Longitudinal Analysis of Canine Oral Microbiome Using Whole Genome Sequencing in Aging Companion Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Covariate Data Collection
2.3. DNA Isolation and Sequencing
2.4. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Microbiome Findings
3.3. Relationship between Microbiome, Age, Cognition and Pain
3.4. Fungal Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef]
- Oh, C.; Lee, K.; Cheong, Y.; Lee, S.W.; Park, S.Y.; Song, C.S.; Choi, I.S.; Lee, J.B. Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing. PLoS ONE 2015, 10, e0131468. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.R.; Gabaldón, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Daglia, M.; Argüelles Castilla, S.; Sanadgol, N.; Fazel Nabavi, S.; Khan, H.; Belwal, T.; Jeandet, P.; Marchese, A.; Pistollato, F.; et al. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacol. Res. 2020, 151, 104582. [Google Scholar] [CrossRef] [PubMed]
- Koren, O.; Spor, A.; Felin, J.; Fåk, F.; Stombaugh, J.; Tremaroli, V.; Behre, C.J.; Knight, R.; Fagerberg, B.; Ley, R.E.; et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. USA 2010, 108 (Suppl. S1), 4592–4598. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, T.M. Role of Oral Microbiota in Cancer Development. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef]
- Mager, D.L.; Haffajee, A.D.; Devlin, P.M.; Norris, C.M.; Posner, M.R.; Goodson, J.M. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 2005, 3, 27. [Google Scholar] [CrossRef]
- Kaeberlein, M.; Creevy, K.E.; Promislow, D.E. The dog aging project: Translational geroscience in companion animals. Mamm. Genome 2016, 27, 279–288. [Google Scholar] [CrossRef]
- Ruparell, A.; Inui, T.; Staunton, R.; Wallis, C.; Deusch, O.; Holcombe, L.J. The canine oral microbiome: Variation in bacterial populations across different niches. BMC Microbiol. 2020, 20, 42. [Google Scholar] [CrossRef]
- Wallis, C.; Marshall, M.; Colyer, A.; O’Flynn, C.; Deusch, O.; Harris, S. A longitudinal assessment of changes in bacterial community composition associated with the development of periodontal disease in dogs. Vet. Microbiol. 2015, 181, 271–282. [Google Scholar] [CrossRef]
- Davis, I.J.; Wallis, C.; Deusch, O.; Colyer, A.; Milella, L.; Loman, N.; Harris, S. A cross-sectional survey of bacterial species in plaque from client owned dogs with healthy gingiva, gingivitis or mild periodontitis. PLoS ONE 2013, 8, e83158. [Google Scholar] [CrossRef]
- Isaiah, A.; Hoffmann, A.R.; Kelley, R.; Mundell, P.; Steiner, J.M.; Suchodolski, J.S. Characterization of the nasal and oral microbiota of detection dogs. PLoS ONE 2017, 12, e0184899. [Google Scholar] [CrossRef]
- Niemiec, B.A.; Gawor, J.; Tang, S.; Prem, A.; Krumbeck, J.A. The mycobiome of the oral cavity in healthy dogs and dogs with periodontal disease. Am. J. Vet. Res. 2022, 83, 42–49. [Google Scholar] [CrossRef]
- Abbayya, K.; Puthanakar, N.Y.; Naduwinmani, S.; Chidambar, Y.S. Association between Periodontitis and Alzheimer’s Disease. N. Am. J. Med. Sci. 2015, 7, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, R.; Asopa, S.J.; Joseph, M.D.; Singh, B.; Rajguru, J.P.; Saidath, K.; Sharma, U. Red complex: Polymicrobial conglomerate in oral flora: A review. J. Family Med. Prim. Care 2019, 8, 3480–3486. [Google Scholar] [CrossRef] [PubMed]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef] [PubMed]
- Mihevc, S.P.; Majdič, G. Canine Cognitive Dysfunction and Alzheimer’s Disease—Two Facets of the Same Disease? Front. Neurosci. 2019, 13, 604. [Google Scholar] [CrossRef] [PubMed]
