Fish Oil Supplementation as an Omega-3 Fatty Acid Source during Gestation: Effects on the Performance of Awassi Ewes and Their Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Animal and Housing
2.3. Experimental Diets
2.4. Data Collection and Measurements
2.5. Colostrum and Milk Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of Feeding Omega-3 Fatty Acids during Pregnancy on Ewes and Lamb Performance
3.2. Effect on Colostrum and Milk Yield and Composition
4. Discussion
4.1. Effects of Feeding Omega-3 Fatty Acids during Pregnancy on Ewes and Lamb Performance
4.2. Effect on Colostrum and Milk Yield and Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belkacemi, L.; Michael Nelson, D.; Desai, M.; Ross, M.G. Maternal Undernutrition Influences Placental-Fetal Development. Biol. Reprod. 2010, 83, 325–331. [Google Scholar] [CrossRef]
- Amanlou, H.; Karimi, A.; Mahjoubi, E.; Milis, C. Effects of Supplementation with Digestible Undegradable Protein in Late Pregnancy on Ewe Colostrums Production and Lamb Output to Weaning. J. Anim. Physiol. Anim. Nutr. 2011, 95, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Ashes, J.R.; Siebert, B.D.; Gulati, S.K.; Cuthbertson, A.Z.; Scott, T.W. Incorporation of n-3 Fatty Acids of Fish Oil into Tissue and Serum Lipids of Ruminants. Lipids 1992, 8, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Dixon, A.B.; Knights, M.; Winkler, J.L.; Marsh, D.J.; Pate, J.L.; Wilson, M.E.; Dailey, R.A.; Seidel, G.; Inskeep, E.K. Patterns of Late Embryonic and Fetal Mortality and Association with Several Factors in Sheep. J. Anim. Sci. 2007, 85, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Inskeep, E.K. Preovulatory, Postovulatory, and Postmaternal Recognition Effects of Concentrations of Progesterone on Embryonic Survival in the Cow. J. Anim. Sci. 2004, 82, E24–E39. [Google Scholar] [CrossRef] [PubMed]
- Caldari-Torres, C.; Rodriguez-Sallaberry, C.; Greene, E.S.; Badinga, L. Differential Effects of N-3 and n-6 Fatty Acids on Prostaglandin F 2α Production by Bovine Endometrial Cells. J. Dairy Sci. 2006, 89, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Petit, H.V.; Twagiramungu, H. Conception Rate and Reproductive Function of Dairy Cows Fed Different Fat Sources. Theriogenology 2006, 66, 1316–1324. [Google Scholar] [CrossRef]
- Tappia, P.S.; Ladha, S.; Clark, D.C.; Grimble, R.F. The Influence of Membrane Fluidity, TNF Receptor Binding, CAMP Production and GTPase Activity on Macrophage Cytokine Production in Rats Fed a Variety of Fat Diets. Mol. Cell. Biochem. 1997, 166, 135–143. [Google Scholar] [CrossRef]
- Challis, J.R.G.; Sloboda, D.M.; Alfaidy, N.; Lye, S.J.; Gibb, W.; Patel, F.A.; Whittle, W.L.; Newnham, J.P. Prostaglandins and Mechanisms of Preterm Birth. Reproduction 2002, 124, 1–17. [Google Scholar] [CrossRef]
