Exploring the Relationship between Spontaneous Sister Chromatid Exchange and Genome Instability in Two Cryptic Species of Non-Human Primates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Experimental Development
2.2.1. Characterization of the Cell Proliferation
2.2.2. Sequential G-Banding and Fluorescence plus Giemsa (G-FPG) Technique to Detect G-SCEs
2.2.3. Chromosome Orientation-Fluorescence in Situ Hybridization (CO-FISH)
2.3. Image Acquisition, Processing, and Frequency Analysis
3. Results
3.1. Characterization of the Cell Proliferation
3.2. Analysis of the Genomic Sister Chromatid Exchange (G-SCE)
3.3. Analysis of the Telomeric Sister Chromatid Exchange (T-SCE)
4. Discussion
4.1. G-SCE as a Genomic Instability Biomarker in Non-Human Primates
4.2. T-SCE as a Telomere Instability Biomarker in Non-Human Primates
4.3. Perspectives: The Tale of Two Biomarkers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farré, M.; Robinson, T.J.; Ruiz-Herrera, A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays 2015, 37, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Azzalin, C.M.; Nergadze, S.G.; Giulotto, E. Human intrachromosomal telomeric-like repeats: Sequence organization and mechanisms of origin. Chromosoma 2001, 110, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Herrera, A.; Ponsà, M.; García, F.; Egózcue, J.; Garcia, M. Fragile sites in human and Macaca fascicularis chromosomes are breakpoints in chromosome evolution. Chromosom. Res. 2002, 10, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Herrera, A.; Garcia, F.; Azzalin, C.; Giulotto, E.; Egózcue, J.; Ponsá, M.; García, M. Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution. Hum. Genet. 2002, 110, 578–586. [Google Scholar] [CrossRef]
- Wienberg, J.; Jauch, A.; Stanyon, R.; Cremer, T. Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. Genomics 1990, 8, 347–350. [Google Scholar] [CrossRef]
- Richard, F.; Lombard, M.; Dutrillaux, B. Zoo-FISH suggests a complete homology between human and capuchin monkey (Platyrrhini) euchromatin. Genomics 1996, 36, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Stanyon, R.; O’brien, P.C.M.; Ferguson-Smith, M.A.; Plesker, R.; Wienberg, J. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 1999, 108, 393–400. [Google Scholar] [CrossRef]
- Neusser, M.; Stanyon, R.; Bigoni, F.; Wienberg, J.; Müller, S. Molecular cytotaxonomy of New World monkeys (Platyrrhini)–comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet. Genome Res. 2001, 94, 206–215. [Google Scholar] [CrossRef]
- Barros, R.M.S.; Nagamachi, C.Y.; Pieczarka, J.C.; Rodrigues, L.R.R.; Neusser, M.; De Oliveira, E.; Wienberg, J.; Muniz, J.A.P.C.; Rissino, J.D.; Müller, S. Chromosomal studies in Callicebus donacophilus pallescens, with classic and molecular cytogenetic approaches: Multicolour FISH using human and Saguinus oedipus painting probes. Chromosom. Res. 2003, 11, 327–334. [Google Scholar] [CrossRef]
- Amaral, P.J.S.; Finotelo, L.F.M.; De Oliveira, E.H.C.; Pissinatti, A.; Nagamachi, C.Y.; Pieczarka, J.C. Phylogenetic studies of the genus Cebus (Cebidae-Primates) using chromosome painting and G-banding. BMC Evol. Biol. 2008, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.; Perry, P. Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 1974, 48, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, E.; Meyne, J. Strand-specific FISH reveals orientation of chromosome 18 alphoid DNA. Cytogenet. Genome Res. 1993, 63, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.M.; Goodwin, E.H.; Cornforth, M.N. Strand-specific fluorescence in situ hybridization: The CO-FISH family. Cytogenet. Genome Res. 2004, 107, 14–17, PMID: 15305050. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.H.C.; Neusser, M.; Figueiredo, W.B.; Nagamachi, C.; Pieczarka, J.C.; Sbalqueiro, I.J.; Wienberg, J.; Müller, S. The phylogeny of howler monkeys (Alouatta, Platyrrhini): Reconstruction by multicolor cross-species chromosome painting. Chromosom. Res. 2002, 10, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Seuánez, H.N.; Bonvicino, C.R.; Moreira, M.A.M. The primates of the Neotropics: Genomes and chromosomes. Cytogenet. Genome Res. 2005, 108, 38–46. [Google Scholar] [CrossRef]