- Neilson, J.C.; Hart, B.L.; Cliff, K.D.; Ruehl, W.W. Prevalence of behavioral changes associated with age-related cognitive impairment in dogs. J. Am. Vet. Med. Assoc. 2001, 218, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Fefer, G.; Panek, W.K.; Khan, M.Z.; Singer, M.; Westermeyer, H.D.; Mowat, F.M.; Murdoch, D.M.; Case, B.; Olby, N.J.; Gruen, M.E. Use of Cognitive Testing, Questionnaires, and Plasma Biomarkers to Quantify Cognitive Impairment in an Aging Pet Dog Population. J. Alzs. Dis. 2022, 87, 1367–1378. [Google Scholar] [CrossRef]
- Greer, K.A.; Canterberry, S.C.; Murphy, K.E. Statistical analysis regarding the effects of height and weight on lifespan of the domestic dog. Res. Vet. Sci. 2007, 82, 208–214. [Google Scholar] [CrossRef]
- Madari, A.; Farbakova, J.; Katina, S.; Smolek, T.; Novak, P.; Weissovaa, T.; Novak, M.; Zilka, N. Assessment of severity and progression of canine cognitive dysfunction syndrome using the CAnine DEmentia Scale (CADES). Appl. Anim. Behav. Sci. 2015, 171, 138–145. [Google Scholar] [CrossRef]
- Brown, D.C.; Boston, R.C.; Coyne, J.C.; Farrar, J.T. Development and psychometric testing of an instrument designed to measure chronic pain in dogs with osteoarthritis. Am. J. Vet. Res. 2007, 68, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.C.; Boston, R.; Coyne, J.C.; Farrar, J.T. A novel approach to the use of animals in studies of pain: Validation of the canine brief pain inventory in canine bone cancer. Pain Med. 2009, 10, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.C.; Boston, R.C.; Coyne, J.C.; Farrar, J.T. Ability of the canine brief pain inventory to detect response to treatment in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2008, 233, 1278–1283. [Google Scholar] [CrossRef] [PubMed]
- Caiafa, A. Oral Examination/Dental Charting and Diagnostic Tools. In World Small Animal Veterinary Association World Congress Proceedings; North Coast Veterinary Specialists: Sippy Downs, QLD, Australia, 2013. [Google Scholar]
- Bray, E.E.; Gruen, M.E.; Gnanadesikan, G.E.; Horschler, D.J.; Levy, K.M.; Kennedy, B.S.; Hare, B.A.; MacLean, E.L. Cognitive characteristics of 8- to 10-week-old assistance dog puppies. Anim. Behav. 2020, 166, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Allali, I.; Arnold, J.W.; Roach, J.; Cadenas, M.B.; Butz, N.; Hassan, H.M.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; et al. A Comparison of Sequencing Platforms and Bioinformatics Pipelines for Compositional Analysis of the Gut Microbiome. BMC Microbiol. 2017, 17, 194. [Google Scholar] [CrossRef]
- Guadamuro, L.; Azcárate-Peril, M.A.; Tojo, R.; Mayo, B.; Delgado, S. Use of high throughput amplicon sequencing and ethidium monoazide dye to track microbiota changes in an equol-producing menopausal woman receiving a long-term isoflavones treatment. AIMS Microbiol. 2019, 5, 102–116. [Google Scholar] [CrossRef]
- Azcarate-Peril, M.A.; Butz, N.; Cadenas, M.B.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; Hassan, H. An Attenuated Salmonella enterica Serovar Typhimurium Strain and Galacto-Oligosaccharides Accelerate Clearance of Salmonella Infections in Poultry through Modifications to the Gut Microbiome. Appl. Environ. Microbiol. 2018, 84, e02526-17. [Google Scholar] [CrossRef]
- Seth-Smith, H.M.B.; Bonfiglio, F.; Cuénod, A.; Reist, J.; Egli, A.; Wüthrich, D. Evaluation of Rapid Library Preparation Protocols for Whole Genome Sequencing Based Outbreak Investigation. Front. Public Health 2019, 7, 241. [Google Scholar] [CrossRef]
- Bcl2Fastq, version 2.20.0; Illumina, Inc.: San Diego, CA, USA, 2018.