- Arntzen, K.J.; Brekke, O.L.; Vatten, L.; Austgulen, R. Reduced Production of PGE2 and PGF2α from Decidual Cell Cultures Supplemented with N-3 Polyunsaturated Fatty Acids. Prostaglandins Other Lipid Mediat. 1998, 56, 183–195. [Google Scholar] [CrossRef]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. Polyunsaturated Fatty Acid Supplementation during Pregnancy Alters Neonatal Behavior in Sheep. J. Nutr. 2006, 136, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Pickard, R.M.; Beard, A.P.; Seal, C.J.; Edwards, S.A. Neonatal Lamb Vigour Is Improved by Feeding Docosahexaenoic Acid in the Form of Algal Biomass during Late Gestation. Animal 2008, 2, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Baguma-Nibasheka, M.; Brenna, J.T.; Nathanielsz, P.W. Delay of Preterm Delivery in Sheep by Omega-3 Long-Chain Polyunsaturates. Biol. Reprod. 1999, 60, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Chikunya, S.; Demirel, G.; Enser, M.; Wood, J.D.; Wilkinson, R.G.; Sinclair, L.A. Biohydrogenation of Dietary n -3 PUFA and Stability of Ingested Vitamin E in the Rumen, and Their Effects on Microbial Activity in Sheep. Br. J. Nutr. 2004, 91, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, K. Prevention of Fish Oil Oxidation. J. Oleo Sci. 2019, 68, 1–11. [Google Scholar] [CrossRef]
- Feng, J.; Berton-Carabin, C.C.; Fogliano, V.; Schroën, K. Maillard Reaction Products as Functional Components in Oil-in-Water Emulsions: A Review Highlighting Interfacial and Antioxidant Properties. Trends Food Sci. Technol. 2022, 121, 129–141. [Google Scholar] [CrossRef]
- NRC, National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Awawdeh, M.S.; Obeidat, B.S.; Kridli, R.T. Yellow Grease as an Alternative Energy Source for Nursing Awassi Ewes and Their Suckling Lambs. Anim. Feed. Sci. Technol. 2009, 152, 165–174. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis. In Chemical and Functional Properties of Food Saccharides, 15th ed.; AOAC: Washington, DC, USA, 1990; Volume 1. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Quigley, J.D.; Lago, A.; Chapman, C.; Erickson, P.; Polo, J. Evaluation of the Brix Refractometer to Estimate Immunoglobulin G Concentration in Bovine Colostrum. J. Dairy Sci. 2013, 96, 1148–1155. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. Challenges with Fats and Fatty Acid Methods. J. Anim. Sci. 2003, 81, 3250–3254. [Google Scholar] [CrossRef]
- Sampelayo, M.R.S.; Fernández, J.R.; Ramos, E.; Hermoso, R.; Extremera, F.G.; Boza, J. Effect of Providing a Polyunsaturated Fatty Acid-Rich Protected Fat to Lactating Goats on Growth and Body Composition of Suckling Goat Kids. Anim. Sci. 2006, 82, 337–344. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, version 23.0; IBM Corp: Armonk, NY, USA, 2015. [Google Scholar]
- Pickard, R.M.; Beard, A.P.; Seal, C.J.; Edwards, S.A. Supplementation of Ewe Diets with Algal Biomass Rich in Docosahexaenoic Acid for Different Time Periods before Lambing Affects Measures of Lamb Viability. Proc. Br. Soc. Anim. Sci. 2005, 2005, 89. [Google Scholar] [CrossRef]
- Abayasekara, D.R.E.; Wathes, D.C. Effects of Altering Dietary Fatty Acid Composition on Prostaglandin Synthesis and Fertility. Prostaglandins Leukot. Essent. Fat. Acids 1999, 61, 275–287. [Google Scholar] [CrossRef]
- Calder, P.C. Fatty Acid Metabolism and Eicosanoid Synthesis. Clin. Nutr. 2001, 20, 1–5. [Google Scholar]
