi.org/10.3390/ani13233671
dos Santos Lemes Lechuga KK, Caldara FR, de Castro Burbarelli MF, Odakura AM, dos Ouros CC, Garcia RG, Félix GA, de Lima Almeida Paz IC, Oliveira dos Santos VM, Braz JM. Music and Tactile Stimuli during Daily Milking Affect the Welfare and Productivity of Dairy Cows. Animals. 2023; 13(23):3671. https://doi.org/10.3390/ani13233671
Chicago/Turabian Styledos Santos Lemes Lechuga, Karine Keyzy, Fabiana Ribeiro Caldara, Maria Fernanda de Castro Burbarelli, Agnês Markiy Odakura, Caio César dos Ouros, Rodrigo Garófallo Garcia, Gisele Aparecida Félix, Ibiara Correia de Lima Almeida Paz, Viviane Maria Oliveira dos Santos, and Jaqueline Murback Braz. 2023. "Music and Tactile Stimuli during Daily Milking Affect the Welfare and Productivity of Dairy Cows" Animals 13, no. 23: 3671. https://doi.org/10.3390/ani13233671
APA Styledos Santos Lemes Lechuga, K. K., Caldara, F. R., de Castro Burbarelli, M. F., Odakura, A. M., dos Ouros, C. C., Garcia, R. G., Félix, G. A., de Lima Almeida Paz, I. C., Oliveira dos Santos, V. M., & Braz, J. M. (2023). Music and Tactile Stimuli during Daily Milking Affect the Welfare and Productivity of Dairy Cows. Animals, 13(23), 3671. https://doi.org/10.3390/ani13233671