Riders’ Effects on Horses—Biomechanical Principles with Examples from the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biomechanical Effects of the Rider
2.1. Effects of Rider’s Weight
2.2. Rider’s Interaction with the Saddle
2.3. Rider’s Pelvic Rotations
2.4. Rider’s Symmetry and Balance
3. Rider’s Posture and Movements
3.1. Rider’s Posture at Walk
3.2. Rider’s Posture at Trot
3.2.1. Sitting Trot
3.2.2. Rising Trot
3.2.3. Standing Trot
3.3. Rider’s Posture and Movements at Canter
4. Rider–Horse Coupling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Clayton, H.M.; Hobbs, S.-J. The role of biomechanical analysis of horse and rider in equitation science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Buchner, H.H.; Obermüller, S.; Scheidl, M. Body centre of mass movement in the sound horse. Vet. J. 2000, 160, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Pfau, T.; Gerber, V.; Schweizer, C.; Doherr, M.; Schüpbach-Regula, G.; Witte, S. Determination of vertebral range of motion using inertial measurement units in 27 Franches-Montagnes stallions and comparison between conditions and with a mixed population. Equine Vet. J. 2016, 48, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Lanovaz, J.L.; Schamhardt, H.C.; van Wessum, R. The effects of a rider′s mass on ground reaction forces and fetlock kinematics at the trot. Equine Vet. J. Suppl. 1999, 218–221. [Google Scholar] [CrossRef]
- Schamhardt, H.C.; Merkens, H.W.; van Osch, G.J.V.M. Ground reaction force analysis of horses ridden at walk and trot. Equine Exerc. Physiol. 1991, 3, 120–121. [Google Scholar]
- de Cocq, P.; van Weeren, P.R.; Back, W. Effects of girth, saddle and weight on movements of the horse. Equine Vet. J. 2004, 36, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Slipjer, E.J. Comparative biologic-anatomical investigations of the vertebral column and spinal musculature of mammals. Proc. K. Ned. Acad. Wetensch. 1946, 42, 1–128. [Google Scholar]
- Robert, C.; Audigié, F.; Valette, J.P.; Pourcelot, P.; Denoix, J.M. Effects of treadmill speed on the mechanics of the back in the trotting saddlehorse. Equine Vet. J. Suppl. 2001, 154–159. [Google Scholar] [CrossRef]
- Matsuura, A.; Sakuma, S.; Irimajiri, M.; Hodate, K. Maximum permissible load weight of a Taishuh pony at a trot. J. Anim. Sci. 2013, 91, 3989–3996. [Google Scholar] [CrossRef]
- Gunnarsson, V.; Stefánsdóttir, G.J.; Jansson, A.; Roepstorff, L. The effect of rider weight and additional weight in Icelandic horses in tölt: Part II. Stride parameters responses. Animal 2017, 11, 1567–1572. [Google Scholar] [CrossRef]
- Stefánsdóttir, G.J.; Gunnarsson, V.; Roepstorff, L.; Ragnarsson, S.; Jansson, A. The effect of rider weight and additional weight in Icelandic horses in tölt: Part I. Physiological responses. Animal 2017, 11, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.W.; Bathellier, S.; Rhodin, M.; Palme, R.; Uldahl, M. Increased Rider Weight Did Not Induce Changes in Behavior and Physiological Parameters in Horses. Animals 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, K.; Clayton, H.M.; Dos Santos Harada, É. Gymnastic Training of Hippotherapy Horses Benefits Gait Quality When Ridden by Riders with Different Body Weights. J. Equine Vet. Sci. 2020, 94, 103248. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, S.J.; Serra Braganca, F.M.; Rhodin, M.; Hernlund, E.; Peterson, M.; Clayton, H.M. Evaluating Overall Performance in High-Level Dressage Horse-Rider Combinations by Comparing Measurements from Inertial Sensors with General Impression Scores Awarded by Judges. Animals 2023, 13, 2496. [Google Scholar] [CrossRef]