- Olsen, S.F.; Hansen, H.S.; Jensen, B. Fish Oil versus Arachis Oil Food Supplementation in Relation to Pregnancy Duration in Rats. Prostaglandins Leukot. Essent. Fat. Acids 1990, 40, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. The Effect of Fish Oil Supplementation of Pregnant and Lactating Ewes on Milk Production and Lamb Performance. Animal 2007, 1, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Donovan, D.C.; Schingoethe, D.J.; Baer, R.J.; Ryali, J.; Hippen, A.R.; Franklin, S.T. Influence of Dietary Fish Oil on Conjugated Linoleic Acid and Other Fatty Acids in Milk Fat from Lactating Dairy Cows. J. Dairy Sci. 2000, 83, 2620–2628. [Google Scholar] [CrossRef]
- Annett, R.W.; Dawson, L.E.R.; Edgar, H.; Carson, A.F. Effects of Source and Level of Fish Oil Supplementation in Late Pregnancy on Feed Intake, Colostrum Production and Lamb Output of Ewes. Anim. Feed. Sci. Technol. 2009, 154, 169–182. [Google Scholar] [CrossRef]
- Kitessa, S.M.; Gulati, S.K.; Ashes, J.R.; Fleck, E.; Scott, T.W.; Nichols, P.D. Utilisation of Fish Oil in Ruminants I. Fish Oil Metabolism in Sheep. Anim. Feed. Sci. Technol. 2001, 89, 189–199. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Reynolds, C.K.; Hervás, G.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Examination of the Persistency of Milk Fatty Acid Composition Responses to Fish Oil and Sunflower Oil in the Diet of Dairy Cows. J. Dairy Sci. 2006, 89, 714–732. [Google Scholar] [CrossRef]
- Mahboub, H.D.H.; Sameh, A.; Ramadan, G.A.; Darwish, R.A.; Helal, M.A.; Gafaar, K.M.; Ashmawy, T.A.M. 60 fish oil supplementation and selenium-vitamin e injection of egyptian ewes and their finnish landrace crossbred during late pregnancy: 2. lambs response. Assiut. Vet. Med. J. 2013, 59, 60–73. [Google Scholar]
- Or-Rashid, M.M.; Fisher, R.; Karrow, N.; Alzahal, O.; McBride, B.W. Fatty Acid Profile of Colostrum and Milk of Ewes Supplemented with Fish Meal and the Subsequent Plasma Fatty Acid Status of Their Lambs. J. Anim. Sci. 2010, 88, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Khan, A.; Javed, M.T.; Hussain, I. The Level of Immunoglobulins in Relation to Neonatal Lamb Mortality in Pak-Karakul Sheep. Vet. Arh. 2000, 70, 129–139. [Google Scholar]
- Childs, S.; Carter, F.; Lynch, C.O.; Sreenan, J.M.; Lonergan, P.; Hennessy, A.A.; Kenny, D.A. Embryo Yield and Quality Following Dietary Supplementation of Beef Heifers with N-3 Polyunsaturated Fatty Acids (PUFA). Theriogenology 2008, 70, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Ahvenjärvi, S.; Toivonen, V.; Ärölä, A.; Nurmela, K.V.V.; Huhtanen, P.; Griinari, J.M. Effect of Dietary Fish Oil on Biohydrogenation of Fatty Acids and Milk Fatty Acid Content in Cows. Anim. Sci. 2003, 77, 165–179. [Google Scholar] [CrossRef]
