Genetic Parameters of Serum Total Protein Concentration Measured with a Brix Refractometer in Holstein Newborn Calves and Fresh Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Clinical Examination and Collection of Blood Samples from Calves and Cows
2.3. Determination of STP in Calves and Cows
2.4. Correlation between Cow STP Measured with an Automated Analyzer and a Brix Refractometer
2.5. Colostrum Samples
2.6. Final Dataset
2.7. Pedigree
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weaver, D.M.; Tyler, J.W.; Van Metre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Jaster, E.H. Evaluation of quality, quantity, and timing of colostrum feeding on immunoglobulin G1 absorption in Jersey calves. J. Dairy Sci. 2005, 88, 296–302. [Google Scholar] [CrossRef]
- Raboisson, D.; Trillat, P.; Cahuzac, C. Failure of Passive Immune Transfer in Calves: A Meta-Analysis on the Consequences and Assessment of the Economic Impact. PLoS ONE 2016, 11, e0150452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghesi, J.; Mario, L.C.; Rodrigues, M.N.; Favaron, P.O.; Miglino, M.A. Immunoglobulin transport during gestation in domestic animals and humans—A review. Open J. Anim. Sci. 2014, 4, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Chase, C.C.; Hurley, D.J.; Reber, A.J. Neonatal immune development in the calf and its impact on vaccine response. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Lombard, J.E.; Kopral, C.A.; Garber, L.P.; Winter, A.L.; Hicks, J.A.; Schlater, J.L. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J. Dairy Sci. 2009, 92, 3973–3980. [Google Scholar] [CrossRef] [Green Version]
- Besser, T.E.; Gay, C.C. Septicemic colibacillosis and failure of passive transfer of colostral immunoglobulin in calves. Vet. Clin. N. Am. Food Anim. Pract. 1985, 1, 445–459. [Google Scholar] [CrossRef]
- Godden, S. Colostrum management for dairy calves. Vet. Clin. Food Anim. 2008, 24, 19–39. [Google Scholar] [CrossRef]
- Arfuso, F.; Minuti, A.; Liotta, L.; Giannetto, C.; Trevisi, E.; Piccione, G.; Lopreiato, V. Stress and inflammatory response of cows and their calves during peripartum and early neonatal period. Theriogenology 2023, 196, 157–166. [Google Scholar] [CrossRef]
- McGuirk, S.M.; Collins, M. Managing the production, storage, and delivery of colostrum. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 593–603. [Google Scholar] [CrossRef]
- Logue, D.N.; Mayne, C. Welfare-positive management and nutrition for the dairy herd: A European perspective. Vet. J. 2014, 199, 31–38. [Google Scholar] [CrossRef]
- Calloway, C.D.; Tyler, J.W.; Tessman, R.K.; Hostetler, D.; Holle, J. Comparison of refractometers and test endpoints in the measurement of serum protein concentration to assess passive transfer status in calves. JAVMA 2002, 221, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, M.M.; Jarvie, B.D.; Perkins, N.R.; Leslie, K.E. A comparison of serum harvesting methods and type of refractometer for determining total solids to estimate failure of passive transfer in calves. Can. Vet. J. 2006, 47, 573–575. [Google Scholar] [PubMed]
- Moore, D.A.; Taylor, J.; Hartman, M.L.; Sischo, W.M. Quality assessments of waste milk at a calf ranch. J. Dairy Sci. 2009, 92, 3503–3509. [Google Scholar] [CrossRef] [Green Version]
- Morrill, K.M.; Polo, J.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Estimate of serum immunoglobulin G concentration using refractometry with or without caprylic acid fractionation. J. Dairy Sci. 2013, 96, 4535–4541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deelen, S.M.; Ollivett, T.L.; Haines, D.M.; Leslie, K.E. Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. J. Dairy Sci. 2014, 97, 3838–3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsohaby, I.; McClure, J.T.; Keefe, G.P. Evaluation of Digital and Optical Refractometers for Assessing Failure of Transfer of Passive Immunity in Dairy Calves. J. Vet. Intern. Med. 2015, 29, 721–726. [Google Scholar] [CrossRef]
