Evaluation of a Viscoelastic Coagulation Monitoring System (VCM Vet®) and Its Correlation with Thromboelastometry (ROTEM®) in Diseased and Healthy Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.1.1. Healthy Dogs
2.1.2. Diseased Dogs
2.2. Blood Sampling
2.3. ROTEM Analysis
2.4. VCM Analysis
2.5. Definition of Coagulation Status
- Normocoagulable: all parameters of interest within the reference range.
- Hypocoagulable: ≥2 hypocoagulable parameters (CT/CFT prolonged, or MCF decreased) in ExTEM or InTEM.
- Hypercoagulable: ≥2 hypercoagulable parameters (CT/ CFT shortened, or MCF increased) in ExTEM or InTEM.
2.6. Statistical Analysis
3. Results
3.1. Animals
3.2. Measured Values and Institutional Reference Intervals
3.3. Inter-Device and Inter-Channel Agreement
3.4. Correlation between Equivalent ROTEM and VCM Parameters
3.5. Coagulations States and Sensitivity and Specificity of VCM for Diagnosing Different Coagulation States against ROTEM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ROTEM | VCM | |
---|---|---|
Technology | A cylindrical cup containing whole blood remains fixed while a pin suspended on a ball-bearing mechanism oscillates every 6 sec through application of a constant force. As the clot strength increases the rotation of the pin is impeded and is detected optically using a charge coupled device image sensor system. | Test cartridge consists of two parallel glass plates, with a small gap. The blood sample lies between the two plates and they slide past each other with controlled velocity, creating a shear stress between the plates. Driving signals of various amplitudes and frequencies can elicit motion between the two plates. An optical system then detects the resulting motion on the sample. |
Sample | Usually citrated blood (300 μL) | Native blood (350 μL) |
Blood sample processing | Automated pipette | Directly from syringe |
Activators (only the ones used in this study) | ExTEM®: activation by tissue factor. Assessment of factors VII, X, V, II, I, platelets, fibrinolysis InTEM®: activation via the contact phase (phosphor-lipid and ellagic acid). Assessment of factors XII, XI, IX, VIII, X, V, II, I, platelets, fibrinolysis | None (contact activation by high surface area of glass plates) |
Parameters | CT (s): clotting time (time from start of the measurement until onset of clotting). CFT (s): clot formation time (time between onset of clotting and a clot of 20 mm amplitude). α (°): alpha-angle (angle between midline and tangent to the curve drawn from the 1 mm wide point; describes clot formation kinetics). MCF (mm): maximum clot firmness (maximum amplitude of the curve). A10/A20 (mm): amplitude after 10 and 20 min, respectively (=clot firmness after 10 and 20 min). LY30/LY45 (%): clot lysis