- Hung, P.; Kaku, S.; Yunoki, S.; Ohkura, K.; Gu, J.Y.; Ikeda, I.; Sugano, M.; Yazawa, K.; Yamada, K. Dietary Effect of EPA-Rich and DHA-Rich Fish Oils on the Immune Function of Sprague-Dawley rats. Biosci. Biotechnol. Biochem. 1999, 63, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Annett, R.W.; Carson, A.F.; Dawson, L.E.R. Effects of Digestible Undegradable Protein (DUP) Supply and Fish Oil Supplementation of Ewes during Late Pregnancy on Colostrum Production and Lamb Output. Anim. Feed. Sci. Technol. 2008, 146, 270–288. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Regulation and Nutritional Manipulation of Milk Fat: Low-Fat Milk Syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- Chikunya, S.; Sinclair, L.A.; Wilkinson, R.G. Influence of Dietary n -3 Polyunsaturated Fatty Acids on Milk Fat Composition and Performance of Lactating Friesland Ewes. Proc. Br. Soc. Anim. Sci. 2002, 2002, 11. [Google Scholar] [CrossRef]
- Mozzon, M.; Frega, N.G.; Fronte, B.; Tocchini, M. Effect of Dietary Fish Oil Supplements on Levels of N-3 Polyunsaturated Fatty Acids, Trans Acids and Conjugated Linoleic Acid in Ewe Milk. Food Technol. Biotechnol. 2002, 40, 213–219. [Google Scholar]
- Kitessa, S.M.; Peake, D.; Bencini, R.; Williams, A.J. Fish Oil Metabolism in Ruminants III. Transfer of n-3 Polyunsaturated Fatty Acids (PUFA) from Tuna Oil into Sheep’s Milk. Anim. Feed. Sci. Technol. 2003, 108, 1–14. [Google Scholar] [CrossRef]
- Lock, A.L.; Bauman, D.E. Modifying Milk Fat Composition of Dairy Cows to Enhance Fatty Acids Beneficial to Human Health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef]
- AbuGhazaleh, A.A.; Schingoethe, D.J.; Hippen, A.R.; Kalscheur, K.F.; Whitlock, L.A. Fatty Acid Profiles of Milk and Rumen Digesta from Cows Fed Fish Oil, Extruded Soybeans or Their Blend. J. Dairy Sci. 2002, 85, 2266–2276. [Google Scholar] [CrossRef]
- Gulati, S.K.; Thomson, P.; Ha, W.K.; Lee, W.J.; Lee, J.H.; Choi, J.H.; Ko, K.H.; Park, S.I.; Cox, G.; Scott, T.W. Transfer Rates of Docosahexaenoic and Eicosapentaenoic Acids into Cow’s Milk in Pasture Based and Feed-Lot Management Systems. Eur. J. Lipid Sci. Technol. 2022, 124, 2100106. [Google Scholar] [CrossRef]
Early Gestation | ||||
---|---|---|---|---|
Ingredients (% DM) | PO | POFO | FOPO | FO |
Barley grain | 23.40 | 23.40 | 23.40 | 23.40 |
Soybean meal, 44% CP (solvent ext.) | 6.77 | 6.77 | 6.77 | 6.77 |
Wheat straw | 54.09 | 54.09 | 54.09 | 54.09 |
Wheat bran | 11.56 | 11.56 | 11.56 | 11.56 |
Fish oil (FO) | - | - | 2.40 | 2.40 |
Palm oil (PO) | 2.40 | 2.40 | - | - |
Salt | 0.38 | 0.38 | 0.38 | 0.38 |
Limestone | 1.00 | 1.00 | 1.00 | 1.00 |
Mineral vitamin premix a | 0.40 | 0.40 | 0.40 | 0.40 |
Nutrient contents | ||||
DM% | 91.31 | 90.62 | 90.59 | 89.69 |
CP% | 10.18 | 9.52 | 9.84 | 9.44 |
ADF% | 27.46 | 27.36 | 28.16 | 27.86 |
NDF% | 48.14 | 48.51 | 48.36 | 49.12 |
EE% | 4.17 | 4.22 | 4.36 | 4.18 |
ME (Mcal/Kg) b | 2.43 | 2.61 | 2.36 | 2.33 |
Late Gestation | ||||
PO | POFO | FOPO | FO | |
Barley grain | 26 | 26 | 26 | 26 |
Soybean meal, 44% CP (solvent ext.) | 6.5 | 6.5 | 6.5 | 6.5 |
Wheat straw | 53.25 | 53.25 | 53.25 | 53.25 |
Wheat bran | 10.85 | 10.85 | 10.85 | 10.85 |
Fish oil (FO) | - | 2.1 | - | 2.1 |
Palm oil (PO) | 2.1 | - | 2.1 | 0 |
Salt | 0.5 | 0.5 | 0.5 | 0.5 |
Limestone | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral vitamin premix | 0.3 | 0.3 | 0.3 | 0.3 |
Nutrient contents | ||||
DM% | 90.57 | 89.67 | 90.12 | 90.54 |