- Fruehwirth, B.; Peham, C.; Scheidl, M.; Schobesberger, H. Evaluation of pressure distribution under an English saddle at walk, trot and canter. Equine Vet. J. 2004, 36, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Hampson, A.; Fraser, P.; White, A.; Egenvall, A. Comparison of rider stability in a flapless saddle versus a conventional saddle. PLoS ONE 2018, 13, e0196960. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.M.; Applegate, C.; Pfau, T.; Sparkes, E.L.; Wilson, A.M.; Witte, T.H. The kinematics and kinetics of riding a racehorse: A quantitative comparison of a training simulator and real horses. J. Biomech. 2016, 49, 3368–3374. [Google Scholar] [CrossRef]
- Hobbs, S.J.; St George, L.; Reed, J.; Stockley, R.; Thetford, C.; Sinclair, J.; Williams, J.; Nankervis, K.; Clayton, H.M. A scoping review of determinants of performance in dressage. PeerJ 2020, 8, e9022. [Google Scholar] [CrossRef]
- Bye, T.L.; Martin, R. Static postural differences between male and female equestrian riders on a riding simulator. Comp. Exerc. Physiol. 2021, 1–8. [Google Scholar] [CrossRef]
- Roepstorff, L.; Egenvall, A.; Rhodin, M.; Byström, A.; Johnston, C.; van Weeren, P.R.; Weishaupt, M. Kinetics and kinematics of the horse comparing left and right rising trot. Equine Vet. J. 2009, 41, 292–296. [Google Scholar] [CrossRef]
- Licka, T.; Kapaun, M.; Peham, C. Influence of rider on lameness in trotting horses. Equine Vet. J. 2004, 36, 734–736. [Google Scholar] [CrossRef] [PubMed]
- Symes, D.; Ellis, R. A preliminary study into rider asymmetry within equitation. Vet. J. 2009, 181, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Marlin, D.; Fisher, F.M.; Fisher, D.; MacKechnie-Guire, R. Stirrup and rein forces do not show left-right differences in advanced dressage riders and horses. 18(Supplement 1):S1-S121. 11th International Conference on Equine Exercise Physiology, Uppsala, Sweden. Comp. Exerc. Physiol. 2022, 18, S1–S121. [Google Scholar]
- Hobbs, S.J.; Baxter, J.; Broom, L.; Rossell, L.-A.; Sinclair, J.; Clayton, H.M. Posture, flexibility and grip strength in horse riders. J. Hum. Kinet. 2014, 42, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, F.; Witte, K. Kinematic Analysis of the Rider According to Different Skill Levels in Sitting Trot and Canter. J. Equine Vet. Sci. 2016, 39, 51–57. [Google Scholar] [CrossRef]
- Gandy, E.A.; Bondi, A.; Hogg, R.; Pigott, T.M.C. A preliminary investigation of the use of inertial sensing technology for the measurement of hip rotation asymmetry in horse riders. Sports Technol. 2014, 7, 79–88. [Google Scholar] [CrossRef]
- Engell, M.T.; Byström, A.; Hernlund, E.; Bergh, A.; Clayton, H.; Roepstorff, L.; Egenvall, A. Intersegmental strategies in frontal plane in moderately-skilled riders analyzed in ridden and un-mounted situations. Hum. Mov. Sci. 2019, 66, 511–520. [Google Scholar] [CrossRef]
- Greve, L.; Dyson, S.J. An investigation of the relationship between hindlimb lameness and saddle slip. Equine Vet. J. 2013, 45, 570–577. [Google Scholar] [CrossRef]
- Greve, L.; Dyson, S.J. The interrelationship of lameness, saddle slip and back shape in the general sports horse population. Equine Vet. J. 2014, 46, 687–694. [Google Scholar] [CrossRef]
