Effect of Lipase and Lysolecithin Supplementation with Low Energy Diet on Growth Performance, Biochemical Attributes and Fatty Acid Profile of Breast Muscle of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Feeding Management
2.2. Growth Performance
2.3. Nutrient Digestibility
2.4. Meat Quality Parameters
2.5. Blood Biochemical Attributes
2.6. Breast Muscle Fatty Acid Profile
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Biochemical Attributes
3.4. Meat Quality
3.5. Fatty Acid Profile of Breast Meat
4. Discussion
4.1. Growth Performance
4.2. Nutrient Digestibility
4.3. Blood Biochemical Attribute
4.4. Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, M.T.; Arif, M.; Saeed, M.; Reyad-Ul-ferdous, M.; Hassan, M.A.; Arain, M.A.; Rehman, A. Emulsifier Effect on Fat Utilization in Broiler Chicken. Asian J. Anim. Vet. Adv. 2016, 11, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition, 3rd ed.; Nottingham University Press: Nottingham, UK, 2005; Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=1540570 (accessed on 19 December 2022).
- Tancharoenrat, P.; Ravindran, V.; Zaefarian, F.; Ravindran, G. Influence of Age on the Apparent Metabolisable Energy and Total Tract Apparent Fat Digestibility of Different Fat Sources for Broiler Chickens. Anim. Feed Sci. Technol. 2013, 186, 186–192. [Google Scholar] [CrossRef]
- Siyal, F.A.; Babazadeh, D.; Wang, C.; Arain, M.A.; Saeed, M.; Ayasan, T.; Zhang, L.; Wang, T. Emulsifiers in the Poultry Industry. World’s Poult. Sci. J. 2019, 73, 611–620. [Google Scholar] [CrossRef]
- Ravindran, V.; Tancharoenrat, P.; Zaefarian, F.; Ravindran, G. Fats in Poultry Nutrition: Digestive Physiology and Factors Influencing Their Utilization. Anim. Feed Sci. Technol. 2016, 213, 1–21. [Google Scholar] [CrossRef]
- Roy, A.; Haldar, S.; Mondal, S.; Ghosh, T.K. Effects of Supplemental Exogenous Emulsifier on Performance, Nutrient Metabolism, and Serum Lipid Profile in Broiler Chickens. Vet. Med. Int. 2010, 2010, 262604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Classen, H.L. Diet Energy and Feed Intake in Chickens. Anim. Feed Sci. Technol. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Lilburn, M.S.; Loeffler, S. Early Intestinal Growth and Development in Poultry. Poult. Sci. 2015, 94, 1569–1576. [Google Scholar] [CrossRef]
- Jansen, M.; Nuyens, F.; Buyse, J.; Leleu, S.; Van Campenhout, L. Interaction between Fat Type and Lysolecithin Supplementation in Broiler Feeds. Poult. Sci. 2015, 94, 2506–2515. [Google Scholar] [CrossRef]