at 30 and 45 min, respectively (the amplitude of the clot at 30 and 45 min after clot time; percentage of MCF). | CT (s): clot time (time from beginning of the test until the time when an amplitude of 1% above the baseline is achieved). CFT (s): clot formation time (time between 1% amplitude and 10% amplitude of the clotting signal). α (°): alpha-angle (angle between the time axis and the tangent to the clotting curve through 1% amplitude point; describes clot formation kinetics). MCF (VCM units): maximum clot formation (maximum amplitude reached before clot lysis occurs; firmness of the clot). A10/A20 (VCM units): amplitude at 10 and 20 min, respectively (=clot firmness after 10 and 20 min after clot time). LI30/LI45 (%): lysis index at 30 and 45 min, respectively (amplitude of the clot at 30 and 45 min after clot time; percentage of MCF). |
Parameter | ||||||
---|---|---|---|---|---|---|
ExTEM | norm | n | hypo | n | hyper | n |
CT (RI: 30−53 s) | 40 (36–50) | 47 | 467 (401–775) | 10 | 34 (34–36) | 3 |
CFT (RI: 60−155 s) | 86 (62–111) | 46 | 141 (75–160) | 10 | 23 (21–30) | 3 |
Alpha (RI: 63−80°) | 75 (69–80) | 46 | 43 (28–56) | 10 | 86 (85–86) | 3 |
MCF (RI: 55−77 mm) | 68 (63–74) | 46 | 36 (32–37) | 10 | 82 (81–85) | 3 |
A10 (RI: 41−68 mm) | 58 (49–65) | 45 | 23 (17–25) | 10 | 81 (78–83) | 3 |
A20 (RI: 50−73 mm) | 65 (58–71) | 45 | 31 (25–31) | 10 | 82 (80–85) | 3 |
HKT (RI: 0.28–0.47 L/L) | 0.45 (0.36–0.50) | 47 | 0.42 (0.38–0.44) | 10 | 0.37 (0.33–0.41) | 3 |
PLT (RI: 180–520 × 109/L) | 224 (141–312) | 47 | 51 (34.50–119.50) | 10 | 663 (452–-668) | 3 |
PT (RI: 5.7–8.5 s) | 8.5 (7.95–9.3) | 43 | 12.4 (9.8–17.3) | 8 | 13.0 (12.9–15.9) | 3 |
aPTT (RI: 9.6–14.3 s) | 13.3 (12.6–16.5) | 43 | 22.3 (20.0–26.9) | 9 | 7.9 (7.55–8.05) | 3 |
F-gen (RI: 109–311 mg/dL) | 301 (188–450) | 43 | 122 (58–232) | 7 | 523 (485–894) | 3 |
InTEM | norm | n | hypo | n | hyper | |
CT (RI: 125−218 s) | 207 (172−310) | 47 | 447 (324−612) | 12 | 132 (128−151) | 3 |
CFT (RI: 52−148 s) | 85 (65−107) | 41 | 455 (367−673) | 12 | 43 (43−50) | 3 |
Alpha (RI: 65−81°) | 73 (70−77) | 41 | 38.5 (27−52) | 12 | 82 (81−82) | 3 |
MCF (RI: 55−73 mm) | 66 (61−69) | 41 | 36.5 (32−45) | 12 | 74 (72−80) | 3 |
A10 (RI: 40−62 mm) | 55 (48−60) | 41 | 22 (19−25) | 12 | 63 (63−73) | 3 |
A20 (RI: 49−69 mm) | 63 (56−67) | 41 | 31 (25−35) | 12 | 70 (69−78) | 3 |
HKT (RI: 0.28–0.47 L/L) | 0.46 (0.38−0.50) | 42 | 0.39 (0.28−0.43) | 12 | 0.36 (0.33−0.41) | 3 |
PLT (RI: 180–520 × 109/L) | 236(166−314) | 42 | 49 (37−140)) | 12 | 152 (148−412) | 3 |
PT (RI: 5.7–8.5 s) | 8.4 (7.9−9.1) | 42 | 11.0 (9.65−12.8) | 10 | 7.9 § | 1 |
aPTT (RI: 9.6–14.3 s) | 13.2 (12.6−16.1) | 42 | 22.2 (16.9−31.1) | 11 | 13 § | 1 |
F-gen (RI: 109–311 mg/dL) | 300 (182−447) | 41 | 226 (76−360) | 10 | 1264 § | 1 |