- FastQC, version 0.11.9; Babraham Institute: Cambridge, UK, 2014.
- Trim Galore, version 0.6.7; Babraham Institute: Cambridge, UK, 2017.
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available online: https://www.R-project.org/ (accessed on 24 March 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. _vegan: Community Ecology Package_. R package version 2.6-2. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 24 March 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- JMP®, version Pro 15; SAS Institute Inc.: Cary, NC, USA, 1989–2021.
- Xinyan, Z.; Yu-Fang, P.; Lei, Z.; Boyi, G.; Pendegraft, A.H.; Wenzhuo, Z.; Nengjun, Y. Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data. Front. Microbiol. 2018, 9, 1683. [Google Scholar] [CrossRef]
- Senhorinho, G.N.; Nakano, V.; Liu, C.; Song, Y.; Finegold, S.M.; Avila-Campos, M.J. Detection of Porphyromonas gulae from subgingival biofilms of dogs with and without periodontitis. Anaerobe 2011, 17, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Cervino, G.; Laino, L.; D’Amico, C.; Mauceri, R.; Tozum, T.F.; Gaeta, M.; Cicciù, M. Porphyromonas gingivalis, Periodontal and Systemic Implications: A Systematic Review. Dent. J. 2019, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, C.; Deusch, O.; Darling, A.E.; Eisen, J.A.; Wallis, C.; Davis, I.J.; Harris, S.J. Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis. Genome Biol. Evol. 2015, 7, 3397–3413. [Google Scholar] [CrossRef]
- Feng-Jie, J.; Shuang, H.; Bao-Teng, W.; Long, J. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Front. Microbiol. 2021, 12, 644404. [Google Scholar] [CrossRef]
- Moran, G.P.; Coleman, D.C.; Sullivan, D.J. Candida albicans versus Candida dubliniensis: Why Is C. albicans More Pathogenic? Int. J. Microbiol. 2012, 2012, 205921. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Viscogliosi, E.; Delhaes, L. The lung mycobiome: An emerging field of the human respiratory microbiome. Front. Microbiol. 2015, 6, 89. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammons-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Molec. Plant Patho. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Lenzo, J.C.; O’Brien-Simpson, N.M.; Orth, R.K.; Mitchell, H.L.; Dashper, S.G.; Reynolds, E.C. Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis. Infect Immun. 2016, 84, 2575–2585. [Google Scholar] [CrossRef]
- Dewey, C.W.; Rishniw, M. Periodontal disease is associated with cognitive dysfunction in aging dogs: A blinded prospective comparison of visual periodontal and cognitive questionnaire scores. Open Vet. J. 2021, 11, 210–216. [Google Scholar] [CrossRef]