- Gunst, S.; Dittmann, M.T.; Arpagaus, S.; Roepstorff, C.; Latif, S.N.; Klaassen, B.; Pauli, C.A.; Bauer, C.M.; Weishaupt, M.A. Influence of Functional Rider and Horse Asymmetries on Saddle Force Distribution During Stance and in Sitting Trot. J. Equine Vet. Sci. 2019, 78, 20–28. [Google Scholar] [CrossRef]
- Guire, R.; Mathie, H.; Fisher, M.; Fisher, D. Riders’ perception of symmetrical pressure on their ischial tuberosities and rein contact tension whilst sitting on a static object. Comp. Exerc. Physiol. 2017, 13, 7–12. [Google Scholar] [CrossRef]
- Uldahl, M.; Christensen, J.W.; Clayton, H.M. Relationships between the Rider′s Pelvic Mobility and Balance on a Gymnastic Ball with Equestrian Skills and Effects on Horse Welfare. Animals 2021, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Mackechnie-Guire, R.; Mackechnie-Guire, E.; Fairfax, V.; Fisher, M.; Hargreaves, S.; Pfau, T. The Effect That Induced Rider Asymmetry Has on Equine Locomotion and the Range of Motion of the Thoracolumbar Spine When Ridden in Rising Trot. J. Equine Vet. Sci. 2020, 88, 102946. [Google Scholar] [CrossRef] [PubMed]
- Engell, M.T.; Hernlund, E.; Egenvall, A.; Bergh, A.; Clayton, H.M.; Roepstorff, L. Does foot pronation in unmounted horseback riders affect pelvic movement during walking? Comp. Exerc. Physiol. 2015, 11, 231–237. [Google Scholar] [CrossRef]
- Engell, M.T.; Hernlund, E.; Byström, A.; Egenvall, A.; Bergh, A.; Clayton, H.; Roepstorff, L. Head, trunk and pelvic kinematics in the frontal plane in un-mounted horseback riders rocking a balance chair from side-to-side. Comp. Exerc. Physiol. 2018, 14, 249–259. [Google Scholar] [CrossRef]
- Lagarde, J.; Kelso, J.A.S.; Peham, C.; Licka, T. Coordination dynamics of the horse-rider system. J. Mot. Behav. 2005, 37, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Biewener, A.A. Patterns of mechanical energy change in tetrapod gait: Pendula, springs and work. J. Exp. Zool. A Comp. Exp. Biol. 2006, 305, 899–911. [Google Scholar] [CrossRef]
- Dunbar, D.C.; Macpherson, J.M.; Simmons, R.W.; Zarcades, A. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: Comparisons with humans and other primates. J. Exp. Biol. 2008, 211, 3889–3907. [Google Scholar] [CrossRef]
- Byström, A.; Rhodin, M.; von Peinen, K.; Weishaupt, M.A.; Roepstorff, L. Kinematics of saddle and rider in high-level dressage horses performing collected walk on a treadmill. Equine Vet. J. 2010, 42, 340–345. [Google Scholar] [CrossRef]
- Egenvall, A.; Clayton, H.; Engell, M.T.; Roepstorff, C.; Engström, H.; Byström, A. Roll And Pitch of the Rider′s Pelvis During Horseback Riding at Walk on a Circle. J. Equine Vet. Sci. 2022, 109, 103798. [Google Scholar] [CrossRef]
- Münz, A.; Eckardt, F.; Witte, K. Horse-rider interaction in dressage riding. Hum. Mov. Sci. 2014, 33, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Wolframm, I.A.; Bosga, J.; Meulenbroek, R.G.J. Coordination dynamics in horse-rider dyads. Hum. Mov. Sci. 2013, 32, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Schöllhorn, W.I.; Peham, C.; Licka, T.; Scheidl, M. A pattern recognition approach for the quantification of horse and rider interactions. Equine Vet. J. Suppl. 2006, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, S.J.; Richards, J.; Clayton, H.M. The effect of centre of mass location on sagittal plane moments around the centre of mass in trotting horses. J. Biomech. 2014, 47, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, S.J.; Clayton, H.M. Sagittal plane ground reaction forces, centre of pressure and centre of mass in trotting horses. Vet. J. 2013, 198 (Suppl. S1), e14–e19. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Hobbs, S.J. An exploration of strategies used by dressage horses to control moments around the center of mass when performing passage. PeerJ 2017, 5, e3866. [Google Scholar] [CrossRef]