- Morin, D.E.; McCoy, G.C.; Hurley, W.L. Effects of quality, quantity, and timing of colostrum feeding and addition of a dried colostrum supplement on immunoglobulin G1 absorption in Holstein bull calves. J. Dairy Sci. 1997, 80, 747–753. [Google Scholar] [CrossRef]
- Godden, S.M.; Haines, D.M.; Konkol, K.; Peterson, J. Improving passive transfer of immunoglobulins in calves. II: Interaction between feeding method and volume of colostrum fed. J. Dairy Sci. 2009, 92, 1758–1764. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.L.; Godden, S.M.; Molitor, T.; Ames, T.; Hagman, D. Effects of Feeding Heat-Treated Colostrum on Passive Transfer of Immune and Nutritional Parameters in Neonatal Dairy Calves. J. Dairy Sci. 2007, 90, 5189–5198. [Google Scholar] [CrossRef]
- Morrill, K.M.; Conrad, E.M.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 2012, 95, 3997–4005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godden, S.M.; Smolenski, D.J.; Donahue, M.; Oakes, J.M.; Bey, R.; Wells, S.; Sreevatsan, S.; Stabel, J.; Fetrow, J. Heat-treated colostrum and reduced morbidity in preweaned dairy calves: Results of a randomized trial and examination of mechanisms of effectiveness. J. Dairy Sci. 2012, 95, 4029–4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besser, T.E.; Szenci, O.; Gay, C.C. Decreased colostral immunoglobulin absorption in calves with postnatal respiratory acidosis. J. Am. Vet. Med. Assoc. 1990, 196, 1239–1243. [Google Scholar] [PubMed]
- Olson, D.P.; Papasian, C.J.; Ritter, R.C. The Effects of Cold Stress on Neonatal Calves II. Absorption of Colostral Immunoglobulins. Can. J. Comp. Med. 1980, 44, 19–23. [Google Scholar]
- Stott, G.H.; Wiersma, F.; Menefee, B.E.; Radwanski, F.R. Influence of Environment on Passive Immunity in Calves. J. Dairy Sci. 1976, 59, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Norman, L.M.; Hohenboken, W.D.; Kelley, K.W. Genetic differences in concentration of immunoglobulins G1 and M in serum and colostrum of cows and in serum of neonatal calves. J. Anim. Sci. 1981, 53, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.P.; Gaskins, C.T.; Hillers, J.K.; Brinks, J.S.; Denham, A.H. Inbreeding and Immunoglobulin G1 Concentrations in Cattle. J. AniM. Sci. 1988, 66, 2490–2497. [Google Scholar] [CrossRef]
- Johnston, D.; Mukiibi, R.; Waters, S.M.; McGee, M.; Surlis, C.; McClure, J.C.; McClure, M.C.; Todd, C.G.; Earley, B. Genome wide association study of passive immunity and disease traits in beef-suckler and dairy calves on Irish farms. Sci. Rep. 2020, 10, 18998. [Google Scholar] [CrossRef]
- Martin, P.; Vinet, A.; Denis, C.; Grohs, C.; Chanteloup, L.; Dozias, D.; Maupetit, D.; Sapa, J.; Renand, G.; Blanc, F. Determination of immunoglobulin concentrations and genetic parameters for colostrum and calf serum in Charolais animals. J. Dairy Sci. 2021, 104, 3240–3249. [Google Scholar] [CrossRef]
- Cordero-Solorzano, J.; de Koning, D.-J.; Tråvén, M.; de Haan, T.; Jouffroy, M.; Larsson, A.; Myrthe, A.; Arts, J.A.J.; Parmentier, H.K.; Bovenhuis, H.; et al. Genetic parameters of colostrum and calf serum antibodies in Swedish dairy cattle. Genet. Sel. Evol. 2022, 54, 68. [Google Scholar] [CrossRef]
- Muggli, N.E.; Hohenboken, W.D.; Cundiff, L.V.; Kelley, K.W. Inheritance of maternal immunoglobulin G1 concentration by the bovine neonate. J. Anim. Sci. 1984, 59, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Haagen, I.W.; Hardie, L.C.; Heins, B.J.; Dechow, C.D. Genetic parameters of passive transfer of immunity for US organic Holstein calves. J. Dairy Sci. 2021, 104, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Duru, S.; Abdullahoğlu, E.; Özlüer, A.; Filya, I. Estimation of heritability for immunoglobulin concentrations in colostrum and serum in Holstein cows and their calves. Czech J. Anim. Sci. 2021, 66, 149–155. [Google Scholar] [CrossRef]