- Wang, J.P.; Zhang, Z.F.; Yan, L.; Kim, I.H. Effects of Dietary Supplementation of Emulsifier and Carbohydrase on the Growth Performance, Serum Cholesterol and Breast Meat Fatty Acids Profile of Broiler Chickens. Anim. Sci. J. 2016, 87, 250–256. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Kim, I.H. Effect of Diets with Different Energy and Lysophospholipids Levels on Performance, Nutrient Metabolism, and Body Composition in Broilers. Poult. Sci. 2017, 96, 1341–1347. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. Board-Invited Review: Opportunities and Challenges in Using Exogenous Enzymes to Improve Nonruminant Animal Production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Francesch, M.; Geraert, P.A. Enzyme Complex Containing Carbohydrases and Phytase Improves Growth Performance and Bone Mineralization of Broilers Fed Reduced Nutrient Corn-Soybean-Based Diets. Poult. Sci. 2009, 88, 1915–1924. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, Z.; Lv, D.; Wang, T. Improved Energy-Utilizing Efficiency by Enzyme Preparation Supplement in Broiler Diets with Different Metabolizable Energy Levels. Poult. Sci. 2009, 88, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Haetinger, V.S.; Dalmoro, Y.K.; Godoy, G.L.; Lang, M.B.; de Souza, O.F.; Aristimunha, P.; Stefanello, C. Optimizing Cost, Growth Performance, and Nutrient Absorption with a Bio-Emulsifier Based on Lysophospholipids for Broiler Chickens. Poult. Sci. 2021, 100, 101025. [Google Scholar] [CrossRef]
- Wealleans, A.L.; Jansen, M.; di Benedetto, M. The Addition of Lysolecithin to Broiler Diets Improves Growth Performance across Fat Levels and Sources: A Meta-Analysis of 33 Trials. Br. Poult. Sci. 2020, 61, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Nagargoje, S.; Dhumal, M.; Nikam, M.; Khose, K. Effect of Crude Soy Lecithin with or without Lipase on Performance and Carcass Traits, Meat Keeping Quality and Economics of Broiler Chicken. Int. J. Livest. Res. 2016, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Haitao, L.; Zhao, D.; Guo, Y.; Barri, A. Effect of Fat Type and Lysophosphatidylcholine Addition to Broiler Diets on Performance, Apparent Digestibility of Fatty Acids, and Apparent Metabolizable Energy Content. Anim. Feed Sci. Technol. 2011, 163, 177–184. [Google Scholar] [CrossRef]
- Melegy, T.; Khaled, N.F.; El-Bana, R.; Abdellatif, H. Dietary Fortification of a Natural Biosurfactant, Lysolecithin in Broiler. African J. Agric. Res. 2010, 5, 2886–2892. [Google Scholar]
- Arshad, M.A.; Bhatti, S.A.; Hassan, I.; Aziz-Ur-rahman, M.; Rehman, M.S. Effects of Bile Acids and Lipase Supplementation in Low-Energy Diets on Growth Performance, Fat Digestibility and Meat Quality in Broiler Chickens. Braz. J. Poult. Sci. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Cho, J.H.; Zhao, P.; Kim, I.H. Effects of Emulsifier and Multi-Enzyme in Different Energy Densitydiet on Growth Performance, Blood Profiles, and Relative Organ Weight in Broiler Chickens. J. Agric. Sci. 2012, 4, p161. [Google Scholar] [CrossRef] [Green Version]
- Vieira, S.L.; Angel, C.R. Optimizing Broiler Performance Using Different Amino Acid Density Diets: What Are the Limits? J. Appl. Poult. Res. 2012, 21, 149–155. [Google Scholar] [CrossRef]
