Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Human Disturbance Factors
2.4. Data Analysis
2.4.1. Activity Overlaps under Large-Scale Human Disturbance
2.4.2. Activity Overlaps under Fine-Scale Human Disturbance
3. Results
3.1. Large-Scale Niche Partitioning between Mesocarnivore Pairs
3.2. Fine-Scale Niche Partitioning between Mesocarnivore Pairs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, J.E.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B.; Venter, O. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Smith, J.A.; Thomas, A.C.; Levi, T.; Wang, Y.; Wilmers, C.C. Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 2018, 127, 890–901. [Google Scholar] [CrossRef]
- Ellis, E.C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 1010–1035. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.; Powell, S.; Brown, K.; Gude, P.H.; Jones, K. Effects of exurban development on biodiversity: Patterns, mechanisms, and research needs. Ecol. Appl. 2005, 15, 1893–1905. [Google Scholar] [CrossRef]
- Llaneza, L.; López-Bao, J.V.; Sazatornil, V. Insights into wolf presence in human-dominated landscapes: The relative role of food availability, humans and landscape attributes. Divers. Distrib. 2011, 18, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Oriol-Cotterill, A.; Valeix, M.; Frank, L.G.; Riginos, C.; Macdonald, D.W. Landscapes of coexistence for terrestrial carnivores: The ecological consequences of being downgraded from ultimate to penultimate predator by humans. Oikos 2015, 124, 1263–1273. [Google Scholar] [CrossRef]
- Sévêque, A.; Gentle, L.K.; López-Bao, J.V.; Yarnell, R.W.; Uzal, A. Impact of human disturbance on temporal partitioning within carnivore communities. Mammal Rev. 2021, 52, 67–81. [Google Scholar] [CrossRef]
- Moll, R.J.; Cepek, J.D.; Lorch, P.D.; Dennis, P.M.; Robison, T.; Millspaugh, J.J.; Montgomery, R.A. Humans and urban development mediate the sympatry of competing carnivores. Urban Ecosyst. 2018, 21, 765–778. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Brown, J.S.; Middleton, A.D.; Power, M.E.; Brashares, J.S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 2019, 34, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience 2003, 53, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Dorresteijn, I.; Schultner, J.; Nimmo, D.G.; Fischer, J.; Hanspach, J.; Kuemmerle, T.; Kehoe, L.; Ritchie, E. Incorporating anthropogenic effects into trophic ecology: Predator–prey interactions in a human-dominated landscape. Proc. R. Soc. B Boil. Sci. 2015, 282, 20151602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacArthur, R.; Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 1967, 101, 377–385. [Google Scholar] [CrossRef]
- Schoener, T.W. Resource partitioning in ecological communities. Science 1974, 185, 27–39. [Google Scholar] [CrossRef]
- Apps, C.D.; McLellan, B.N.; Woods, J.G. Landscape partitioning and spatial inferences of competition between black and grizzly bears. Ecography 2006, 29, 561–572. [Google Scholar] [CrossRef]
- Easter, T.; Bouley, P.; Carter, N. Intraguild dynamics of understudied carnivores in a human-altered landscape. Ecol. Evol. 2020, 10, 5476–5488. [Google Scholar] [CrossRef] [PubMed]
- Palei, H.S.; Sahu, H.K.; Nayak, A.K. Competition versus opportunism: Diet and trophic niche relationship of two sympatric apex carnivores in a tropical forest. Acta Ecol. Sin. 2021, 43, 99–105. [Google Scholar] [CrossRef]
- Frey, S.; Volpe, J.P.; Heim, N.A.; Paczkowski, J.; Fisher, J.T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 2020, 129, 1128–1140. [Google Scholar] [CrossRef]
- Kronfeld-Schor, N.; Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 153–181. [Google Scholar] [CrossRef] [Green Version]
- Fedriani, J.M.; Fuller, T.K.; Sauvajot, R.M.; York, E.C. Competition and intraguild predation among three sympatric carnivores. Oecologia 2000, 125, 258–270. [Google Scholar] [CrossRef]
- Karanth, K.U.; Srivathsa, A.; Vasudev, D.; Puri, M.; Parameshwaran, R.; Kumar, N.S. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B Boil. Sci. 2017, 284, 20161860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsunoda, H.; Newman, C.; Peeva, S.; Raichev, E.; Buesching, C.D.; Kaneko, Y. Spatio-temporal partitioning facilitates mesocarnivore sympatry in the Stara Planina Mountains, Bulgaria. Zoology 2020, 141, 125801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Allen, M.L.; Wilmers, C.C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 2015, 190, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Manlick, P.J.; Pauli, J.N. Human disturbance increases trophic niche overlap in terrestrial carnivore communities. Proc. Natl. Acad. Sci. USA 2020, 117, 26842–26848. [Google Scholar] [CrossRef] [PubMed]