VCM | norm | n | hypo | n | hyper | n |
CT (RI: 194−492 s) | 427 (344−534) | 47 | 609 (479–849) | 12 | 368 * | 1 |
CFT (RI: 107−230 s) | 161 (136.3−198) | 46 | 716 (521–1332) | 12 | 91 * | 1 |
Alpha (RI: 49−69°) | 55 (48−61) | 46 | 27 (17–32) | 12 | 67.8 * | 1 |
MCF (RI: 26−46 vcm units) | 36 (33−41) | 46 | 18 (15–20) | 12 | 51.2 * | 1 |
A10 (RI: 18−32 vcm units) | 26 (23−28) | 46 | 9 (7–11) | 12 | 38.4 * | 1 |
A20 (RI: 23−40 vcm units) | 32 (30−35) | 46 | 14 (10–16) | 12 | 46.4 * | 1 |
HKT (RI: 0.28–0.47 L/L) | 0.45 (0.36−0.50) | 47 | 0.39 (0.37–0.42) | 12 | 0.35 * | 1 |
PLT (RI: 180–520 × 109/L) | 230 (148−314) | 47 | 62 (40-122) | 12 | 313 * | 1 |
PT (RI: 5.7–8.5 s) | 8.5 (8.0−9.3) | 47 | 12.4 (7.9–18) | 10 | 7.1 * | 1 |
aPTT (RI: 9.6–14.3 s) | 13.2 (12.6−15.9) | 43 | 22.3 (19.5–33.2) | 11 | 13.1 * | 1 |
F-gen (RI: 109–311 mg/dL) | 301 (188−456) | 43 | 162 (60–443) | 9 | 358 * | 1 |
Parameter | ||||
---|---|---|---|---|
ExTEM | norm | n | hypo | n |
CT (RI: 30−53 s) | 40 (36−50) | 39 | 144 (106−168) | 8 |
CFT (RI: 60−155 s) | 88 (67−111) | 38 | 615 (422−777) | 8 |
Alpha (RI: 63−80°) | 74 (69−78) | 38 | 40 (26−52) | 8 |
MCF (RI: 55−77 mm) | 68 (63−74) | 38 | 34 (32−36) | 8 |
A10 (RI: 41−68 mm) | 57 (50−65) | 37 | 21 (17−24) | 8 |
A20 (RI: 50−73 mm) | 64 (59−71) | 37 | 28 (5−31) | 8 |
HKT (RI: 0.28–0.47 L/L) | 0.46 (0.41−0.50) | 39 | 0.40 (0.36−0.43) | 8 |
PLT (RI: 180–520 × 109/L) | 252 (186−321) | 39 | 46 (27−108) | 8 |
PT (RI: 5.7–8.5 s) | 8.4 (8.0−8.9) | 37 | 12.4 (9.1−17.0) | 6 |
aPTT (RI: 9.6–14.3 s) | 13.2 (12.6−15.0) | 37 | 22.3 (21.1−41.6) | 7 |
F-gen (RI: 109–311 mg/dL) | 284 (182−434) | 37 | 91 (57−265) | 6 |
InTEM | norm | n | hypo | n |
CT (RI: 125−218 s) | 192 (167−291) | 39 | 406 (285−552) | 8 |
CFT (RI: 52−148 s) | 85 (68−107) | 37 | 535 (440−905) | 8 |
Alpha (RI: 65−81°) | 73 (70−77) | 37 | 35 (27−50) | 8 |
MCF (RI: 55−73 mm) | 66 (61−68) | 37 | 34 (30−36) | 8 |
A10 (RI: 40−62 mm) | 53 (48−59) | 37 | 21 (17−23) | 8 |
A20 (RI: 49−69 mm) | 61 (56−66) | 37 | 27 (23−30) | 8 |
HKT (RI: 0.28–0.47 L/L) | 0.46 (0.41–0.50) | 39 | 0.40 (0.36−0.43) | 8 |
PLT (RI: 180–520 × 109/L) | 252 (186−321) | 39 | 46 (27−108) | 8 |
PT (RI: 5.7–8.5 s) | 8.4 (8.0−8.9) | 37 | 12.4 (9.1−17.0) | 6 |
aPTT (RI: 9.6–14.3 s) | 13.2 (12.6−15.0) | 37 | 22.3 (21.1−41.6) | 7 |
F-gen (RI: 109–311 mg/dL) | 284 (182−434) | 37 | 91 (57−265) | 6 |
VCM | norm | n | hypo | n |
CT (RI: 194−492 s) | 403 (317−513) | 39 | 508 (452−740) | 8 |
CFT (RI: 107−230 s) | 151 (136−183) | 38 | 787 (592−1332) | 8 |
Alpha (RI: 49−69°) | 58 (50−62) | 38 | 25 (16−29) | 8 |
MCF (RI: 26−46 vcm units) | 36 (33−41) | 38 | 18 (15−19) | 8 |
A10 (RI: 18−32 vcm units) | 26 (23−28) | 38 | 9 (7−10) | 8 |
A20 (RI: 23−40 vcm units) | 32 (30−35) | 38 | 13 (10−14) | 8 |