- Zampiga, M.; Meluzzi, A.; Sirri, F. Effect of Dietary Supplementation of Lysophospholipids on Productive Performance, Nutrient Digestibility and Carcass Quality Traits of Broiler Chickens. Ital. J. Anim. Sci. 2016, 15, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Wickramasuriya, S.S.; Cho, H.M.; Macelline, S.P.; Kim, E.; Shin, T.K.; Yi, Y.J.; Park, S.H.; Lee, K.B.; Heo, J.M. Effect of Calcium Stearoyl-2 Lactylate and Lipase Supplementation on Growth Performance, Gut Health, and Nutrient Digestibility of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2020, 33, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, L.S.; Balbino, E.M.; Santos Silva, T.N.; Ily, L.; Da Rocha, T.C.; De Oliveira Strada, E.S.; Pinheiro, A.M.; Gonçalves De Brito, J.Á. Use of Emulsifier and Lipase in Feeds for Broiler Chickens. Semin. Agrar. 2019, 40, 3181–3196. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.K.; Wang, A.A.; Ying, Z.X.; Zhang, L.G.; Su, W.P.; Cheng, K.; Feng, C.C.; Zhou, Y.M.; Zhang, L.L.; Wang, T. Effects of Diets with Different Energy and Bile Acids Levels on Growth Performance and Lipid Metabolism in Broilers. Poult. Sci. 2019, 98, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.D.; Lan, D.; Zhu, Y.; Pang, H.Z.; Mu, X.P.; Hu, X.F. Effect of Diets with Different Energy and Lipase Levels on Performance, Digestibility and Carcass Trait in Broilers. Asian-Australas. J. Anim. Sci. 2018, 31, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhaya, S.D.; Rudeaux, F.; Kim, I.H. Effects of Inclusion of Bacillus Subtilis (Gallipro) to Energy- and Protein-Reduced Diet on Growth Performance, Nutrient Digestibility, and Meat Quality and Gas Emission in Broilers. Poult. Sci. 2019, 98, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.M.; Lebas, F.; Gidenne, T.; Maertens, L.; Xiccato, G.; Parigi-Bini, R.; Zotte, A.D.; Cossu, M.E.; Carazzolo, A.; Villamide, M.J.; et al. European Reference Method for in Vivo Determination of Diet Digestibility in Rabbits. World Rabbit. Sci. 1995, 3, 41–43. [Google Scholar] [CrossRef] [Green Version]
- Kondaiah, N.; Anjaneyulu, A.S.R.; Rao, V.K.; Sharma, N.; Joshi, H.B. Effect of Salt and Phosphate on the Quality of Buffalo and Goat Meats. Meat Sci. 1985, 15, 183–192. [Google Scholar] [CrossRef]
- Wang, Y.; Sunwoo, H.; Cherian, G.; Sim, J.S. Fatty Acid Determination in Chicken Egg Yolk: A Comparison of Different Methods. Poult. Sci. 2000, 79, 1168–1171. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Lamot, D. First Week Nutrition for Broiler Chickens: Effects on Growth, Metabolic Status, Organ Development, and Carcass Composition; Wageningen University: Wageningen, The Netherlands, 2017. [Google Scholar] [CrossRef] [Green Version]
- Pirzado, S.A.; ul Hassan, F.; Arain, M.A.; Zhengke, W.; Huiyi, C.; Haile, T.H.; Guohua, L. Effect of Azomite on Growth Performance, Nutrient Utilization, Serum Biochemical Index and Bone Mineralization of Broilers Fed Low Protein Diet. Ital. J. Anim. Sci. 2021, 20, 1282–1291. [Google Scholar] [CrossRef]