- Polis, G.A.; Holt, R.D. Intraguild predation: The dynamics of complex trophic interactions. Trends Ecol. Evol. 1992, 7, 151–154. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on wildlife nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sévêque, A.; Gentle, L.K.; López-Bao, J.V.; Yarnell, R.W.; Uzal, A. Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol. Rev. 2020, 95, 1689–1705. [Google Scholar] [CrossRef]
- Roemer, G.W.; Gompper, M.E.; Van Valkenburgh, B. The ecological role of the mammalian mesocarnivore. Bioscience 2009, 59, 165–173. [Google Scholar] [CrossRef]
- Suraci, J.P.; Clinchy, M.; Dill, L.M.; Roberts, D.; Zanette, L.Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 2016, 7, 10698. [Google Scholar] [CrossRef] [Green Version]
- Schuette, P.; Wagner, A.P.; Wagner, M.E.; Creel, S. Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol. Conserv. 2013, 158, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Bu, H.; Wang, F.; McShea, W.J.; Lu, Z.; Wang, D.; Li, S. Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of Southwest China. PLoS ONE 2016, 11, e0164271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suraci, J.P.; Clinchy, M.; Zanette, L.Y.; Wilmers, C.C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 2019, 22, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Vitekere, K.; Wang, J.; Karanja, H.; Consolée, K.T.; Jiang, G.; Hua, Y. Dynamic in species estimates of carnivores (leopard cat, red fox, and north Chinese leopard): A multi-year assessment of occupancy and coexistence in the Tieqiaoshan Nature Reserve, Shanxi Province, China. Animals 2020, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Vitekere, K.; Wang, J.; Zhu, M.; Zaman, M.; Jiang, G. Coexistence of sympatric carnivores in a relatively homogenous landscape and the effects of environmental factors on site occupation. Ann. Zoöl. Fenn. 2020, 57, 47. [Google Scholar] [CrossRef]
- Shao, X.; Song, D.; Huang, Q.; Li, S.; Yao, M. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding. Biodivers. Sci. 2019, 27, 543–556. [Google Scholar]
- Zhao, G.; Yang, H.; Xie, B.; Gong, Y.; Ge, J.; Feng, L. Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape. Glob. Ecol. Conserv. 2020, 21, e00897. [Google Scholar] [CrossRef]
- Zheng, J.G.; Zhang, Y.F.; Wang, Y.; Dong, D.P. The characteristics of plant distribution and diversity in the middle section of Taihang Mountain. Henan Sci. 2009, 27, 292–294. [Google Scholar]
- Shi, L.; Feng, Y.; Gao, L. The method of territorial spatial development suitability evaluation in the Yangtze River Delta: A case study of Changxing County. ACTA Ecol. Sin. 2020, 40, 6495–6504. [Google Scholar]
- Zhao, D. Development direction of Tieqiaoshan Nature Reserve, Shanxi. Shanxi For. 2018, 1, 26–27. [Google Scholar] [CrossRef]
- Liu, Y.; Song, D.; Liu, B.; Xia, F.; Chen, Y.; Wang, Y.; Huang, Q. Overview of the Camera-trapping Platform for Felid Species in China: Data integration by a conservation NGO. Biodivers. Sci. 2020, 28, 1067–1074. [Google Scholar] [CrossRef]
- Vitekere, K. North China Leopard Conservation Status and Coexistence Patterns with Red Fox and Leopard Cat in Tieqiaoshan Nature Reserve, Shanxi. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Weng, Y.; McShea, W.; Diao, Y.; Yang, H.; Zhang, X.; Gu, B.; Bu, H.; Wang, F. The incursion of free-ranging dogs into protected areas: A spatio-temporal analysis in a network of giant panda reserves. Biol. Conserv. 2021, 265, 109423. [Google Scholar] [CrossRef]
- Gompper, M.E.; Kays Roland, W.; Ray Justin, A.C.; Scott, D.; Bogan Daniel, A.; Cryan Jason, R. A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl. Soc. Bull. 2006, 34, 1142–1151. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Brook, L.A.; Johnson, C.N.; Ritchie, E.G. Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J. Appl. Ecol. 2012, 49, 1278–1286. [Google Scholar] [CrossRef]
- Palmer, M.S.; Swanson, A.; Kosmala, M.; Arnold, T.; Packer, C. Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. Afr. J. Ecol. 2018, 56, 791–803. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2022. Available online: http://qgis.osgeo.org (accessed on 28 March 2022).