HKT (RI: 0.28–0.47 L/L) | 0.46 (0.41–0.50) | 39 | 0.40 (0.36−0.43) | 8 |
PLT (RI: 180–520 × 109/L) | 252 (186−321) | 39 | 46 (27−108) | 8 |
PT (RI: 5.7–8.5 s) | 8.4 (8.0−8.9) | 37 | 12.4 (9.1−17.0) | 6 |
aPTT (RI: 9.6–14.3 s) | 13.2 (12.6−15.0) | 37 | 22.3 (21.1−41.6) | 7 |
F-gen (RI: 109–311 mg/dL) | 284 (182−434) | 37 | 91 (57−265) | 6 |
Appendix B
Disease |
---|
Vector-borne diseases Ehrlichiosis (n = 1); Leishmaniosis (n = 2) Gastrointestinal/hepatic/pancreatic disease AHDS (n = 1); pancreatitis (n = 1); liver failure (n = 2) Renal disease GN (n = 3); AKI (n = 3) Hemoabdomen trauma (n = 1); s pontaneous (n = 1) Respiratory disease pulmonary fibrosis (n = 2); aspiration pneumonia (n = 2); pneumonia (n = 2) Hematologic disease Evan’s syndrome (n = 1); primary IMHA (n = 1); ITP (n = 1); thromboembolic disease (n = 4) Endocrinologic disease hyperadrenocorticism (n = 1) Others snake envenomation (n = 1); sepsis (n = 8) |
References
- Benes, J.; Zatloukal, J.; Kletecka, J. Viscoelastic methods of blood clotting assessment - a multidisciplinary review. Front. Med. 2015, 2, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMichael, M.A.; Smith, S.A. Viscoelastic coagulation testing: Technology, applications, and limitations. Vet. Clin. Pathol. 2011, 40, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.; Dinardo, J.A. TEG and ROTEM: Technology and clinical applications. Am. J. Hematol. 2014, 89, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J.; Murphy, M.; Dias, J.D. Viscoelastic hemostatic assays: Moving from the laboratory to the site of care—A review of established and emerging technologies. Diagnostics 2020, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brearton, C.; Rushton, A.; Parker, J.M.H. Performance Evaluation of a New Point of Care Viscoelastic Coagulation Monitoring System in Major Abdominal, Orthopaedic and Vascular Surgery. Platelets 2020, 31, 1052–1059. [Google Scholar] [CrossRef]
- Rosati, T.; Jandrey, K.E.; Burges, J.W.; Kent, M.S. Establishment of a reference interval for a novel viscoelastic coagulometer and comparison with thromboelastography in healthy cats. Vet. Clin. Pathol. 2020, 49, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Buriko, Y.; Drobatz, K.; Silverstein, D.C. Establishment of normal reference intervals in dogs using a viscoelastic point-of-care coagulation monitor and its comparison with thromboelastography. Vet. Clin. Pathol. 2020, 49, 567–573. [Google Scholar] [CrossRef]
- Rigor, R.R.; Schutzman, L.M.; Galante, J.M.; Brown, I.E. Viscoelastic Coagulation Monitor (VCMVet) Reference Intervals and Sex Differences in Mature Adult Mice. Acta Haematol. 2021, 144, 633–640. [Google Scholar] [CrossRef]