- Zaefarian, F.; Romero, L.F.; Ravindran, V. Influence of High Dose of Phytase and an Emulsifier on Performance, Apparent Metabolisable Energy and Nitrogen Retention in Broilers Fed on Diets Containing Soy Oil or Tallow. Br. Poult. Sci. 2015, 56, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jung, B.; Kim, W.K. Effects of Lysophospholipid on Growth Performance, Carcass Yield, Intestinal Development, and Bone Quality in Broilers. Poult. Sci. 2019, 98, 3902–3913. [Google Scholar] [CrossRef]
- Kaczmarek, S.A.; Bochenek, M.; Samuelsson, A.C.; Rutkowski, A. Effects of Glyceryl Polyethylene Glycol Ricinoleate on Nutrient Utilisation and Performance of Broiler Chickens. Arch. Anim. Nutr. 2015, 69, 285–296. [Google Scholar] [CrossRef]
- Kubiś, M.; Kołodziejski, P.; Pruszyńska, E.; Sassek, M.; Konieczka, P.; Górka, P.; Flaga, J.; Katarzyńska-Banasik, D.; Hejdysz, M.; Szumacher, M.; et al. Combination of Emulsifier and Xylanase in Wheat Diets of Broiler Chickens. Anim. Feed Sci. Technol. 2022, 290, 115343. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Poutahidis, T.; Chalvatzi, S.; Di Benedetto, M.; Hardas, A.; Tsiouris, V.; Georgopoulou, I.; Arsenos, G.; Fortomaris, P.D. Effects of Lysolecithin Supplementation in Low-Energy Diets on Growth Performance, Nutrient Digestibility, Viscosity and Intestinal Morphology of Broilers. Br. Poult. Sci. 2018, 59, 232–239. [Google Scholar] [CrossRef]
- Brautigan, D.L.; Li, R.; Kubicka, E.; Turner, S.D.; Garcia, J.S.; Weintraut, M.L.; Wong, E.A. Lysolecithin as Feed Additive Enhances Collagen Expression and Villus Length in the Jejunum of Broiler Chickens. Poult. Sci. 2017, 96, 2889–2898. [Google Scholar] [CrossRef]
- Adrizal; Ohtani, S.; Yayota, M. Dietary Energy Source and Supplements in Broiler Diets Containing Defatted Rice Bran. J. Appl. Poult. Res. 2002, 11, 410–417. [Google Scholar] [CrossRef]
- Gheisar, M.M.; Hosseindoust, A.; Kim, H.B.; Kim, I.H. Effects of Lysolecithin and Sodium Stearoyl-2-Lactylate on Growth Performance and Nutrient Digestibility in Broilers. Korean J. Poult. Sci. 2015, 42, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Slominski, B.A.; Guenter, W. The Effect of Fat Type, Carbohydrase, and Lipase Addition on Growth Performance and Nutrient Utilization of Young Broilers Fed Wheat-Based Diets. Poult. Sci. 2004, 83, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Dairo, F.A.S.; Adesehinwa, A.O.K.; Oluwasola, T.A.; Oluyemi, J.A. High and Low Dietary Energy and Protein Levels for Broiler Chickens. Afr. J. Agric. Res. 2010, 5, 2030–2038. [Google Scholar] [CrossRef]
- Kamran, J.I. Effect of Fat Sources and Emulsifier Levels in Broiler Diets on Performance, Nutrient Digestibility, and Carcass Parameters. Braz. J. Poult. Sci. 2020, 22. [Google Scholar] [CrossRef]
