Effect of Citrus Pellet on Extrusion Parameters, Kibble Macrostructure, Starch Cooking and In Vitro Digestibility of Dog Foods
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fiber Ingredient and Diet Formulation
2.2. Diet Preparation
2.3. Chemical Analyses
2.4. Specific Mechanical Energy and Specific Thermal Energy Calculations
2.5. Kibble Traits and Macrostructure
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matheyambath, A.C.; Padmanabhan, P.; Paliyath, G. Citrus fruits. In Encycolpedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Oxford, UK, 2016; pp. 136–140. [Google Scholar] [CrossRef]
- Mamma, D.; Christakopoulos, P. Biotransformation of Citrus By-Products into Value Added Products. Waste Biomass Valorization 2013, 5, 529–549. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabró, S.; Liotta, L.; Musco, N.; Di Rosa, A.R.; Cutrignelli, M.I.; Chiofalo, B. In vitro fermentation and chemical characteristics of Mediterranean by-products for swine nutrition. Animals 2019, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, P.D.G.; Baller, M.A.; Peres, F.M.; de Mello Ribeiro, E.; Putarov, T.C.; Carciofi, A.C. Citrus pulp and orange fiber as dietary fiber sources for dogs. Anim. Feed Sci. Technol. 2021, 282, 115–123. [Google Scholar] [CrossRef]
- Musco, N.; Calabrò, S.; Tudisco, R.; Grossi, M.; Addi, L.; Moniello, G.; Lombardi, P.; Cutrignelli, M.I. Diet effect on short-and long-term glycaemic response in adult healthy cats (Review). Vet. Ital. 2017, 53, 141–145. [Google Scholar] [CrossRef]
- Calabrò, S.; Carciofi, A.C.; Musco, N.; Tudisco, R.; Gomes, O.S.M.; Cutrignelli, M.I. Fermentation characteristics of several carbohydrate sources or dog diets using the in vitro gas production technique. Ital. J. Anim. Sci. 2012, 12, 21–27. [Google Scholar] [CrossRef]
- Musco, N.; Calabrò, S.; Roberti, F.; Grazioli, R.; Tudisco, R.; Lombardi, P.; Cutrignelli, M.I. In vitro evaluation of Saccharomyces cerevisiae cell wall fermentability using a dog model. J. Anim. Physiol. Anim. Nutr. 2018, 102, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Volpe, L.M.; Putarov, T.C.; Ikuma, C.T.; Eugênio, D.A.; Ribeiro, P.M.; Theodoro, S.; Scarpim, L.B.; Pacheco, P.D.G.; Carciofi, A.C. Orange fibre effects on nutrient digestibility, fermentation products in faeces and digesta mean retention time in dogs. Arch. Anim. Nutr. 2021, 75, 222–236. [Google Scholar] [CrossRef]
- Eugênio, D.A.; Volpe, L.M.; Ribeiro, P.M.; Baller, M.A.; Pacheco, L.G.; Takahashi, A.V.; Pacheco, P.D.G.; Putarov, T.C.; Theodoro, S.S.; Carciofi, A.C. Effect of orange fibre on nutrient digestibility and fermentation products in faeces of cats fed kibble diets. Arch. Anim. Nutr. 2022, 76, 61–73. [Google Scholar] [CrossRef]
- Monti, M.; Gibson, M.; Loureiro, B.A.; Sá, F.C.; Putarov, T.C.; Villaverde, C.; Alavi, S.; Carciofi, A.C. Influence of dietary fiber on macrostructure and processing traits of extruded dog foods. Anim. Feed Sci. Technol. 2016, 220, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.N. Extruders in food applications. In Introduction to Extruders and Their Principles; Riaz, M.N., Ed.; CRC Press: Boca Rafon, FL, USA, 2000; pp. 1–23. [Google Scholar]
- Baller, M.A.; Pacheco, P.D.G.; Vitta-Takahashi, A.; Putarov, T.C.; Vasconcellos, R.S.; Carciofi, A.C. Effects of thermal energy on extrusion characteristics, digestibility and palatability of a dry pet food for cats. J. Anim. Physiol. Anim. Nutr. 2021, 105, 76–90. [Google Scholar] [CrossRef]
- Yağci, S.; Gögüs, F. Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. J. Food Eng. 2008, 86, 122–132. [Google Scholar] [CrossRef]
- Baller, M.A.; Pacheco, P.D.G.; Peres, F.M.; Monti, M.; Carciofi, A.C. The effects of in-barrel moisture on extrusion parameters, kibble macrostructure, starch gelatinization, and palatability of a cat food. Anim. Feed Sci. Technol. 2018, 246, 82–90. [Google Scholar] [CrossRef]
- Souza, C.M.M.; Bastos, T.S.; Kaelle, G.C.B.; de Carvalho, P.G.B.; Bortolo, M.; de Oliveira, S.G.; Félix, A.P. Effects of different levels of cassava fibre and traditional fibre sources on extrusion, kibble characteristics, and palatability of dog diets. Ital. J. Anim. Scie. 2022, 21, 764–770. [Google Scholar] [CrossRef]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs. European Pet Food Industry Federation: Brussels, Belgium, March 2019. Available online: http://www.fediaf.org/images/FEDIAF_Nutritional_Guidelines_2019_Update_030519.pdf (accessed on 18 February 2022).