- Arastu-Kapur, S.; Nguyen, M.; Raha, D.; Ermini, F.; Haditsch, U.; Araujo, J.; De Lannoy, I.; Ryder, M.I.; Dominy, S.S.; Lynch, C.; et al. Treatment of Porphyromonas gulae infection and downstream pathology in the aged dog by lysine-gingipain inhibitor COR388. Pharmacol. Res. Perspect. 2020, 8, e00562. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hemme, C.; Beleno, J.; Shi, Z.J.; Ning, D.; Qin, Y.; Tu, Q.; Jorgensen, M.; He, Z.; Wu, L.; et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. 2018, 12, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Bathini, P.; Foucras, S.; Dupanloup, I.; Imeri, H.; Perna, A.; Berruex, J.L.; Doucey, M.A.; Annoni, J.M.; Auber Alberi, L. Classifying dementia progression using microbial profiling of saliva. Alzheimers Dement. 2020, 12, e12000. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Jiao, B.; Liao, X.X.; Guo, L.N.; Yuan, Z.H.; Wang, X.; Xiao, X.W.; Zhang, X.Y.; Tang, B.S.; Shen, L. Analysis of Salivary Microbiome in Patients with Alzheimer’s Disease. J. Alzheimers Dis. 2019, 72, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Muñana, K.R.; Jacob, M.E.; Callahan, B.J. Evaluation of fecal Lactobacillus populations in dogs with idiopathic epilepsy: A pilot study. Anim. Microbiome. 2020, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Coman, M.M.; Verdenelli, M.C.; Cecchini, C.; Belà, B.; Gramenzi, A.; Orpianesi, C.; Cresci, A.; Silvi, S. Probiotic characterization of Lactobacillus isolates from canine faeces. J. Appl. Microbiol. 2019, 126, 1245–1256. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, J.H.; Cho, W.J.; Gang, S.H.; Park, S.H.; Jung, B.J.; Kim, H.B.; Song, K.H. Effects of Synbiotic Preparation Containing Lactobacillus gasseri BNR17 on Body Fat in Obese Dogs: A Pilot Study. Animals 2022, 12, 642. [Google Scholar] [CrossRef]
- Nakagawa, H.; Shiozaki, T.; Kobatake, E.; Hosoya, T.; Moriya, T.; Sakai, F.; Taru, H.; Miyazaki, T. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 2016, 15, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.W.; Kim, J.K.; Lee, K.E.; Oh, Y.J.; Choi, H.J.; Han, M.J.; Kim, D.H. A Probiotic Lactobacillus gasseri Alleviates Escherichia coli-Induced Cognitive Impairment and Depression in Mice by Regulating IL-1β Expression and Gut Microbiota. Nutrients 2020, 12, 3441. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Zhao, L.; Sun, X.; Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 2020, 12, 7874–7907. [Google Scholar] [CrossRef] [PubMed]
- EHead, N.W.M.; Cotman, C.W. Neurobiological models of aging in the dog and other vertebrate species. In Functional Neurobiology of Aging; Hof, P.R., Mobbs, C.V., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 457–468. [Google Scholar]