- Guerreiro Neto, A.C.; Pezzato, A.C.; Sartori, J.R.; Mori, C.; Cruz, V.C.; Fascina, V.B.; Pinheiro, D.F.; Madeira, L.A.; Gonçalvez, J.C. Emulsifier in Broiler Diets Containing Different Fat Sources. Braz. J. Poult. Sci. 2011, 13, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Alzawqari, M.; Moghaddam, H.N.; Kermanshahi, H.; Raji, A.R. The Effect of Desiccated Ox Bile Supplementation on Performance, Fat Digestibility, Gut Morphology and Blood Chemistry of Broiler Chickens Fed Tallow Diets. J. Appl. Anim. Res. 2011, 39, 169–174. [Google Scholar] [CrossRef]
- Huang, J.; Yang, D.; Gao, S.; Wang, T. Effects of Soy-Lecithin on Lipid Metabolism and Hepatic Expression of Lipogenic Genes in Broiler Chickens. Livest. Sci. 2008, 118, 53–60. [Google Scholar] [CrossRef]
- Saleh, A.A.; Amber, K.A.; Mousa, M.M.; Nada, A.L.; Awad, W.; Dawood, M.A.O.; Abd El-Moneim, A.E.M.E.; Ebeid, T.A.; Abdel-Daim, M.M. A Mixture of Exogenous Emulsifiers Increased the Acceptance of Broilers to Low Energy Diets: Growth Performance, Blood Chemistry, and Fatty Acids Traits. Animal 2020, 10, 437. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, Y.M.; Becerra, J.; Bertot, R.R.; Peláez, J.C.; Liu, G.; Hurtado, C.; Manzanillo, C. Growth Performance, Carcass Traits and Lipid Profile of Broiler Chicks Fed with an Exogenous Emulsifier and Increasing Levels of Energy Provided by Palm Oil. J. Food Agric. Environ. 2013, 11, 629–633. [Google Scholar]
Items | Phase 1 (d 1 to d 21) | Phase 2 (d 22 to d 35) | ||
---|---|---|---|---|
CON 1 | LE 2 | CON 1 | LE 2 | |
Ingredients, % | ||||
Maize | 45.50 | 45.50 | 60.00 | 61.00 |
Rice Polish | 5.53 | 7.61 | 1.31 | 2.89 |
Soybean meal, 45% CP | 39.70 | 39.40 | 29.93 | 29.14 |
Soy oil | 4.80 | 3.00 | 4.80 | 3.00 |
Limestone | 1.11 | 1.18 | 0.75 | 0.74 |
Di-calcium phosphate | 1.90 | 1.87 | 1.73 | 1.73 |
Sodium chloride | 0.37 | 0.38 | 0.39 | 0.39 |
Sodium bicarbonate | 0.06 | 0.06 | 0.08 | 0.08 |
L-Lysine Sulphate | 0.42 | 0.38 | 0.48 | 0.49 |
DL-Methionine, 98% | 0.38 | 0.39 | 0.32 | 0.33 |
L-Threonine | 0.13 | 0.13 | 0.11 | 0.11 |
Vitamin and mineral premix 3 | 0.10 | 0.10 | 0.10 | 0.10 |
Calculated nutrient composition (%) | ||||
ME (Kcal/Kg) | 2900 | 2800 | 3100 | 3000 |
Crude protein% | 22 | 22 | 19 | 19 |
Ether extract% | 7.53 | 6.04 | 7.38 | 5.85 |
Calcium% | 0.99 | 0.99 | 0.85 | 0.85 |
Available Phosphorous% | 0.45 | 0.45 | 0.42 | 0.42 |
Analyzed nutrient composition (%) | ||||
Dry matter | 90.52 | 89.76 | 89.91 | 90.63 |
Crude Protein | 22.35 | 22.15 | 19.55 | 19.31 |
Ether Extract | 7.89 | 6.24 | 7.54 | 6.32 |
Ash | 4.23 | 4.55 | 4.31 | 4.66 |
Items | CON | LE | LIP | LYSO | LIP + LYSO | LIP + LYSO | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
0.04% | 0.04% | 0.04% | 0.08% | |||||
0–21 days | ||||||||
BW gain (g) | 903 b | 955 ab | 995 a | 986 a | 946 ab | 1014 a | 12.82 | 0.07 |
Feed intake (g) | 1078 | 1195 | 1199 | 1221 | 1184 | 1235 | 18.27 | 0.16 |
FCR | 1.19 | 1.25 | 1.21 | 1.24 | 1.25 | 1.22 | 0.01 | 0.96 |
22–35 days | ||||||||
BW gain (g) | 1273 | 1302 | 1271 | 1299 | 1278 | 1336 | 9.06 | 0.2 |