CP% | 10.62 | 10.54 | 11.02 | 10.41 |
ADF% | 26.62 | 27.12 | 26.51 | 26.86 |
NDF% | 48.42 | 49.10 | 48.35 | 48.80 |
EE% | 4.34 | 4.14 | 4.25 | 4.17 |
ME (Mcal/Kg) b | 2.65 | 2.24 | 2.52 | 2.31 |
Fatty Acid | Fish Oil | Palm Oil |
---|---|---|
Lauric (C12:0) | - | 0.17 |
Myristic (C14:0) | 6.2 | 0.94 |
Pentadecanoic acid (C15:0) | 0.72 | - |
Palmitic (C16:0) | 20.4 | 41.98 |
Palmitoleic (C16:1) | 8.15 | 0.18 |
Heptadecanoic (C17:0) | 1.1 | 0.08 |
Heptadecenoic (C17:1) | 0.56 | 0.03 |
Stearic (C18:0) | 5.4 | 2.2 |
Oleic (C18:1) | 16.1 | 41.6 |
Linoleic (C18:2) | 2.11 | 10.9 |
Linolenic (C18:3) | 0.63 | 0.16 |
Arachidic (C20:0) | 0.4 | 0.33 |
Gadoleic (C20:1) | 0.8 | 0.12 |
Behenic (C22:0) | - | 0.06 |
Lignoceric (C24:0) | - | 0.06 |
Arachidonic acid (ARA, C20:4) | 2.7 | - |
Eicosapentaenoic acid (EPA, C20:5) | 10.1 | - |
Dicosapentaenoic acid (DPA, C22:5) | 3.1 | - |
Dicosahexaenoic acid (DHA, C22:6) | 16.3 | - |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
PO | POFO | FOPO | FO | SEM 2 | p-Value | |
Gestation length, day | 145 a | 147 b | 146 a | 149 b | 0.48 | <0.001 |
Dry matter intake, g/day | 1294 | 1282 | 1291 | 1287 | 10.08 | 0.952 |
Initial body weight, kg | 55.4 | 58.0 | 58.0 | 56.5 | 1.77 | 0.523 |
Final body weight, kg | 70.0 | 72.1 | 73.0 | 71.1 | 1.46 | 0.432 |
Ewe BWG, kg | 14.5 | 14.2 | 15.1 | 14.6 | 1.29 | 0.734 |
Birth weight (kg) | 4.3 a | 4.9 b | 4.8 ab | 5.0 b | 0.10 | 0.049 |
Lamb intake (g/day) | 93.5 | 93.5 | 93.5 | 93.4 | 0.48 | 1.000 |
Ewes DMI during lactation (g/day) | 1802 | 1801 | 1802 | 1819 | 3.38 | 0.232 |
Ewes BWC 3 during lactation (kg) | −2.8 | −2.8 | −2.9 | −2.5 | 0.09 | 0.601 |
Number of lambs | 18 | 19 | 18 | 19 | 0.054 * | |
Ewes lambed | 14 | 16 | 15 | 16 | 0.180 * | |
Lambs weaned | 15 | 18 | 16 | 19 | 0.588 * | |
Abortion | 1 | 0 | 1 | 0 | 1.000 ** | |
Mortality | 3 | 1 | 2 | 0 | 1.000 ** |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
Period (Day) | PO | POFO | FOPO | FO | SEM 2 | p-Value |
1–15 (g) | 247 a | 204 b | 258 a | 183 b | 0.006 | <0.001 |
15–30 (g) | 245 | 247 | 253 | 221 | 0.005 | 0.150 |
30–45 (g) | 241 a | 287 b | 247 a | 269 ab | 0.006 | 0.034 |
45–60 (g) | 243 a | 288 b | 242 a | 272 ab | 0.006 | 0.015 |
1–60 (g) | 244 | 256 | 250 | 236 | 0.005 | 0.531 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
PO | POFO | FOPO | FO | SEM 2 | p-Value | |
Colostrum yield (kg/d) | 1.6 a | 1.3 b | 1.5 a | 1.2 b | 1.45 | <0.001 |
Fat % | 10.1 a | 8.2 b | 10.2 a | 8.1 b | 0.15 | <0.001 |
Protein % | 13.0 a | 11.6 b | 13.0 a | 11.4 b | 0.06 | <0.001 |
IgG (g/L) | 59.2 b | 77.2 a | 60.6 b | 78.5 a | 1.24 | <0.001 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
PO | POFO | FOPO | FO | SEM 2 | p-Value | |
Fat % | ||||||
15 days | 7.42 a | 6.37 b | 7.26 a | 6.29 b | 0.10 | <0.001 |
45 days | 6.54 | 6.45 | 6.70 | 6.48 | 0.08 | 0.715 |
90 days | 6.16 | 6.02 | 6.17 | 6.31 | 0.10 | 0.781 |
SNF % | ||||||
15 days | 11.43 a | 10.68 b | 11.15 a | 10.42 b | 0.08 | <0.001 |
45 days | 10.80 | 10.51 | 10.66 | 10.58 | 0.06 | 0.387 |
90 days | 10.62 | 10.35 | 10.41 | 10.32 | 0.06 | 0.251 |
Protein % | ||||||