- Wallis, C.; Holcombe, L.J. A review of the frequency and impact of periodontal disease in dogs. J. Sm. Anim. Pract. 2020, 61, 529–540. [Google Scholar] [CrossRef] [PubMed]
Study ID | Age (years) | Weight (kg) | Sex | Breed |
---|---|---|---|---|
G02 | 11.6 | 22.2 | M/N | Border Collie |
G03 | 9.5 | 33.7 | F/S | Labrador Retriever |
G04 | 14.8 | 9.9 | F/S | Corgi, Pembroke |
G05 | 10.8 | 29.7 | M/N | German Shepherd Dog |
G06 | 11.1 | 10.3 | M/N | Jack Russell Terrier |
G07 | 11.4 | 25.4 | F/S | Golden Retriever |
G11 | 10.1 | 27.6 | F/S | Mixed Breed (Labrador Mix) |
G13 | 11.0 | 11.1 | M/N | Mixed Breed (Boxer/Pitbull) |
G17 | 11.8 | 11.1 | M/N | Beagle |
G24 | 9.9 | 8 | M/N | Dachshund |
Study ID | Sample | Calculus Index (CI) | Gingival Index (GI) | Plaque Index (PI) | Prior Dental Prophylaxis (months) |
---|---|---|---|---|---|
G02 | 1 | nr | nr | nr | |
2 | 2 | 2 | 3 | ||
3 | 2 | 1 | 2 | ||
G03 | 1 | 1 | 1 | 1 | 3.7 |
2 | 1 | 1 | 2 | ||
3 | 1 | 1 | 1 | ||
G04 | 1 | 0 | 2 | 1 | 0.7 |
2 | nr | nr | nr | ||
3 | 1 | 1 | 2 | ||
G05 | 1 | 2 | 1 | 2 | |
2 | 1 | 1 | 1 | ||
3 | 1 | 1 | 1 | ||
G06 | 1 | 2 | 1 | 2 | |
2 | 2 | 1 | 2 | ||
3 | 2 | 3 | 1 | ||
G07 | 1 | 3 | 1 | 3 | |
2 | 2 | 2 | 2 | ||
3 | 2 | 2 | 3 | ||
G11 | 1 | 1 | 0 | 1 | 2.4 |
2 | 1 | 1 | 1 | ||
3 | 1 | 2 | 2 | 1.6 | |
G13 | 1 | 1 | 1 | 1 | |
2 | 1 | 2 | 0 | ||
G17 | 1 | 2 | 2 | 2 | 0.5 |
2 | 1 | 2 | 1 | ||
G24 | 1 | nr | nr | nr | |
2 | 1 | 1 | 2 |
ID | Sample Number | Bacteroidetes | Proteo-bacteria | Firm-icutes | Actino-bacteria | Spiro-chaetes | Tener-icutes | Fuso-bacteria | Candi-datus | Chloro-flexi | Cyano-bacteria | Other Phyla |
---|---|---|---|---|---|---|---|---|---|---|---|---|
G02 | S2 | 0.3991 | 0.3679 | 0.0986 | 0.0244 | 0.0674 | 0.0004 | 0.0305 | 0.0017 | 0.0019 | 0.0010 | 0.0071 |
S3 | 0.3966 | 0.4451 | 0.0413 | 0.0428 | 0.0381 | 0.0010 | 0.0285 | 0.0015 | 0.0010 | 0.0015 | 0.0026 | |
G03 | S1 | 0.4031 | 0.4872 | 0.0196 | 0.0153 | 0.0113 | 0.0004 | 0.0616 | 0.0004 | 0.0000 | 0.0006 | 0.0005 |
S2 | 0.4614 | 0.4130 | 0.0456 | 0.0282 | 0.0194 | 0.0014 | 0.0184 | 0.0022 | 0.0026 | 0.0023 | 0.0054 | |
S3 | 0.3662 | 0.5052 | 0.0386 | 0.0318 | 0.0176 | 0.0007 | 0.0275 | 0.0028 | 0.0028 | 0.0017 | 0.0049 | |
G04 | S1 | 0.2793 | 0.6099 | 0.0239 | 0.0569 | 0.0065 | 0.0013 | 0.0213 | 0.0003 | 0.0000 | 0.0001 | 0.0003 |
S2 | 0.3831 | 0.3723 | 0.0760 | 0.0377 | 0.0873 | 0.0028 | 0.0188 | 0.0031 | 0.0101 | 0.0023 | 0.0066 | |
S3 | 0.4460 | 0.3681 | 0.0439 | 0.0242 | 0.0800 | 0.0031 | 0.0212 | 0.0021 | 0.0056 | 0.0014 | 0.0044 | |