- Wang, H.H.; Lynch, A.M.; Balko, J.A.; Duffy, D.J.; Robertson, J.B.; Posner, L.P. Point-of-care viscoelastic coagulation assessment in healthy dogs during the perianesthetic period. BMC Vet. Res. 2022, 18, 1–12. [Google Scholar] [CrossRef]
- Budd, J.R.; Durham, A.P.; Gwise, J.A.; Duffy, T.E.; Iriarte, B.; Kallner, A.; Linnet, K.; Magari, J.E.V. Measurement Procedure Comparison and Bias Estimation Using Patient Samples, 3rd ed.; Clinical and laboratory standards institute: Wayne, PA, USA, 2013; ISBN 1-56238-731-6. [Google Scholar]
- Bergh, M.S.; Budsberg, S.C. The coxib NSAIDs: Potential clinical and pharmacologic importance in veterinary medicine. J. Vet. Intern. Med. 2005, 19, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.J.; Dunn, M.E.; Allegret, V.; Bédard, C. Effect of prednisone administration on coagulation variables in healthy Beagle dogs. Vet. Clin. Pathol. 2011, 40, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Goggs, R.; Blais, M.C.; Brainard, B.M.; Chan, D.L.; de Laforcade, A.M.; Rozanski, E.; Sharp, C.R. American College of Veterinary Emergency and Critical Care (ACVECC) Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE) guidelines: Small animal. J. Vet. Emerg. Crit. Care 2019, 29, 12–36. [Google Scholar] [CrossRef]
- Goggs, R.; Brainard, B.; De Laforcade, A.M.; Flatland, B.; Hanel, R.; McMichael, M.; Wiinberg, B. Partnership on Rotational ViscoElastic Test Standardization (PROVETS): Evidence-based guidelines on rotational viscoelastic assays in veterinary medicine. J. Vet. Emerg. Crit. Care 2014, 24, 1–22. [Google Scholar] [CrossRef]
- Hanel, R.M.; Chan, D.L.; Conner, B.; Gauthier, V.; Holowaychuk, M.; Istvan, S.; Walker, J.M.; Wood, D.; Goggs, R.; Wiinberg, B. Systematic evaluation of evidence on veterinary viscoelastic testing Part 4: Definitions and data reporting. J. Vet. Emerg. Crit. Care 2014, 24, 47–56. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.r-project.org/ (accessed on 27 December 2022).
- Finnegan, D. Reference Intervals. Available online: https://cran.r-project.org/web/packages/referenceIntervals/referenceIntervals.pdf (accessed on 27 December 2022).
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, F.; Andersson, A.; Saarenpää, S.; Larsson, L.; Van Hul, N.; Kanatani, S.; Masek, J.; Ellis, E.; Barragan, A.; Mollbrink, A.; et al. Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the liver. bioRxiv 2021, arXiv:2021.01.11.426100. [Google Scholar] [CrossRef] [PubMed]
- Hittner, J.B.; May, K.; Silver, N.C. A Monte Carlo Evaluation of Tests for Comparing Dependent Correlations. J. Gen. Psychol. 2003, 130, 149–168. [Google Scholar] [CrossRef]
- MedCalc Software Ltd. Diagnostic test evaluation calculator, version 20.023. Available online: https://www.medcalc.org/calc/diagnostic_test.php (accessed on 29 December 2021).
