Factors Influencing the Potential Distribution of Globally Endangered Egyptian Vulture Nesting Habitat in Nepal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species
2.3. Data Collection and Management
2.4. Spatial Modeling
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BirdLife International. Neophron percnopterus. The IUCN Red List of Threatened Species; Birdlife Internatiuonal: Cambridge, UK, 2022; e.T22695180A154895845; Available online: https://www.iucnredlist.org/species/22695180/205187871 (accessed on 7 August 2022).
- Inskipp, C.; Baral, H.S.; Phuyal, S.; Bhatt, T.R.; Khatiwada, M.; Inskipp, T.; Khatiwada, A.; Gurung, S.; Singh, P.B.; Murray, L.; et al. The Status of Nepal’s Birds: The National Red List Series; Zoological Society of London: London, UK, 2016. [Google Scholar]
- Velevski, M.; Nikolov, S.C.; Hallmann, B.; Dobrev, V.; Sidiropoulos, L.; Saravia, V.; Tsiakiris, R.; Arkumarev, V.; Galanaki, A.; Kominos, T.; et al. Population decline and range contraction of the Egyptian Vulture Neophron percnopterus in the Balkan Peninsula. Bird Conserv. Int. 2015, 25, 440–450. [Google Scholar] [CrossRef]
- Bounas, A.; Ganoti, M.; Giannakaki, E.; Akrivos, A.; Vavylis, D.; Zorrilla, I.; Saravia, V. First confirmed case of lead poisoning in the endangered Egyptian Vulture (Neophron percnopterus) in the Balkans. Vulture News 2016, 70, 22–29. [Google Scholar] [CrossRef]
- Donázar, J.A.; Cortés-Avizanda, A.; Fargallo, J.A.; Margalida, A.; Moleón, M.; Morales-Reyes, Z.; Moreno-Opo, R.; Pérez-García, J.M.; Sánchez-Zapata, J.A.; Zuberogoitia, I.; et al. Roles of raptors in a changing world: From flagships to providers of key ecosystem services. Ardeola 2016, 63, 181–234. [Google Scholar] [CrossRef]
- Dhakal, H.; Bhusal, P.K.; Ghimire, S.M. Vultures of Nepal (Nepali Version); Pokhara Bird Society: Pokhara, Nepal, 2019. [Google Scholar]
- Ogada, D.L.; Keesing, F.; Virani, M.Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. N. Y. Acad. Sci. USA 2012, 1249, 57–71. [Google Scholar] [CrossRef]
- DNPWC. Vulture Conservation Action Plan for Nepal (2015—2019); Department of National Parks and Wildlife Conservation, Ministry of Forests and Soil Conservation, Government of Nepal: Kathmandu, Nepal, 2015; p. 40.
- Gurung, S.; Subedi, T.R.; Baral, R.; Pérez-García, J.M.; Ghimire, M.; Baral, H.S.; Virani, M.; Buij, R. Breeding Habitat and Factors Affecting the Cliff Selection by Egyptian Vultures in Central-West Nepal. J. Rapt. Res. 2022, 57, 1–11. [Google Scholar] [CrossRef]
- Thuiller, W.; Münkemüller, T.; Lavergne, S.; Mouillot, D.; Mouquet, N.; Schiffers, K.; Gravel, D. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 2013, 16, 94–105. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Modell. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Dinerstein, E.; Price, L. Demography and Habitat Use by Greater One-Horned Rhinoceros in Nepal. J. Wildl. Manag. 1991, 55, 401–411. [Google Scholar] [CrossRef]
- Thapa, K.; Williams, A.C.; Khaling, S.; Bajimaya, S. Observations on habitat preference of translocated rhinos in Bardia National Park and Suklaphanta Wildlife Reserve, Nepal. Pachyderm 2008, 45, 108–114. [Google Scholar]
- López-López, P.; García-Ripollés, C.; Soutullo, Á.; Cadahía, L.; Urios, V. Identifying potentially suitable nesting habitat for golden eagles applied to “important bird areas” design. Anim. Conserv. 2007, 10, 208–218. [Google Scholar] [CrossRef]
- Kandel, K.; Huettmann, F.; Suwal, M.K.; Ram Regmi, G.; Nijman, V.; Nekaris, K.A.I.; Lama, S.T.; Thapa, A.; Sharma, H.P.; Subedi, T.R. Rapid multi-nation distribution assessment of a charismatic conservation species using open access ensemble model GIS predictions: Red panda (Ailurus fulgens) in the Hindu-Kush Himalaya region. Biol. Conserv. 2015, 181, 150–161. [Google Scholar] [CrossRef]
- Adhikari, S.; Sharma, H.P.; Rimal, B.; Belant, J.L.; Katuwal, H.B. Road as a major driver for the potential distribution of the invasive giant African land snail in Nepal. Trop. Ecol. 2020, 61, 583–588. [Google Scholar] [CrossRef]