Feed intake (g) | 2058 | 2234 | 2229 | 2190 | 2189 | 2260 | 21.08 | 0.08 |
FCR | 1.62 | 1.72 | 1.75 | 1.69 | 1.73 | 1.69 | 0.08 | 0.34 |
0–35 days | ||||||||
BW gain (g) | 2175 b | 2256 ab | 2266 ab | 2285 ab | 2223 b | 2350 a | 16.86 | 0.02 |
Feed intake (g) | 3135 b | 3429 a | 3428 a | 3411 a | 3388 a | 3495 a | 29.83 | 0.003 |
FCR | 1.44 | 1.53 | 1.51 | 1.49 | 1.52 | 1.48 | 0.01 | 0.68 |
Items | CON | LE | LIP | LYSO | LIP + LYSO | LIP + LYSO | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
0.04% | 0.04% | 0.04% | 0.08% | |||||
Dry matter % | 78.59 | 78.93 | 80 | 81.04 | 80.94 | 82.29 | 0.63 | 0.56 |
Crude protein % | 81.08 | 81.8 | 82.19 | 82.41 | 81.84 | 83.46 | 0.68 | 0.97 |
Crude fat % | 76.78 | 78.48 | 78.22 | 79.27 | 79.29 | 79.68 | 0.63 | 0.85 |
Items | CON | LE | LIP | LYSO | LIP + LYSO | LIP + LYSO | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
0.04% | 0.04% | 0.04% | 0.08% | |||||
Blood profile | ||||||||
Cholesterol (mg/dl) | 172.33 | 126.33 | 150.33 | 158.33 | 159.33 | 139.33 | 8.14 | 0.71 |
TG (mg/dl) | 149 | 149.33 | 141.33 | 150 | 147.67 | 136.33 | 5.04 | 0.97 |
HDL (mg/dl) | 40.67 | 30.67 | 36.33 | 37.67 | 38.67 | 32.33 | 1.57 | 0.46 |
LDL (mg/dl) | 99 | 94.33 | 90.67 | 86 | 88.33 | 73 | 5.24 | 0.84 |
Liver enzymes | ||||||||
ALT (U/L) | 20 | 21 | 20.67 | 22.67 | 26.67 | 25 | 1.24 | 0.64 |
AST (U/L) | 81.33 | 91.33 | 65.67 | 82 | 81 | 93.33 | 6.28 | 0.88 |
Items | CON | LE | LIP | LYSO | LIP + LYSO | LIP + LYSO | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
0.04% | 0.04% | 0.04% | 0.08% | |||||
pH after 2 h | ||||||||
Breast | 6.57 | 6.53 | 6.65 | 6.38 | 6.44 | 6.43 | 0.05 | 0.83 |
Thigh | 5.45 | 6.57 | 6.4 | 6.48 | 6.42 | 6.49 | 0.19 | 0.69 |
pH after 24 h | ||||||||
Breast | 6.72 | 6.53 | 6.58 | 6.53 | 6.57 | 6.65 | 0.05 | 0.83 |
Cooking loss% | ||||||||
Breast | 29.11 | 26.44 | 30.22 | 26 | 30 | 25.55 | 0.86 | 0.56 |
Thigh | 34.67 | 34 | 32.67 | 33.56 | 34.67 | 32 | 1.3 | 0.99 |
Drip loss% 24 h | ||||||||
Breast | 4.02 | 4.16 | 3.47 | 4.15 | 4.05 | 3.37 | 0.17 | 0.61 |
Thigh | 4.44 | 4.5 | 3.55 | 4.49 | 4.11 | 3.95 | 0.25 | 0.86 |
Drip loss% 48 h | ||||||||
Breast | 1.71 | 1.76 | 2.03 | 1.87 | 1.73 | 1.6 | 0.15 | 0.96 |
Thigh | 1.85 | 1.82 | 2.43 | 1.81 | 2.03 | 1.76 | 0.16 | 0.8 |
WHC% | ||||||||
Breast | 53.8 | 54.12 | 53.68 | 54.75 | 53.48 | 55.56 | 0.44 | 0.86 |
Thigh | 54.86 | 54.03 | 54.49 | 53.31 | 56.69 | 55.01 | 0.65 | 0.77 |
Items | CON | LE | LIP | LYSO | LIP + LYSO | LIP + LYSO | SEM | p-Value | |
---|---|---|---|---|---|---|---|---|---|
0.04% | 0.04% | 0.04% | 0.08% | ||||||
Myristic acid | C14:0 | 1.56 | 1.7 | 1.62 | 1.56 | 1.65 | 1.59 | 0.09 | 0.98 |
Palmitic acid | C16:0 | 20.05 | 16.74 | 19.42 | 19.93 | 20.07 | 19.22 | 0.53 | 0.58 |
Stearic acid | C18:0 | 8.42 | 8.57 | 9.44 | 8.27 | 7.57 | 8.65 | 0.45 | 0.77 |
Arachidic acid | C20:0 | 0.67 | 0.67 | 0.51 | 0.49 | 0.61 | 0.54 | 0.04 | 0.31 |