- Lin, L.I.; McBride, G.; Bland, J.M.; Altman, D.G. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Rep. 2005, 45, 307–310. [Google Scholar]
- Mcmichael, M.; Goggs, R.; Smith, S.; Wagg, C.; Warman, S.; Wiinberg, B. Systematic evaluation of evidence on veterinary viscoelastic testing Part 1: System comparability. J. Vet. Emerg. Crit. Care 2014, 24, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Herrero, Y.; Schefer, R.J.; Muri, B.M.; Sigrist, N.E. Serial Evaluation of Haemostasis following Acute Trauma Using Rotational Thromboelastometry in Dogs. Vet. Comp. Orthop. Traumatol. 2021, 34, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Iannucci, C.; Dirkmann, D.; Howard, J.; Adamik, K.N. A prospective randomized open-label trial on the comparative effects of 6% hydroxyethyl starch 130/0.4 versus polyionic isotonic crystalloids on coagulation parameters in dogs with spontaneous hemoperitoneum. J. Vet. Emerg. Crit. Care 2021, 31, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Vilar, P.; Couto, C.G.; Westendorf, N.; Iazbik, C.; Charske, J. Thromboelastographic Tracings in Retired Racing Greyhounds and in Non-Greyhound Dogs. J. Vet. Int. Med. 2008, 374–379. [Google Scholar] [CrossRef]
- Silverberg, E.; Tornqvist, F.; Kander, T.; Bengzon, J.; Solomon, C.; Bonnevier, J.; Schött, U. Comparison of citrated and fresh whole blood for viscoelastic coagulation testing during elective neurosurgery. Thromb. Res. 2017, 156, 73–79. [Google Scholar] [CrossRef]
- Wasowicz, M.; Srinivas, C.; Meineri, M.; Banks, B.; McCluskey, S.A.; Karkouti, K. Technical report: Analysis of citrated blood with thromboelastography: Comparison with fresh blood samples. Can. J. Anesth. 2008, 55, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Rajwal, S.; Richards, M.; O’Meara, M. The use of recalcified citrated whole blood - A pragmatic approach for thromboelastography in children. Paediatr. Anaesth. 2004, 14, 656–660. [Google Scholar] [CrossRef]
- Durila, M. Nonactivated thromboelastometry able to detect fibrinolysis in contrast to activated methods (EXTEM, INTEM) in a bleeding patient. Blood Coagul. Fibrinolysis 2016, 27, 828–830. [Google Scholar] [CrossRef]
- York, W.; Smith, M.R.; Liu, C.C. Use of Citrated Whole Blood for Point-of-Care Viscoelastic Coagulation Testing in Dogs. Front. Vet. Sci. 2022, 9, 1–6. [Google Scholar] [CrossRef]
Diseased (n = 40) | Healthy (n = 20) | |
---|---|---|
Breed Group (n) | ||
Herding dogs and cattle dogs | 3 | 6 |
Pinscher and Schnauzer—Molossoid and Swiss Mountain and Cattledogs | 9 | 2 |
Terrier | 3 | 3 |
Spitz and primitive types | 1 | 0 |
Scent hounds and related breeds | 2 | 0 |
Pointing Dogs | 5 | 1 |
Retrievers—Flushing Dogs—Water Dogs | 5 | 3 |
Companion and Toy Dogs | 5 | 0 |
Crossbreeds | 7 | 5 |
Sex | ||
Female castrated [n (%*)] | 10 (16.7) | 7 (11.7) |
Female intact [n (%*)] | 8 (13.3) | 5 (8.3) |
Male castrated [n (%*)] | 12 (20.0) | 5 (8.3) |
Male intact [n (%*)] | 10 (16.7) | 3 (5.0) |
Age [median (range)] years | 7.6 (0.6 to 14.1) | 6.3 (1.0 to 10.8) |
Device | ||||||
---|---|---|---|---|---|---|
ROTEM | CT (s) | CFT (s) | Alpha (°) | MCF (mm) | A10 (mm) | A20 (mm) |
ExTEM | 30−53 | 60−155 | 63−80 | 55−77 | 41−68 | 50−73 |