G05 | S1 | 0.3565 | 0.6039 | 0.0189 | 0.0029 | 0.0054 | 0.0006 | 0.0018 | 0.0097 | 0.0000 | 0.0001 | 0.0002 |
S2 | 0.5951 | 0.1802 | 0.0934 | 0.0271 | 0.0368 | 0.0057 | 0.0485 | 0.0075 | 0.0014 | 0.0014 | 0.0028 | |
S3 | 0.4434 | 0.3016 | 0.0329 | 0.1197 | 0.0655 | 0.0012 | 0.0146 | 0.0012 | 0.0104 | 0.0017 | 0.0079 | |
G06 | S1 | 0.0719 | 0.1977 | 0.0194 | 0.0085 | 0.0276 | 0.6693 | 0.0029 | 0.0006 | 0.0000 | 0.0007 | 0.0014 |
S2 | 0.3872 | 0.4705 | 0.0256 | 0.0490 | 0.0410 | 0.0010 | 0.0185 | 0.0030 | 0.0017 | 0.0006 | 0.0020 | |
S3 | 0.5816 | 0.2803 | 0.0533 | 0.0168 | 0.0503 | 0.0013 | 0.0099 | 0.0025 | 0.0018 | 0.0007 | 0.0015 | |
G07 | S1 | 0.1212 | 0.7674 | 0.0478 | 0.0417 | 0.0109 | 0.0019 | 0.0068 | 0.0000 | 0.0000 | 0.0000 | 0.0023 |
S2 | 0.3438 | 0.4882 | 0.0323 | 0.0321 | 0.0904 | 0.0008 | 0.0089 | 0.0014 | 0.0002 | 0.0009 | 0.0009 | |
S3 | 0.5597 | 0.2616 | 0.0350 | 0.0588 | 0.0490 | 0.0018 | 0.0212 | 0.0036 | 0.0048 | 0.0013 | 0.0033 | |
G11 | S1 | 0.4322 | 0.4960 | 0.0440 | 0.0094 | 0.0021 | 0.0000 | 0.0005 | 0.0155 | 0.0000 | 0.0000 | 0.0002 |
S2 | 0.6825 | 0.2108 | 0.0328 | 0.0295 | 0.0114 | 0.0004 | 0.0247 | 0.0028 | 0.0031 | 0.0004 | 0.0015 | |
S3 | 0.4423 | 0.4129 | 0.0353 | 0.0755 | 0.0069 | 0.0008 | 0.0103 | 0.0041 | 0.0056 | 0.0018 | 0.0045 | |
G13 | S1 | 0.6689 | 0.2630 | 0.0216 | 0.0137 | 0.0096 | 0.0025 | 0.0179 | 0.0018 | 0.0001 | 0.0004 | 0.0005 |
S2 | 0.4490 | 0.4046 | 0.0560 | 0.0694 | 0.0018 | 0.0009 | 0.0147 | 0.0006 | 0.0007 | 0.0002 | 0.0021 | |
G17 | S1 | 0.5934 | 0.3503 | 0.0094 | 0.0129 | 0.0040 | 0.0011 | 0.0278 | 0.0000 | 0.0001 | 0.0002 | 0.0007 |
S2 | 0.6573 | 0.2835 | 0.0139 | 0.0129 | 0.0004 | 0.0002 | 0.0303 | 0.0001 | 0.0002 | 0.0003 | 0.0009 | |
G24 | S1 | 0.7304 | 0.1262 | 0.0760 | 0.0080 | 0.0186 | 0.0024 | 0.0331 | 0.0033 | 0.0005 | 0.0003 | 0.0011 |
S2 | 0.4956 | 0.3285 | 0.0230 | 0.1002 | 0.0214 | 0.0009 | 0.0239 | 0.0013 | 0.0017 | 0.0006 | 0.0029 |
Species | Relative Abundance |
---|---|
Porphyromonas gulae | 0.116 |
Porphyromonas cangingivalis | 0.105 |
Bergeyella zoohelcum | 0.076 |
Capnocytophaga canimorsus | 0.054 |
Pasteurella multocida | 0.047 |
Tannerella forsythia | 0.034 |
Capnocytophaga cynodegmi | 0.033 |
Porphyromonas gingivalis | 0.030 |
Neisseria weaveri | 0.028 |
Desulfomicrobium orale | 0.024 |
Frederiksenia canicola | 0.021 |
Treponema denticola | 0.016 |
Conchiformibius steedae | 0.016 |
Fusobacterium russii | 0.015 |
Neisseria shayeganii | 0.013 |
Capnocytophaga sp. H2931 | 0.013 |
Capnocytophaga sp. H4358 | 0.012 |
Campylobacter sp. CCUG 57310 | 0.010 |
Porphyromonas crevioricanis | 0.007 |
Pseudomonas aeruginosa | 0.006 |