- Giuliotti, L.; Benvenuti, M.N.; Facdouelle, I.; Goracci, J. Blood Parameters: Potential Welfare Indicators in Dairy Cows. Ann. Fac. Med. Vet. Pisa 2004, 57, 281–289. [Google Scholar]
- Cozzi, G.; Ravarotto, L.; Gottardo, F.; Stefani, A.L.; Contiero, B.; Moro, L.; Brscic, M.; Dalvit, P. Short communication: Reference values for blood parameters in Holstein dairy cows: Effects of parity, stage of lactation, and season of production. J. Dairy Sci. 2011, 94, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Bobbo, T.; Fiore, E.; Gianesella, M.; Morgante, M.; Gallo, L.; Ruegg, P.L.; Bittante, G.; Cecchinato, A. Variation in blood serum proteins and association with somatic cell count in dairy cattle from multi-breed herds. Animal 2017, 11, 2309–2319. [Google Scholar] [CrossRef]
- Cecchinato, A.; Bobbo, T.; Ruegg, P.L.; Gallo, L.; Bittante, G.; Pegolo, S. Genetic variation in serum protein pattern and blood β-hydroxybutyrate and their relationships with udder health traits, protein profile, and cheese-making properties in Holstein cows. J. Dairy Sci. 2018, 101, 11108–11119. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Messina, V.; Schembari, A.; Casella, S.; Giannetto, C.; Alberghina, D. Pattern of serum protein fractions in dairy cows during different stages of gestation and lactation. J. Dairy Res. 2011, 78, 421–425. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef] [Green Version]
- Chorfi, Y.; Lanevschi-Pietersma, A.; Girard, V.; Tremblay, A. Evaluation of variation in serum globulin concentrations in dairy cattle. Vet. Clin. Pathol. 2004, 33, 122–127. [Google Scholar] [CrossRef]
- Eckersall, P.D. Proteins, proteomics, and the dysproteinemias. In Clinical Biochemistry of Domestic Animals, 6th ed.; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Elsevier: London, UK; Academic Press: London, UK, 2008; pp. 117–155. [Google Scholar]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M. Clinical Biochemistry of Domestic Animals; Elsevier/Academic Press: Burlington, MA, USA, 2008. [Google Scholar]
- Overton, T.R.; McArt, J.A.A.; Nydam, D.V. A 100-Year Review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 2017, 100, 10398–10417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccinini, R.; Binda, E.; Belotti, M.; Casirani, G.; Zecconi, A. The evaluation of non-specific immune status of heifers in field conditions during the periparturient period. Vet. Res. 2004, 35, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Alberghina, D.; Giannetto, C.; Vazzana, I.; Ferrantelli, V.; Piccione, G. Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cows. J. Vet. Diagn. Investig. 2011, 23, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Soufleri, A.; Banos, G.; Panousis, N.; Fletouris, D.; Arsenos, G.; Kougioumtzis, A.; Valergakis, G.E. Genetic parameters of colostrum traits in Holstein dairy cows. J. Dairy Sci. 2019, 102, 11225–11232. [Google Scholar] [CrossRef]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Thompson, R. ASReml User Guide Release 4.1; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part, I. Descriptive characteristics of preweaned heifer raising practices. J. Dairy Sci. 2018, 101, 9168–9184. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Juarez, H.; Oltenacu, P.A.; Blake, R.W.; Mcculloch, C.E.; Cienfuegos-Rivas, E.G. Effect of herd environment on the genetic and phenotypic relationships among milk yield, conception rate, and somatic cell score in Holstein cattle. J. Dairy Sci. 2000, 83, 807–814. [Google Scholar] [CrossRef]
- Windig, J.J.; Calus, M.P.L.; Beerda, B.; Veerkamp, R.F. Genetic correlations between milk production and health and fertility depending on herd environment. J. Dairy Sci. 2006, 89, 1765–1775. [Google Scholar] [CrossRef] [Green Version]
- Bastin, C.; Gengler, N.; Soyeurt, H. Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 2011, 94, 4152–4163. [Google Scholar] [CrossRef] [Green Version]