- Sharma, H.P.; Rimal, B.; Zhang, M.; Sharma, S.; Poudyal, L.P.; Maharjan, S.; Kunwar, R.; Kaspal, P.; Bhandari, N.; Baral, L.; et al. Potential distribution of the critically endangered Chinese pangolin (Manis pentadactyla) in different land covers of Nepal: Implications for conservation. Sustainibility 2020, 12, 1282. [Google Scholar] [CrossRef]
- Hong, S.H.; Lee, Y.H.; Lee, G.; Lee, D.-H.; Adhikari, P. Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea. Plants 2021, 10, 1604. [Google Scholar] [CrossRef] [PubMed]
- Baral, K.; Adhikari, B.; Bhandari, S.; Kunwar, R.M.; Sharma, H.P.; Aryal, A.; Ji, W. 2023. Impact of climate change on distribution of common leopard (Panthera pardus) and its implication on conservation and conflict in Nepal. Heliyon 2023, 9, e12807. [Google Scholar] [CrossRef] [PubMed]
- LRMP. Land Utilization Report; Land Resource Mapping Project, Kenting Earth Science Canada and Department of Topography, Government of Nepal: Kathmandu, Nepal, 1986; p. 112.
- GoN. Nepal’s Sixth National Report to the Convention on Biological Diversity; Ministry of Forests and Environment: Kathmandu, Nepal, 2018.
- Jnawali, S.R.; Baral, H.; Lee, S.; Acharya, K.; Upadhyay, G.; Pandey, M.; Griffiths, J. The Status of Nepal Mammals: The National Red List Series; Department of National Parks and Wildlife Conservation Kathmandu: Kathmandu, Nepal, 2011.
- Sharma, H.P.; Adhikari, B.; Bhandari, S.; Baral, K.; Kunwar, R.M. Crab-Eating Mongoose Herpestes urva: Occurrence and its Activity in Mid-Hills of Nepal. J. Inst. Sci. Technol. 2022, 26, 53–60. [Google Scholar] [CrossRef]
- CBS. National Population and Housing Census 2011 (National Report); Government of Nepal, National Planning Commission Secretariat Central Bureau of Statistics: Kathmandu, Nepal, 2012.
- Ferguson-Lees, J.; Christie, D.A. Egyptian Vulure. Raptors of the World; Christopher Helm A and C Black Publications Ltd.: London, UK, 2001; pp. 417–424. [Google Scholar]
- Donázar, J.A.; Palacios, C.J.; Gangoso, L.; Ceballos, O.; González, M.J.; Hiraldo, F. Conservation status and limiting factors in the endangered population of Egyptian vulture (Neophron percnopterus) in the Canary Islands. Biol. Conserv. 2002, 107, 89–97. [Google Scholar] [CrossRef]
- Margalida, A.; Benitez, J.R.; Sanchez-Zapata, J.A.; Ávila, E.; Arenas, R.; Donázar, J.A. Long-term relationship between diet breadth and breeding success in a declining population of Egyptian Vultures Neophron percnopterus. Ibis 2012, 154, 184–188. [Google Scholar] [CrossRef]
- Sarà, M.; Di Vittorio, M. Factors influencing the distribution, abundance and nest-site selection of an endangered Egyptian Vulture (Neophron percnopterus) population in Sicily. Anim. Conserv. 2003, 6, 317–328. [Google Scholar] [CrossRef]
- Naoroji, R. Birds of Prey of the Indian Subcontinent; Christopher Helm: London, UK, 2006. [Google Scholar]
- Dhakal, H.; Sharma, H.P.; McClure, C.J.; Virani, M.; Rolek, B.W.; Pradhan, N.M.; Bhusal, K.P. Vulture distribution and people perception of vultures in Pokhara Valley, Nepal. Ecol. Evol. 2022, 12, e8528. [Google Scholar] [CrossRef]
- Gautam, R.; Baral, N.; Sharma, H.P. Are white-rumped vultures (Gyps bengalensis) scavengers or predators at a vulture safe feeding site of Nepal? Biodiv. J. Biol. Diver. 2022, 23, d230757. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 83. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Duan, R.Y.; Kong, X.Q.; Huang, M.Y.; Fan, W.Y.; Wang, Z.G. The predictive performance and stability of six species distribution models. PLoS ONE 2014, 9, e112764. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Peterson, A.T. Ecological niche conservatism: A time-structured review of evidence. J. Biogeogr. 2011, 38, 817–827. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Lobo, J.M.; Jiménez-valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeog. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef]
- Anderson, D.R.; Burnham, K.P. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 2002, 66, 912–918. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 7 August 2022).