Total SFA | 30.69 | 27.68 | 31 | 30.25 | 29.9 | 30.01 | 0.52 | 0.83 | |
Palmitoleic acid | C16:1 | 8.61 | 4.93 | 7.11 | 7.92 | 7.3 | 7.57 | 0.73 | 0.87 |
Oleic acid | C18:1 | 23.33 | 24.33 | 24.01 | 22.06 | 23.69 | 23.68 | 0.79 | 0.91 |
Eicosenoic acid | C20:1 | 0.71 | 0.56 | 0.63 | 0.62 | 0.7 | 0.62 | 0.04 | 0.96 |
Nervonic acid | C24:1 | 1.25 | 1.29 | 1.3 | 1.34 | 1.35 | 1.31 | 0.03 | 0.57 |
Total MUFA | _ | 33.9 | 31.11 | 33.04 | 31.94 | 33.05 | 33.17 | 0.81 | 0.95 |
Linoleic acid | C18:2 (n-6) | 26.97 | 28.71 | 28.5 | 30.19 | 27.47 | 28.49 | 0.53 | 0.64 |
Eicosadienoic acid | C20:2 (n-6) | 0.67 | 0.67 | 0.66 | 0.68 | 0.62 | 0.66 | 0.03 | 0.86 |
DGLA | C20:3 (n-6) | 0.59 | 0.65 | 0.64 | 0.7 | 0.6 | 0.76 | 0.04 | 0.33 |
Arachidonic acid | C20:4 (n-6) | 1.52 | 1.67 | 1.62 | 1.63 | 1.56 | 1.68 | 0.04 | 0.57 |
Total Ω-6 | 29.74 | 31.7 | 31.42 | 31.59 | 30.25 | 33.2 | 0.53 | 0.56 | |
Alfa-linoleic acid | C18:3 (n-3) | 1.53 | 1.62 | 1.63 | 1.62 | 1.66 | 1.56 | 0.05 | 0.83 |
Eicosapentanoic acid | C20:5 (n-3) | 0.61 | 0.76 | 0.57 | 0.65 | 0.58 | 0.74 | 0.04 | 0.79 |
Docosahexaenoic acid | C22:6 (n-3) | 1.4 | 1.42 | 1.42 | 1.53 | 1.44 | 1.5 | 0.03 | 0.38 |
Total Ω-3 | _ | 3.54 | 3.8 | 3.62 | 3.8 | 3.68 | 3.81 | 0.06 | 0.45 |
Total PUF | _ | 33.28 | 35.5 | 35.04 | 35.39 | 33.93 | 36.99 | 0.54 | 0.49 |
MUFA/SFA | _ | 1.11 | 1.15 | 1.06 | 1.06 | 1.11 | 1.1 | 0.03 | 0.81 |
PUFA/SFA | _ | 1.09 | 1.31 | 1.13 | 1.22 | 1.14 | 1.18 | 0.03 | 0.95 |
n-6/n-3 | _ | 8.45 | 8.37 | 8.79 | 8.31 | 8.3 | 8.78 | 0.21 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Mughal, G.A.; Abro, R.; Bughio, S.; Rizwana, H.; Leghari, I.H.; Pirzado, S.A. Effect of Lipase and Lysolecithin Supplementation with Low Energy Diet on Growth Performance, Biochemical Attributes and Fatty Acid Profile of Breast Muscle of Broiler Chickens. Animals 2023, 13, 737. https://doi.org/10.3390/ani13040737
Ahmad A, Mughal GA, Abro R, Bughio S, Rizwana H, Leghari IH, Pirzado SA. Effect of Lipase and Lysolecithin Supplementation with Low Energy Diet on Growth Performance, Biochemical Attributes and Fatty Acid Profile of Breast Muscle of Broiler Chickens. Animals. 2023; 13(4):737. https://doi.org/10.3390/ani13040737
Chicago/Turabian StyleAhmad, Aziz, Gulfam Ali Mughal, Rani Abro, Shamsuddin Bughio, Huma Rizwana, Imdad Hussain Leghari, and Shoaib Ahmed Pirzado. 2023. "Effect of Lipase and Lysolecithin Supplementation with Low Energy Diet on Growth Performance, Biochemical Attributes and Fatty Acid Profile of Breast Muscle of Broiler Chickens" Animals 13, no. 4: 737. https://doi.org/10.3390/ani13040737
APA StyleAhmad, A., Mughal, G. A., Abro, R., Bughio, S., Rizwana, H., Leghari, I. H., & Pirzado, S. A. (2023). Effect of Lipase and Lysolecithin Supplementation with Low Energy Diet on Growth Performance, Biochemical Attributes and Fatty Acid Profile of Breast Muscle of Broiler Chickens. Animals, 13(4), 737. https://doi.org/10.3390/ani13040737