InTEM | 125−218 | 52−148 | 65−81 | 55−73 | 40−62 | 49−69 |
VCM | CT (s) | CFT (s) | Alpha (°) | MCF (vcm units) | A10 (vcm units) | A20 (vcm units) |
194−492 | 107−230 | 49−69 | 26−46 | 18−32 | 23−40 |
VCM | ROTEM InTEM | ROTEM ExTEM | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Lin’s CCC | Lower CI | Upper CI | Lin’s CCC | Lower CI | Upper CI | Lin’s CCC | Lower CI | Upper CI |
CT | 0.91 | 0.85 | 0.94 | 0.86 | 0.77 | 0.91 | 0.97 | 0.95 | 0.98 |
CFT | 0.80 | 0.70 | 0.86 | 0.97 | 0.95 | 0.98 | 0.99 | 0.99 | 1.00 |
𝛂-angle | 0.93 | 0.89 | 0.96 | 0.95 | 0.91 | 0.97 | 0.98 | 0.96 | 0.99 |
MCF | 0.91 | 0.85 | 0.95 | 0.97 | 0.95 | 0.98 | 0.90 | 0.83 | 0.94 |
A10 | 0.93 | 0.89 | 0.96 | 0.97 | 0.96 | 0.99 | 0.99 | 0.98 | 0.99 |
A20 | 0.93 | 0.88 | 0.96 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 |
LI30 | 0.19 | −0.07 | 0.42 | 0.88 | 0.87 | 0.89 | NA | NA | NA |
LI45 | 0.36 | 0.11 | 0.56 | 0.60 | 0.49 | 0.69 | 0.16 | −0.01 | 0.33 |
VCM | ROTEM | Spearman | p-Value |
---|---|---|---|
CT | InTEM-CT | 0.71 | <0.0001 |
ExTEM-CT | 0.11 | 0.419 | |
CFT | InTEM-CFT | 0.61 | <0.0001 |
ExTEM CFT | 0.57 | <0.0001 | |
𝛼-angle | InTEM-𝛼-angle | 0.52 | <0.0001 |
ExTEM-𝛼-angle | 0.28 | 0.032 | |
MCF | InTEM-MCF | 0.79 | <0.0001 |
ExTEM-MCF | 0.80 | <0.0001 | |
A10 | InTEM-A10 | 0.79 | <0.0001 |
ExTEM-A10 | 0.83 | <0.0001 | |
A20 | InTEM-A20 | 0.82 | <0.0001 |
ExTEM-A20 | 0.85 | <0.0001 | |
LI30 | InTEM-LY30 | −0.13 | 0.321 |
ExTEM-LY30 | 0.05 | 0.716 | |
LI45 | InTEM-LY45 | 0.03 | 0.844 |
ExTEM-LY45 | 0.18 | 0.185 |
VCM Norm | VCM Hypo | VCM Hyper | |
---|---|---|---|
ExTEM norm (n = 47) | n = 44 | n = 2 | n = 1 |
ExTEM hypo (n = 10) | n = 1 | n = 9 | n = 0 |
ExTEM hyper (n = 3) | n = 2 | n = 1 | n = 0 |
Sensitivity | 93.6% | 90.0% | n/a |
Specificity | 76.9% | 94.0% | n/a |
InTEM norm (n = 44) | n = 40 | n = 3 | n = 1 |
InTEM hypo (n = 12) | n = 4 | n = 8 | n = 0 |
InTEM hyper (n = 3) | n = 3 | n = 0 | n = 0 |
Sensitivity | 90.9% | 66.7% | n/a |
Specificity | 56.3% | 91.7% | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennink, I.; Peters, L.; van Geest, G.; Adamik, K.-N. Evaluation of a Viscoelastic Coagulation Monitoring System (VCM Vet®) and Its Correlation with Thromboelastometry (ROTEM®) in Diseased and Healthy Dogs. Animals 2023, 13, 405. https://doi.org/10.3390/ani13030405
Hennink I, Peters L, van Geest G, Adamik K-N. Evaluation of a Viscoelastic Coagulation Monitoring System (VCM Vet®) and Its Correlation with Thromboelastometry (ROTEM®) in Diseased and Healthy Dogs. Animals. 2023; 13(3):405. https://doi.org/10.3390/ani13030405
Chicago/Turabian StyleHennink, Imke, Laureen Peters, Geert van Geest, and Katja-Nicole Adamik. 2023. "Evaluation of a Viscoelastic Coagulation Monitoring System (VCM Vet®) and Its Correlation with Thromboelastometry (ROTEM®) in Diseased and Healthy Dogs" Animals 13, no. 3: 405. https://doi.org/10.3390/ani13030405
APA StyleHennink, I., Peters, L., van Geest, G., & Adamik, K. -N. (2023). Evaluation of a Viscoelastic Coagulation Monitoring System (VCM Vet®) and Its Correlation with Thromboelastometry (ROTEM®) in Diseased and Healthy Dogs. Animals, 13(3), 405. https://doi.org/10.3390/ani13030405