- Selva, N.; Jedrzejewska, B.; Jedrzejewski, W.; Wajrak, A. Scavenging on European bison carcasses in Bialowieza primeval forest (eastern Poland). Ecoscience 2003, 10, 303–311. [Google Scholar] [CrossRef]
- Ghimire, P.; Dhakal, H.; Sharma, B.; Ghimire, M.; Baral, M.; Bhusal, K.P. Status of Egyptian Vulture Neophron percnopterus in Pokhara Valley, Nepal. Vulture Bull. 2020, 9, 1–4. [Google Scholar]
- Bhusal, K.P.; Pandey, M.; Magar, T.G. Diversity and Status of Birds in Argha Important Bird and Biodiversity Area, Western Midhill of Nepal. Danphe 2020, 29, 1–11. [Google Scholar]
- KC, K.B.; Koju, N.P.; Bhusal, K.P.; Low, M.; Ghimire, S.K.; Ranabhat, R.; Panthi, S. Factors influencing the presence of the endangered Egyptian Vulture Neophron percnopterus in Rukum, Nepal. Glob. Ecol. Conserv. 2019, 20, e00727. [Google Scholar] [CrossRef]
- Kansakar, S.R.; Hannah, D.M.; Gerrard, J.; Rees, G. Spatial pattern in the precipitation regime of Nepal. Int. J. Climatol. J. Royal Meteorol. Soc. 2004, 24, 1645–1659. [Google Scholar] [CrossRef]
- Sen, B.; Tavares, J.P.; BİLGİN, C.C. Nest site selection patterns of a local Egyptian Vulture Neophron percnopterus population in Turkey. Bird Conserv. Int. 2017, 27, 568–581. [Google Scholar] [CrossRef]
- Sen, B. Breeding Ecology of the Egyptian Vulture (Neophron percnopterus) Population Beypazarı. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2012. [Google Scholar]
- Ceballos, O.L.; Donázar, J.A. Roost-tree characteristics, food habits and seasonal abundance of roosting Egyptian Vultures in northern Spain. J. Rapt. Res. 1990, 24, 19–25. [Google Scholar]
- Ceballos, O.; Donázar, J.A. Factors influencing the breeding density and nest-site selection of the Egyptian Vulture (Neophron percnopterus). J. Ornithol. 1989, 130, 353–359. [Google Scholar] [CrossRef]
- Subedi, T.R.; DeCandido, R. Population and breeding success of Red-headed Vulture Sarcogyps calvus and Egyptian Vulture Neophron percnopterus in central west Nepal. Vulture News 2014, 67, 21–32. [Google Scholar] [CrossRef]
- Milchev, B.; Spassov, N.; Popov, V. Diet of the Egyptian Vulture (Neophron percnopterus) after livestock reduction in eastern Bulgaria. North-West. J. Zool. 2012, 8, 315–323. [Google Scholar]
- Kanaujia, A.; Kushwaha, S. Vulnerable Vultures of India: Population, Ecology and Conservation; Rare Animals of India, Bentham Science Publishers: Sharjah, UAE, 2013; pp. 113–144. [Google Scholar]
- Buechley, E.R.; Sekercioglu, C.H. Vultures. Cur. Biol. 2016, 26, R560–R561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margalida, A.; García, D.; Cortés-Avizanda, A. Factors influencing the breeding density of Bearded vultures, Egyptian Vultures and Eurasian griffon vultures in Catalonia (NE Spain): Management implications. Anim. Biodiv. Conserv. 2007, 30, 189–200. [Google Scholar]
- Bhusal, K.P. Vulture Safe Zone: A landscape level approach to save the threatened vultures in Nepal. Himal. Nat. 2018, 1, 25–26. [Google Scholar]
Parameters | K | logLik | AICc | ∆AICc | wi |
---|---|---|---|---|---|
Distance to forest + Distance to water | 3 | −37.08 | 80.20 | 0.00 | 0.12 |
Distance to forest + Distance to water + Distance to settlement | 4 | −36.26 | 80.50 | 0.36 | 0.10 |
Distance to forest + Distance to water + Distance to settlement + Elevation | 5 | −35.32 | 80.60 | 0.46 | 0.09 |