- Nieves, M.; De Oliveira, E.H.C.; Amaral, P.J.S.; Nagamachi, C.Y.; Pieczarka, J.C.; Mühlmann, M.C.; Mudry, M.D. Analysis of the heterochromatin of Cebus (Primates, Platyrrhini) by micro-FISH and banding pattern comparisons. J. Genet. 2011, 90, 111–117. [Google Scholar] [CrossRef]
- Dumas, F.; Mazzoleni, S. Neotropical primate evolution and phylogenetic reconstruction using chromosomal data. Eur. Zool. J. 2017, 84, 1–18. [Google Scholar] [CrossRef]
- Fundia, A.; Mudry de Pargament, M.D. Sitions frágiles y neoplasias humanas. Acta Bioquím. Clín. Lat. 1987, 21, 461–466. [Google Scholar]
- Fundia, A.F.; Gorostiaga, M.A.; Delprat, A.; Mudry, M.D. Fragile sites analysis and definition of chromosome landmarks, bands and regions in Alouatta caraya (ACA). In Primatology Today; Ehara, A., Kimura, T., Takenaka, O., Iwamoto, M., Eds.; Elsevier Science Publishers B.V. (Biomedical Division): New York, NY, USA, 1991; pp. 617–618. [Google Scholar]
- Fundia, A.; Gorostiaga, M.; Mudry, M.D. Expression of common fragile sites in two Ceboidea species: Saimiri boliviensis and Alouatta caraya (Primates: Platyrrhini). Genet. Sel. Evol. 2000, 32, 87–97. [Google Scholar] [CrossRef]
- Mudry, M.D.; Martinez, R.A.; Nieves, M.; Carballo, M.A. Biomarkers of genotoxicity and genomic instability in a non-human primate, Cebus libidinosus (Cebidae, Platyrrhini), exposed to nitroimidazole derivatives. Mut. Res. Genet. Toxicol. Environ. Mut. 2011, 721, 108–113. [Google Scholar] [CrossRef]
- Puntieri, F.; Andrioli, N.B.; Nieves, M. Association between genomic instability and evolutionary chromosomal rearrangements in Neotropical Primates. Genome Biol. Evol. 2018, 10, 1647–1656. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Barros, R.M.S.; Pieczarka, J.C.; Nagamachi, C.Y.; Ponsa, M.; Garcia, M.; Garcia, F.; Egozcue, J. Radiation and speciation of spider monkeys, genus Ateles, from the cytogenetic viewpoint. Am. J. Primat. 1997, 42, 167–178. [Google Scholar] [CrossRef]
- Garcia, F.; Ruiz-Herrera, A.; Egózcue, J.; Ponsà, M.; Garcia, M. Chromosomal homologies between Cebus and Ateles (Primates) based on ZOO-FISH and G-banding comparisons. Am. J. Primat. 2002, 57, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Nieves, M.; Ascunce, M.S.; Rahn, M.I.; Mudry, M.D. Phylogenetic relationships among some Ateles species: The use of chromosomic and molecular characters. Primates 2005, 46, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Fantini, L.; Jeffery, N.W.; Pierossi, P.; Gregory, T.R.; Nieves, M. Qualitative and quantitative analysis of the genomes and chromosomes of spider monkeys (Primates: Atelidae). Biol. J. Linn. Soc. 2016, 118, 752–762. [Google Scholar] [CrossRef]
- Steinberg, E.R.; Nieves, M.; Fantini, L.; Mudry, M.D. Primates karyological diagnosis and management programs applications. J. Med. Primatol. 2014, 43, 455–467. [Google Scholar] [CrossRef]
- Lazutka, J.R.; Margolin, B.H. Replication index in cultured human lymphocytes: Methods for statistical analysis and possible role in genetic toxicology. Environ. Mol. Mut. 1991, 17, 188–195. [Google Scholar] [CrossRef]
- Ruiz-Herrera, A.; Garcia, F.; Giulotto, E.; Attolini, C.; Egozcue, J.; Ponsa, M.; Garcia, M. Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet. Genome Res. 2005, 108, 234–247. [Google Scholar] [CrossRef]