Intercept | FoL | CADES | Pool | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | Taxa | Coefficient | adj. p-Value | Coefficient | adj. p-Value | Coefficient | adj. p-Value | Coefficient | adj. p-Value |
FoL + Pool | Lactobacillus gasseri | 14.6450 | 2.4732 × 10−7 | 3.8586 | 0.0006 | NA | NA | 1.9296 | 0.5512 |
CADES + Pool | Leptotrichia sp. oral taxon 212 | −9.2808 | 2.6547 × 10−16 | NA | NA | 2.2553 | 2.9289 × 10−5 | −0.5853 | 0.3086 |
FoL + CADES + Pool | Leptotrichia sp. oral taxon 212 | −10.1695 | 3.8961 × 10−14 | −0.2427 | 0.9283 | 0.9270 | 0.3838 | −0.6415 | 0.5627 |
Lactobacillus gasseri | −15.0134 | 2.0346 × 10−6 | 3.3870 | 0.0001 | 1.4296 | 0.2999 | 2.2378 | 0.5627 |
Species | Relative Abundance |
---|---|
Aspergillus oryzae * | 0.6699 |
Colletotrichum higginsianum * | 0.0964 |
Ustilago maydis * | 0.0182 |
Botrytis cinerea * | 0.0168 |
Eremothecium sinecaudum | 0.0102 |
Pochonia chlamydosporia * | 0.0101 |
Talaromyces rugulosus * | 0.0081 |
Candida dubliniensis * | 0.0080 |
Kluyveromyces marxianus * | 0.0078 |
Thermothielavioides terrestris * | 0.0076 |
Zymoseptoria tritici | 0.0074 |
Fusarium verticillioides * | 0.0068 |
Neurospora crassa | 0.0067 |
Ustilaginoidea virens | 0.0066 |
Aspergillus luchuensis * | 0.0065 |
Thermothelomyces thermophilus * | 0.0061 |
Fusarium pseudograminearum | 0.0057 |
Pyricularia oryzae | 0.0056 |
Naumovozyma dairenensis | 0.0052 |
Drechmeria coniospora | 0.0050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Templeton, G.B.; Fefer, G.; Case, B.C.; Roach, J.; Azcarate-Peril, M.A.; Gruen, M.E.; Callahan, B.J.; Olby, N.J. Longitudinal Analysis of Canine Oral Microbiome Using Whole Genome Sequencing in Aging Companion Dogs. Animals 2023, 13, 3846. https://doi.org/10.3390/ani13243846
Templeton GB, Fefer G, Case BC, Roach J, Azcarate-Peril MA, Gruen ME, Callahan BJ, Olby NJ. Longitudinal Analysis of Canine Oral Microbiome Using Whole Genome Sequencing in Aging Companion Dogs. Animals. 2023; 13(24):3846. https://doi.org/10.3390/ani13243846
Chicago/Turabian StyleTempleton, Ginger B., Gilad Fefer, Beth C. Case, Jeff Roach, M. Andrea Azcarate-Peril, Margaret E. Gruen, Benjamin J. Callahan, and Natasha J. Olby. 2023. "Longitudinal Analysis of Canine Oral Microbiome Using Whole Genome Sequencing in Aging Companion Dogs" Animals 13, no. 24: 3846. https://doi.org/10.3390/ani13243846
APA StyleTempleton, G. B., Fefer, G., Case, B. C., Roach, J., Azcarate-Peril, M. A., Gruen, M. E., Callahan, B. J., & Olby, N. J. (2023). Longitudinal Analysis of Canine Oral Microbiome Using Whole Genome Sequencing in Aging Companion Dogs. Animals, 13(24), 3846. https://doi.org/10.3390/ani13243846