15 days | 4.22 a | 3.82 b | 4.36 a | 3.66 b | 0.05 | <0.001 |
45 days | 3.80 | 3.75 | 3.69 | 3.72 | 0.03 | 0.661 |
90 days | 3.40 | 3.55 | 3.69 | 3.46 | 0.04 | 0.071 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
Lactation Days | PO | POFO | FOPO | FO | SEM 2 | p-Value |
15 | 1.70 a | 1.32 b | 1.69 a | 1.27 b | 0.03 | <0.001 |
30 | 1.81 a | 1.39 b | 1.83 a | 1.38 b | 0.03 | <0.001 |
45 | 1.62 | 1.51 | 1.58 | 1.52 | 0.02 | 0.122 |
60 | 1.46 | 1.42 | 1.48 | 1.40 | 0.02 | 0.524 |
75 | 1.36 | 1.36 | 1.39 | 1.32 | 0.02 | 0.731 |
90 | 1.33 | 1.30 | 1.33 | 1.27 | 0.02 | 0.810 |
Average | 1.54 a | 1.38 b | 1.55 a | 1.36 b | 0.03 | <0.001 |
Treatments 1 | ||||||
---|---|---|---|---|---|---|
Fatty Acid (g/100 g Fatty Acid) | PO | POFO | FOPO | FO | SEM 2 | p-Value |
Day 14 | ||||||
C16:0 | 25.2 a | 20.4 b | 25.6 a | 20.6 b | 0.52 | <0.001 |
C18:0 | 13.8 a | 8.0 b | 13.7 a | 8.00 b | 0.60 | <0.001 |
C18:1 trans | 3.7 a | 5.5 b | 3.6 a | 5.5 b | 0.21 | <0.001 |
C18:1 cis-9 | 26.7 a | 22.1 b | 26.8 a | 21.9 b | 0.50 | <0.001 |
C18:2 n-6 | 1.8 | 1.6 | 1.7 | 1.5 | 0.05 | 0.089 |
CLA(cis-9, trans11) | 1.02 a | 1.45 b | 0.96 a | 1.50 b | 0.06 | <0.001 |
C18:3 n-3 | 0.37 a | 0.61 b | 0.36 a | 0.60 b | 0.03 | <0.001 |
C20:4 n-6 | 0.01 | 0.19 | 0.10 | 0.18 | 0.05 | 0.123 |
C20:5 n-3 EPA | 0.03 a | 0.61 b | 0.04 a | 0.60 b | 0.06 | <0.001 |
C22:6 n-3 DHA | 0.02 a | 0.69 b | 0.03 a | 0.66 b | 0.07 | <0.001 |
Day 90 | ||||||
C16:0 | 24.7 | 24.8 | 24.9 | 24.7 | 0.08 | 0.798 |
C18:0 | 13.3 | 13.1 | 13.0 | 12.8 | 0.07 | 0.103 |
C18:1 trans | 3.25 | 3.05 | 3.25 | 3.05 | 0.05 | 0.368 |
C18:1 cis-9 | 25.9 | 25.7 | 25.7 | 25.7 | 0.11 | 0.897 |
C18:2 n-6 | 1.4 | 1.4 | 1.4 | 1.3 | 0.04 | 0.603 |
CLA (cis-9, trans-11) | 0.96 | 0.95 | 0.95 | 0.96 | 0.006 | 0.990 |
C18:3 n-3 | 0.32 | 0.30 | 0.30 | 0.29 | 0.006 | 0.350 |
C20:4 n-6 | 0.08 | 0.08 | 0.07 | 0.09 | 0.003 | 0.084 |
C20:5 n-3 | 0.03 | 0.09 | 0.03 | 0.02 | 0.001 | 0.476 |
C22:6 n-3 | 0.02 | 0.02 | 0.02 | 0.01 | 0.002 | 0.660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshdaifat, M.M.; Serbester, U.; Obeidat, B.S.; Gorgulu, M. Fish Oil Supplementation as an Omega-3 Fatty Acid Source during Gestation: Effects on the Performance of Awassi Ewes and Their Offspring. Animals 2023, 13, 3888. https://doi.org/10.3390/ani13243888
Alshdaifat MM, Serbester U, Obeidat BS, Gorgulu M. Fish Oil Supplementation as an Omega-3 Fatty Acid Source during Gestation: Effects on the Performance of Awassi Ewes and Their Offspring. Animals. 2023; 13(24):3888. https://doi.org/10.3390/ani13243888
Chicago/Turabian StyleAlshdaifat, Mustafa M., Ugur Serbester, Belal S. Obeidat, and Murat Gorgulu. 2023. "Fish Oil Supplementation as an Omega-3 Fatty Acid Source during Gestation: Effects on the Performance of Awassi Ewes and Their Offspring" Animals 13, no. 24: 3888. https://doi.org/10.3390/ani13243888
APA StyleAlshdaifat, M. M., Serbester, U., Obeidat, B. S., & Gorgulu, M. (2023). Fish Oil Supplementation as an Omega-3 Fatty Acid Source during Gestation: Effects on the Performance of Awassi Ewes and Their Offspring. Animals, 13(24), 3888. https://doi.org/10.3390/ani13243888