- Van der Weyde, L.K.; Mbisana, C.; Klein, R. Multi-species occupancy modelling of a carnivore guild in wildlife management areas in the Kalahari. Biol. Conserv. 2018, 220, 21–28. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-means clustering algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Kabacoff, R. Cluster Analysis. In R in Action; essay; Manning Publications: Shelter Island, NY, USA, 2022; pp. 369–388. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 7 November 2021).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R package version 1.14.4.K. 2013. Available online: https://CRAN.R-project.org/web/packages/cluster/index.html (accessed on 7 November 2021).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Development Team: Vienna, Austria; Available online: https://www.R-project.org/ (accessed on 5 July 2021).
- Ridout, M.S.; Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 2009, 14, 322–337. [Google Scholar] [CrossRef]
- Meredith, M.; Ridout Martin, S. The Overlap Package. R package version 0.3.4. 2014. Available online: https://CRAN.R-project.org/web/packages/overlap/ (accessed on 10 July 2021).
- Zimmerman, D.W.; Zumbo, B.D. Rank transformations and the power of the Student t test and Welch t’ test for non-normal populations with unequal variances. Can. J. Exp. Psychol./Rev. Can. De Psychol. Expérimentale 1993, 47, 523–539. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-161. 2022. Available online: https://CRAN.R-project.org/web/packages/nlme/ (accessed on 3 January 2023).
- Johnson, J.B.; Omland, K.S. Model selection in ecology and evolution. Trends Ecol. Evol. 2004, 19, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, 1st ed.; Springer: New York, NY, USA, 2009; pp. 209–259. [Google Scholar]
- Li, T.; Meng, D.; Liwei, T.; Si, Y.; Zhang, Z.; Liu, Z. Activity rhythm of red fox in Luoshan National Nature Reserve based on infrared camera technology. Chin. J. Wildl. 2020, 41, 891–896. [Google Scholar]
- Zhou, W.; Wei, W. Activity rhythms and distribution of natal dens for red foxes. Acta Theriol. Sin. 1995, 15, 267–272. [Google Scholar]
- Hu, Q.; Lin, H.; Dai, Q.; Yang, Z.; He, L.; Zhang, W.; Shi, X. Niche differentiation among three middle-sized carnivores in Wolong Nature Reserve. Chin. J. Zool. 2020, 55, 685–691. [Google Scholar] [CrossRef]
- Zagainova, O.S.; Markov, N. The diet of Asian badger, Meles leucurus Hodgson, 1847, in Samarovskii Chugas Nature Park, Western Siberia. Russ. J. Ecol. 2011, 42, 414–420. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, W.; Kaneko, Y.; Newman, C.; Liao, Z.; Zhu, X.; Buesching, C.D.; Xie, Z.; Macdonald, D.W. Seasonal dietary shifts and food resource exploitation by the hog badger (Arctonyx collaris) in a Chinese subtropical forest. Eur. J. Wildl. Res. 2014, 61, 125–133. [Google Scholar] [CrossRef]
- Nickel, B.A.; Suraci, J.P.; Allen, M.L.; Wilmers, C.C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Conserv. 2019, 241, 108383. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Zhu, Y.; Bu, X.; Xiang, R.; Lu, Q.; Cui, S.; Hao, Y.; Sheng, Y.; Meng, X. Summer habitat selection and impacts of human disturbance on leopard cats (Prionailurus bengalensis). Ecosyst. Health Sustain. 2020, 6, 1856630. [Google Scholar] [CrossRef]
- Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 2007, 3, 620–623. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.; Lee, S.; Nam, D.-H.; Lee, H.Y. Food habits of the leopard cat (Prionailurus bengalensis euptilurus) in Korea. Mammal Study 2014, 39, 43–46. [Google Scholar] [CrossRef]
- Wang, J.; Ji, S.; Wu, J.; Shrestha, T.K.; Bu, X.; Zhu, Y.; Xiang, R.; Sheng, Y.; Meng, X. Away from the city: Habitat selection of badgers in mountainous area around Beijing. Biologia 2021, 76, 1737–1746. [Google Scholar] [CrossRef]
- Bae, H.-K.; Lee, J.-K.; Eom, T.-K.; Lee, D.-H.; Rhim, S.-J. Ecological factors influencing the selection of sett location by the Asian badger Meles leucurus. Wildl. Biol. 2021, 2021, wlb.00910. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.-B.; Newman, C.; Kaneko, Y.; Macdonald, D.; Jiang, P.-P.; Ding, P. Niche overlap and sett-site resource partitioning for two sympatric species of badger. Ethol. Ecol. Evol. 2009, 21, 89–100. [Google Scholar] [CrossRef]
- Bao, W.; Li, X.; Shi, Y. Comparative analysis of food habits in carnivores from three areas of Beijing. Zool. Res. 2005, 26, 118–122. [Google Scholar]
- Zhang, L.; Wang, A.; Li, Y.; Bao, W.; Yang, Y.; Bater. Preliminary comparison of diet composition of four small sized carnivores at Saihanwula Nature Reserve, Inner Mongolia. Acta Theriol. Sin. 2011, 31, 55–61. [Google Scholar] [CrossRef]
- Díaz-Ruiz, F.; Delibes-Mateos, M.; García-Moreno, J.L.; López-Martín, J.M.; Ferreira, C.; Ferreras, P. Biogeographical patterns in the diet of an opportunistic predator: The red fox Vulpes vulpes in the Iberian Peninsula. Mammal Rev. 2011, 43, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, I.; Doherty, T.S.; Fleming, P.A.; Stobo-Wilson, A.M.; Woinarski, J.C.Z.; Newsome, T.M. Variation in red fox Vulpes vulpes diet in five continents. Mammal Rev. 2022, 52, 328–342. [Google Scholar] [CrossRef]
- Soe, E.; Davison, J.; Süld, K.; Valdmann, H.; Laurimaa, L.; Saarma, U. Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: A quantitative review. Mammal Rev. 2017, 47, 198–211. [Google Scholar] [CrossRef]
- Seryodkin, I.V.; Burkovskiy, O.A. Food habit analysis of the Amur leopard cat Prionailurus bengalensis euptilurus in the Russian Far East. Biol. Bull. 2019, 46, 648–653. [Google Scholar] [CrossRef]
- Li, Z.; Tang, Z.; Xu, Y.; Wang, Y.; Duan, Z.; Liu, X.; Wang, P.; Yang, J.; Chen, W.; Prins, H.H.T. Habitat use and activity patterns of mammals and birds in relation to temperature and vegetation cover in the alpine ecosystem of Southwestern China with camera-trapping monitoring. Animals 2021, 11, 3377. [Google Scholar] [CrossRef]
- Gause, G.F. The Struggle for Existence; Williams and Wilkins: Baltimore, MD, USA, 1934. [Google Scholar]
- Arjo, W.M.; Pletscher, D.H. Behavioral responses of coyotes to wolf recolonization in northwestern Montana. Can. J. Zoöl. 1999, 77, 1919–1927. [Google Scholar] [CrossRef]
- Iwama, M.; Yamazaki, K.; Matsuyama, M.; Hoshino, Y.; Hisano, M.; Newman, C.; Kaneko, Y. Masked palm civet Paguma larvata summer diet differs between sexes in a suburban area of central Japan. Mammal Study 2017, 42, 185–190. [Google Scholar] [CrossRef]
- Wang, H.; Fuller, T. Food habits of four sympatric carnivores in southeastern China. Mammalia 2003, 67, 513–520. [Google Scholar] [CrossRef]