- Heringstad, B.; Chang, Y.M.; Gianola, D.; Klemetsdal, G. Genetic analysis of clinical mastitis, milk fever, ketosis, and retained placenta in three lactations of Norwegian red cows. J. Dairy Sci. 2005, 88, 3273–3281. [Google Scholar] [CrossRef] [Green Version]
- Koeck, A.; Miglior, F.; Kelton, D.F.; Schenkel, F.S. Alternative somatic cell count traits to improve mastitis resistance in Canadian Holsteins. J. Dairy Sci. 2012, 95, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, D.; Nydam, D.V.; Godden, S.M.; Bristol, L.S.; Kryzer, A.; Ranum, J.; Schaefer, D. Brix refractometry in serum as a measure of failure of passive transfer compared to measured immunoglobulin g and total protein by refractometry in serum from dairy calves. Vet. J. 2015, 211, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Peek, S.F.; Divers, T.J. Rebhun’s Diseases of Dairy Cattle, 3rd ed.; Saunders: St. Louis, MO, USA; Elsevier: St. Louis, MO, USA, 2018; p. 15. [Google Scholar]
- Peterson, R.G.; Nash, T.E.; Shelford, J.A. Heritabilities and Genetic Correlations for Serum and Production Traits of Lactating Holsteins. J. Dairy Sci. 1982, 65, 1556–1561. [Google Scholar] [CrossRef]
Trait (Unit of Measurement) | Mean | SD | Median | Min | Max |
---|---|---|---|---|---|
Interval between birth of calf and colostrum administration (min) | 234 | 183 | 180 | 15 | 780 |
Quantity of colostrum fed (L) | 2.4 | 0.9 | 2.5 | 0.5 | 6.0 |
Quality of colostrum fed (%Brix value) | 25.8 | 4.6 | 25.9 | 10.7 | 41.4 |
Trait (Unit of Measurement) | Mean | SD | Median | Min | Max |
---|---|---|---|---|---|
Calf serum total proteins | 8.7 | 1.0 | 8.7 | 6.4 | 13.0 |
Cow serum total proteins | 9.5 | 0.7 | 9.5 | 7.3 | 12.4 |
Colostrum total solids | 25.8 | 4.7 | 25.9 | 10.7 | 41.4 |
Colostrum protein | 17.8 | 3.9 | 17.8 | 4.8 | 30.4 |
Colostrum fat | 6.4 | 3.3 | 5.9 | 0.1 | 18.2 |
Colostrum lactose | 2.1 | 0.7 | 2.2 | 0.1 | 5.0 |
Trait (Unit of Measurement) | σp2 | σa2 | σr2 | h2 |
---|---|---|---|---|
Calf serum total proteins | 0.90 (±0.04) * | 0.18 (±0.09) * | 0.71 (±0.08) * | 0.21 (±0.09) * |
Cow serum total proteins | 0.38 (±0.02) * | 0.07 (±0.03) * | 0.30 (±0.03) * | 0.20 (±0.08) * |
Calf Serum Total Proteins | Cow Serum Total Proteins | |||
---|---|---|---|---|
Correlations | ||||
Trait | Genetic | Phenotypic | Genetic | Phenotypic |
Colostrum total solids | 0.94 (0.14) * | 0.33 (0.03) * | 0.01 (0.03) | 0.05 (0.03) |
Colostrum protein content | 0.99 (0.14) * | 0.31 (0.03) * | 0.01 (0.02) | 0.04 (0.03) |
Colostrum fat content | −0.16 (0.26) | 0.04 (0.04) | 0.01 (0.01) | 0.01 (0.03) |
Colostrum lactose content | −0.82 (0.24) * | −0.19 (0.03) * | 0.04 (0.03) | −0.10 (0.03) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soufleri, A.; Banos, G.; Panousis, N.; Kougioumtzis, A.; Tsiamadis, V.; Arsenos, G.; Valergakis, G.E. Genetic Parameters of Serum Total Protein Concentration Measured with a Brix Refractometer in Holstein Newborn Calves and Fresh Cows. Animals 2023, 13, 366. https://doi.org/10.3390/ani13030366
Soufleri A, Banos G, Panousis N, Kougioumtzis A, Tsiamadis V, Arsenos G, Valergakis GE. Genetic Parameters of Serum Total Protein Concentration Measured with a Brix Refractometer in Holstein Newborn Calves and Fresh Cows. Animals. 2023; 13(3):366. https://doi.org/10.3390/ani13030366
Chicago/Turabian StyleSoufleri, Aikaterini, Georgios Banos, Nikolaos Panousis, Alexandros Kougioumtzis, Vangelis Tsiamadis, Georgios Arsenos, and Georgios E. Valergakis. 2023. "Genetic Parameters of Serum Total Protein Concentration Measured with a Brix Refractometer in Holstein Newborn Calves and Fresh Cows" Animals 13, no. 3: 366. https://doi.org/10.3390/ani13030366
APA StyleSoufleri, A., Banos, G., Panousis, N., Kougioumtzis, A., Tsiamadis, V., Arsenos, G., & Valergakis, G. E. (2023). Genetic Parameters of Serum Total Protein Concentration Measured with a Brix Refractometer in Holstein Newborn Calves and Fresh Cows. Animals, 13(3), 366. https://doi.org/10.3390/ani13030366