- O’sullivan, R.J.; Karlseder, J. Telomeres: Protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 2010, 11, 171–181. [Google Scholar] [CrossRef]
- Wood, A.M.; Laster, K.; Rice, E.L.; Kosak, S.T. A beginning of the end: New insights into the functional organization of telomeres. Nucleus 2015, 6, 172–178. [Google Scholar] [CrossRef]
- Cornforth, M.N.; Eberle, R.L. Termini of human chromosomes display elevated rates of mitotic recombination. Mutagenesis 2001, 16, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Linardopoulou, E.V.; Williams, E.M.; Fan, Y.; Friedman, C.; Young, J.M.; Trask, B.J. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 2005, 437, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Baird, D.M. Telomeres and genomic evolution. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160437. [Google Scholar] [CrossRef] [PubMed]
- Hagelstrom, R.T.; Blagoev, K.B.; Niedernhofer, L.J.; Goodwin, E.H.; Bailey, S.M. Hyper telomere recombination accelerates replicative senescence and may promote premature aging. Proc. Natl. Acad. Sci. USA 2010, 107, 15768–15773. [Google Scholar] [CrossRef] [PubMed]
- Lahn, B.T.; Page, D.C. Four evolutionary strata on the human X chromosome. Science 1999, 286, 964–967, Erratum in Science 1999, 286, 2273. PMID: 10542153. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, E.R.; Bressa, M.J.; Mudry, M.D. Sex chromosome systems in Neotropical Primates: What have we learnt so far from cytogenetics and genomics? J. Evol. Biol. 2022, 35, 1589–1600. [Google Scholar] [CrossRef]
- Wilson, D.M.; Thompson, L.H. Molecular mechanisms of sister-chromatid exchange. Mutat. Res. 2007, 616, 11–23. [Google Scholar] [CrossRef]
- Bailey, S.M.; Brenneman, M.A.; Goodwin, E.H. Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res. 2004, 32, 3743–3751. [Google Scholar] [CrossRef]
- Rudd, M.K.; Friedman, C.; Parghi, S.S.; Linardopoulou, E.V.; Hsu, L.; Trask, B.J. Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet. 2007, 3, e32. [Google Scholar] [CrossRef]
- Blagoev, K.B.; Goodwin, E.H.; Bailey, S.M. Telomere sister chromatid exchange and the process of aging. Aging 2010, 2, 727. [Google Scholar] [CrossRef]
- Herbig, U.; Ferreira, M.; Condel, L.; Carey, D.; Sedivy, J.M. Cellular senescence in aging primates. Science 2006, 311, 1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | G-SCE/Cell | G-SCEr |
---|---|---|
Ateles chamek | 6.91 | 0.203 |
Ateles paniscus | 4.78 | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieves, M.; Puntieri, F.; Bailey, S.M.; Mudry, M.D.; Maranon, D.G. Exploring the Relationship between Spontaneous Sister Chromatid Exchange and Genome Instability in Two Cryptic Species of Non-Human Primates. Animals 2023, 13, 510. https://doi.org/10.3390/ani13030510
Nieves M, Puntieri F, Bailey SM, Mudry MD, Maranon DG. Exploring the Relationship between Spontaneous Sister Chromatid Exchange and Genome Instability in Two Cryptic Species of Non-Human Primates. Animals. 2023; 13(3):510. https://doi.org/10.3390/ani13030510
Chicago/Turabian StyleNieves, Mariela, Fiona Puntieri, Susan M. Bailey, Marta D. Mudry, and David G. Maranon. 2023. "Exploring the Relationship between Spontaneous Sister Chromatid Exchange and Genome Instability in Two Cryptic Species of Non-Human Primates" Animals 13, no. 3: 510. https://doi.org/10.3390/ani13030510
APA StyleNieves, M., Puntieri, F., Bailey, S. M., Mudry, M. D., & Maranon, D. G. (2023). Exploring the Relationship between Spontaneous Sister Chromatid Exchange and Genome Instability in Two Cryptic Species of Non-Human Primates. Animals, 13(3), 510. https://doi.org/10.3390/ani13030510