Distance to forest + Distance to water + Elevation | 4 | −36.52 | 81.00 | 0.87 | 0.08 |
Distance to agricultural land + Distance to forest + Distance to water + Distance to settlement | 5 | −35.97 | 81.90 | 1.76 | 0.05 |
Distance to forest + Elevation | 3 | −37.98 | 82.00 | 1.79 | 0.05 |
Distance to water | 2 | −39.03 | 82.00 | 1.86 | 0.05 |
Distance to agricultural land + Distance to forest + Distance to water | 4 | −37.07 | 82.10 | 1.97 | 0.04 |
Distance to forest + Distance to settlement + Elevation | 4 | −37.17 | 82.30 | 2.18 | 0.04 |
Distance to agricultural land + Distance to forest + Distance to water + Distance to settlement + Elevation | 6 | −35.26 | 82.50 | 2.36 | 0.04 |
Distance to water + Elevation | 3 | −38.34 | 82.70 | 2.51 | 0.03 |
Distance to agricultural land + Distance to forest + Distance to water + Elevation | 5 | −36.36 | 82.70 | 2.54 | 0.03 |
Distance to water + Distance to settlement + Elevation | 4 | −37.48 | 83.00 | 2.78 | 0.03 |
Distance to water + Distance to settlement | 3 | −38.51 | 83.00 | 2.85 | 0.03 |
Distance to forest | 2 | −39.67 | 83.30 | 3.16 | 0.02 |
Distance to agricultural land + Distance to forest + Elevation | 4 | −37.73 | 83.50 | 3.29 | 0.02 |
Elevation | 2 | −39.78 | 83.60 | 3.39 | 0.02 |
Distance to agricultural land + Distance to water | 3 | −39.01 | 84.00 | 3.84 | 0.02 |
Distance to agricultural land + Distance to water + Distance to settlement | 4 | −38.03 | 84.10 | 3.89 | 0.02 |
Variables | Estimate | SE | Lower CL | Upper CL | z | p |
---|---|---|---|---|---|---|
(Intercept) | 1.367 | 0.794 | −0.190 | 2.10086 | 1.721 | 0.085 |
Distance to forest | −0.005 | 0.002 | −0.009 | 0.00004 | 1.976 | 0.048 |
Distance to water | 0.004 | 0.003 | −0.001 | 0.0101 | 1.533 | 0.125 |
Distance to settlement | −0.002 | 0.002 | −0.005 | 0.0010 | 1.295 | 0.195 |
Elevation | 0.001 | 0.001 | −0.001 | 0.0029 | 1.344 | 0.179 |
Distance to agricultural land | 0.0003 | 0.002 | −0.004 | 0.0049 | 0.118 | 0.906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, H.P.; Dhakal, S.; Bhusal, K.P.; Dhakal, H.; Gautam, R.; Joshi, A.B.; Rana, D.B.; Ghimire, M.; Ghimire, S.; Belant, J.L. Factors Influencing the Potential Distribution of Globally Endangered Egyptian Vulture Nesting Habitat in Nepal. Animals 2023, 13, 633. https://doi.org/10.3390/ani13040633
Sharma HP, Dhakal S, Bhusal KP, Dhakal H, Gautam R, Joshi AB, Rana DB, Ghimire M, Ghimire S, Belant JL. Factors Influencing the Potential Distribution of Globally Endangered Egyptian Vulture Nesting Habitat in Nepal. Animals. 2023; 13(4):633. https://doi.org/10.3390/ani13040633
Chicago/Turabian StyleSharma, Hari Prasad, Santosh Dhakal, Krishna Prasad Bhusal, Hemanta Dhakal, Ramji Gautam, Ankit Bilash Joshi, Deu Bahadur Rana, Manshanta Ghimire, Suman Ghimire, and Jerrold L. Belant. 2023. "Factors Influencing the Potential Distribution of Globally Endangered Egyptian Vulture Nesting Habitat in Nepal" Animals 13, no. 4: 633. https://doi.org/10.3390/ani13040633
APA StyleSharma, H. P., Dhakal, S., Bhusal, K. P., Dhakal, H., Gautam, R., Joshi, A. B., Rana, D. B., Ghimire, M., Ghimire, S., & Belant, J. L. (2023). Factors Influencing the Potential Distribution of Globally Endangered Egyptian Vulture Nesting Habitat in Nepal. Animals, 13(4), 633. https://doi.org/10.3390/ani13040633