- Gasparatos, A.; Doll, C.N.; Esteban, M.; Ahmed, A.; Olang, T.A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 2017, 70, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Ayram, C.A.C.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol. Indic. 2017, 72, 895–909. [Google Scholar] [CrossRef]
- Frey, S.; Fisher, J.T.; Burton, A.C.; Volpe, J.P. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: Challenges and opportunities. Remote. Sens. Ecol. Conserv. 2017, 3, 123–132. [Google Scholar] [CrossRef]
- Moore, H.A.; Valentine, L.E.; Dunlop, J.A.; Nimmo, D.G. The effect of camera orientation on the detectability of wildlife: A case study from north-western Australia. Remote. Sens. Ecol. Conserv. 2020, 6, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Tourani, M.; Brøste, E.N.; Bakken, S.; Odden, J.; Bischof, R. Sooner, closer, or longer: Detectability of mesocarnivores at camera traps. J. Zoöl. 2020, 312, 259–270. [Google Scholar] [CrossRef]
- Archaux, F.; Henry, P.-Y.; Gimenez, O. When can we ignore the problem of imperfect detection in comparative studies? Methods Ecol. Evol. 2011, 3, 188–194. [Google Scholar] [CrossRef]
- Ferreras, P.; Ruiz, F.D.; Monterroso, P. Improving mesocarnivore detectability with lures in camera-trapping studies. Wildl. Res. 2018, 45, 505. [Google Scholar] [CrossRef]
- Cardillo, M.; Mace, G.M.; Jones, K.E.; Bielby, J.; Bininda-Emonds, O.R.P.; Sechrest, W.; Orme, C.D.L.; Purvis, A. Multiple causes of high extinction risk in large mammal species. Science 2005, 309, 1239–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species Pair | Difference | p-Value | ||
---|---|---|---|---|
Badger–human | 0.41 (0.39, 0.43) | 0.16 (0.05, 0.31) | −0.25 | 0.000 |
Leopard cat–human | 0.27 (0.25, 0.29) | 0.11 (0.03, 0.21) | −0.16 | 0.000 |
Red fox–human | 0.27 (0.25, 0.29) | 0.27(0.13, 0.43) | 0.00 | 0.730 |
Leopard cat–badger | 0.86 (0.83, 0.88) | 0.75(0.50, 0.94) | −0.11 | 0.324 |
Red fox–leopard cat | 0.89 (0.87, 0.91) | 0.80(0.59, 0.97) | −0.09 | 0.365 |
Red fox–badger | 0.84 (0.82, 0.86) | 0.76(0.53, 0.96) | −0.08 | 0.471 |
Species Pairs | ||||||
---|---|---|---|---|---|---|
Leopard Cat, Red Fox | Leopard Cat, Badger | Red Fox, Badger | ||||
Random Effects Village ID intercept Road ID intercept | ||||||
0.000 (0.000) | ||||||
0.003 (0.055) | ||||||
Residual Fixed Effects | 0.033 (0.182) | |||||
(SE) | t value | (SE) | t value | (SE) | t value | |
(Intercept) Road distance Village distance Human activity | 0.606 (0.016) | 36.946 | 0.609 (0.018) | 33.773 | 0.606 (0.016) | 36.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, B.; Fan, D.; Li, S. Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap. Animals 2023, 13, 688. https://doi.org/10.3390/ani13040688
Chen Y, Liu B, Fan D, Li S. Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap. Animals. 2023; 13(4):688. https://doi.org/10.3390/ani13040688
Chicago/Turabian StyleChen, Yanzhi, Beibei Liu, Deqing Fan, and Sheng Li. 2023. "Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap" Animals 13, no. 4: 688. https://doi.org/10.3390/ani13040688
APA StyleChen, Y., Liu, B., Fan, D., & Li, S. (2023). Temporal Response of Mesocarnivores to Human Activity and Infrastructure in Taihang Mountains, Central North China: Shifts in Activity Patterns and Their Overlap. Animals, 13(4), 688. https://doi.org/10.3390/ani13040688