- Faber, M.; Schamhardt, H.; van Weeren, R.; Johnston, C.; Roepstorff, L.; Barneveld, A. Basic three-dimensional kinematics of the vertebral column of horses trotting on a treadmill. Am. J. Vet. Res. 2001, 62, 757–764. [Google Scholar] [CrossRef]
- Robert, C.; Valette, J.P.; Denoix, J.M. The effects of treadmill inclination and speed on the activity of three trunk muscles in the trotting horse. Equine Vet. J. 2001, 33, 466–472. [Google Scholar] [CrossRef]
- Clayton, H.M.; Larson, B.; Kaiser, L.J.; Lavagnino, M. Length and elasticity of side reins affect rein tension at trot. Vet. J. 2011, 188, 291–294. [Google Scholar] [CrossRef]
- Clayton, H.M. Comparison of the stride kinematics of the collected, working, medium and extended trot in horses. Equine Vet. J. 1994, 26, 230–234. [Google Scholar] [CrossRef]
- de Cocq, P.; Muller, M.; Clayton, H.M.; van Leeuwen, J.L. Modelling biomechanical requirements of a rider for different horse-riding techniques at trot. J. Exp. Biol. 2013, 216, 1850–1861. [Google Scholar] [CrossRef] [PubMed]
- de Cocq, P.; Duncker, A.M.; Clayton, H.M.; Bobbert, M.F.; Muller, M.; van Leeuwen, J.L. Vertical forces on the horse′s back in sitting and rising trot. J. Biomech. 2010, 43, 627–631. [Google Scholar] [CrossRef]
- Byström, A.; Roepstroff, L.; Geser-von Peinen, K.; Weishaupt, M.A.; Rhodin, M. Differences in rider movement pattern between different degrees of collection at the trot in high-level dressage horses ridden on a treadmill. Hum. Mov. Sci. 2015, 41, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Byström, A.; Rhodin, M.; von Peinen, K.; Weishaupt, M.A.; Roepstorff, L. Basic kinematics of the saddle and rider in high-level dressage horses trotting on a treadmill. Equine Vet. J. 2009, 41, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Münz, A.; Eckardt, F.; Heipertz-Hengst, C.; Peham, C.; Witte, K. A Preliminary Study of an Inertial Sensor-based Method for the Assessment of Human Pelvis Kinematics in Dressage Riding. J. Equine Vet. Sci. 2013, 33, 950–955. [Google Scholar] [CrossRef]
- Mackechnie-Guire, R.; Pfau, T. Differential rotational movement and symmetry values of the thoracolumbosacral region in high-level dressage horses when trotting. PLoS ONE 2021, 16, e0251144. [Google Scholar] [CrossRef]
- Terada, K.; Clayton, H.M.; Kato, K. Stabilization of wrist position during horseback riding at trot. Equine Comp. Exerc. Physiol. 2006, 3, 179–184. [Google Scholar] [CrossRef]
- van Beek, F.E.; de Cocq, P.; Timmerman, M.; Muller, M. Stirrup forces during horse riding: A comparison between sitting and rising trot. Vet. J. 2012, 193, 193–198. [Google Scholar] [CrossRef]
- Terada, K. Comparison of head movement andEMG activity of muscles between advanced and novice horseback riders at different gaits. J. Equine Sci. 2000, 11, 83–90. [Google Scholar] [CrossRef]
- Pantall, A.; Barton, S.; Collins, P. Surface electromyography of abdominal and spinal muscles in adulat horseriders during rising trot. In Proceedings of the 27th International Conference on Biomechanics in Sport, Limerick, Ireland, 17–21 August 2009. [Google Scholar]
- Persson-Sjodin, E.; Hernlund, E.; Pfau, T.; Haubro Andersen, P.; Rhodin, M. Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot. PLoS ONE 2018, 13, e0195341. [Google Scholar] [CrossRef]
- Peham, C.; Kotschwar, A.B.; Borkenhagen, B.; Kuhnke, S.; Molsner, J.; Baltacis, A. A comparison of forces acting on the horse′s back and the stability of the rider′s seat in different positions at the trot. Vet. J. 2010, 184, 56–59. [Google Scholar] [CrossRef]
- de Cocq, P.; Clayton, H.M.; Terada, K.; Muller, M.; van Leeuwen, J.L. Usability of normal force distribution measurements to evaluate asymmetrical loading of the back of the horse and different rider positions on a standing horse. Vet. J. 2009, 181, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Cheze, L.; Pourcelot, P.; Desquilbet, L.; Duray, L.; Chateau, H. Effect of the rider position during rising trot on the horse’s biomechanics (back and trunk kinematics and pressure under the saddle). J. Biomech. 2016, 49, 1027–1033. [Google Scholar] [CrossRef]
- Viry, S.; Sleimen-Malkoun, R.; Temprado, J.-J.; Frances, J.-P.; Berton, E.; Laurent, M.; Nicol, C. Patterns of horse-rider coordination during endurance race: A dynamical system approach. PLoS ONE 2013, 8, e71804. [Google Scholar] [CrossRef] [PubMed]
- von Peinen, K.; Wiestner, T.; Bogisch, S.; Roepstorff, L.; van Weeren, P.R.; Weishaupt, M.A. Relationship between the forces acting on the horse′s back and the movements of rider and horse while walking on a treadmill. Equine Vet. J. 2009, 41, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Spence, A.; Starke, S.; Ferrari, M.; Wilson, A. Modern riding style improves horse racing times. Science 2009, 325, 289. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, C.A.; Wheat, J.S.; Protheroe, L.; Nankervis, K.; Draper, S.B. Coordination variability reveals the features of the ′independent seat′ in competitive dressage riders. Sports Biomech. 2022, 1–16. [Google Scholar] [CrossRef]
- Peham, C.; Licka, T.; Kapaun, M.; Scheidl, M. A new method to quantify harmony of the horse-rider system in dressage system in dressage. Sports Eng. 2001, 4, 95–101. [Google Scholar] [CrossRef]
- Baxter, J.; Hobbs, S.J.; Alexander, J.; George, L.S.; Sinclair, J.; Chohan, A.; Clayton, H.M. Rider Skill Affects Time and Frequency Domain Postural Variables When Performing Shoulder-in. J. Equine Vet. Sci. 2022, 109, 103805. [Google Scholar] [CrossRef]
- Biau, S.; Barrey, E. Relationships between stride characteristics and scores in dressage tests. PHK 2004, 20, 140–144. [Google Scholar] [CrossRef]
- Witte, K.; Schobesberger, H.; Peham, C. Motion pattern analysis of gait in horseback riding by means of Principal Component Analysis. Hum. Mov. Sci. 2009, 28, 394–405. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clayton, H.M.; MacKechnie-Guire, R.; Hobbs, S.J. Riders’ Effects on Horses—Biomechanical Principles with Examples from the Literature. Animals 2023, 13, 3854. https://doi.org/10.3390/ani13243854
Clayton HM, MacKechnie-Guire R, Hobbs SJ. Riders’ Effects on Horses—Biomechanical Principles with Examples from the Literature. Animals. 2023; 13(24):3854. https://doi.org/10.3390/ani13243854
Chicago/Turabian StyleClayton, Hilary Mary, Russell MacKechnie-Guire, and Sarah Jane Hobbs. 2023. "Riders’ Effects on Horses—Biomechanical Principles with Examples from the Literature" Animals 13, no. 24: 3854. https://doi.org/10.3390/ani13243854
APA StyleClayton, H. M., MacKechnie-Guire, R., & Hobbs, S. J. (2023). Riders’ Effects on Horses—Biomechanical Principles with Examples from the Literature. Animals, 13(24), 3854. https://doi.org/10.3390/ani13243854