- Zanotto, D.L.; Bellaver, C. Método de determinação da granulometria de ingredientes para uso em rações de suínos e aves. In Comunicado Técnico EMBRAPA—Suíno e Aves. CT 215 EMBRAPA—CNPSA; Empresa Brasileira de Pesquisa Agropecuaria, Centro Nacional de Pesuisa de Suinos e Aves – Ministerio da Agricultura e do Abastecimento: Concordia, SC, Dezembro, 1996; pp. 1–5. ISSN 0100-8862. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2010. [Google Scholar]
- Hendrix, D.L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissue. Crop. Sci. 1993, 25, 1306–1311. [Google Scholar] [CrossRef]
- Hoseney, R.C. Estimation of degree of cook (measurement of starch gelatinization). In Feed Manufacturing Technology IV; McEllhiney, R.R., Ed.; AFIA: Arlington, TX, USA, 1994; pp. 560–561. [Google Scholar]
- Sá, F.C.; Vasconcellos, R.S.; Brunetto, M.A.; Filho, F.O.R.; Gomes, M.O.S.; Carciofi, A.C. Enzyme use in kibble diets formulated with wheat bran for dogs: Effects on processing and digestibility. J. Anim. Physiol. Anim. Nutr. 2013, 97, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Hervera, M.; Baucells, M.D.; Blanch, F.; Castrillo, C. Prediction of digestible energy content of extruded dog food by in vitro analyses. J. Anim. Physiol. Anim. Nutr. 2007, 91, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.N.; Aldrich, G. Extruders and Expanders in Pet Food, Aquatic and Livestock Feeds; Agrimedia: Clenze, Germany, 2007; p. 400. [Google Scholar]
- Pacheco, P.D.G.; Putarov, T.C.; Baller, M.A.; Peres, F.M.; Loureiro, B.A.; Carciofi, A.C. Thermal energy application on extrusion and nutritional characteristics of dog foods. Anim. Feed Sci. Technol. 2018, 243, 52–63. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS® User’s Guide: Statistics; Version 9.1 Edition; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Altan, A.; McCarthy, K.L.; Maskan, M. Effect of screw configuration and raw material on some properties of barley extrudates. J. Food Eng. 2008, 92, 377–382. [Google Scholar] [CrossRef]
- Upadhyay, A.; Sharma, H.K.; Sarkar, B.C. Optimization of carrot pomace powder incorporation on extruded product quality by response surface methodology. J. Food Qual. 2010, 33, 350–369. [Google Scholar] [CrossRef]
- Karkle, E.N.L.; Alavi, S.; Dogan, H. Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Res. Int. 2012, 46, 10–21. [Google Scholar] [CrossRef]
- Nieto, G.; Fernández-López, J.; Pérez-Álvarez, J.A.; Peñalver, R.; Ros-Berruezo, G.; Viuda-Martos, M. Valorization of Citrus Co-Products: Recovery of Bioactive Compounds and Application in Meat and Meat Products. Plants 2021, 10, 1069. [Google Scholar] [CrossRef]
- Hill, D.A. Fiber, texturized protein and extrusion. In Pet food Technology, 1st ed.; Kvamme, J.L., Phillips, T.D., Eds.; Watt Publishing Co.: Mt Morris, IL, USA, 2003; pp. 361–365. [Google Scholar]
- Levine, L. Engineering: Heat and Mass Balances Around Extruder Preconditioners I. Cereal Foods World 2014, 59, 152. [Google Scholar] [CrossRef]
- Streit, B. Thermal Versus Mechanical Energy in Pet Food Extrusion Cooking. 2015. Available online: http://www.petfoodindustry.com/articles/5364-thermal-versus-mechanical-energy-in-pet-food-extrusion-cooking?v=preview (accessed on 4 July 2017).
- Ding, Q.B.; Ainsworth, P.; Tucker, G.; Marson, H. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-expanded snacks. J. Food Eng. 2005, 66, 283–289. [Google Scholar] [CrossRef]
- Nelson, A.L. High Fiber Ingredients; Eagan Press handbook series; Eagan Press: St. Paul, MN, USA, 2001; pp. 45–62. [Google Scholar]
- Khanna, S.; Tester, R. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches. Food Hydrocoll. 2006, 20, 567–576. [Google Scholar] [CrossRef]
- Santos, E.; Rosell, C.M.; Collar, C. Gelatinization and retrogradation kinetics of high-fiber wheat flour blends: A calorimetric approach. Cereal Chem. 2008, 85, 455–463. [Google Scholar] [CrossRef]
- Robin, F.; Schuchmann, H.P.; Palzerc, S. Dietary fiber in extruded cereals: Limitations and Opportunities. Trends Food Sci. Technol. 2012, 28, 23–32. [Google Scholar] [CrossRef]
- Camire, M.E.; King, C.C. Protein and fiber supplementation effects on extruded cornmeal snack quality. J. Food Sci. 1991, 56, 760–763. [Google Scholar] [CrossRef]
- Jin, Z.; Hsieh, F.; Huff, E.E. Extrusion cooking of corn meal with soy fiber, salt, and sugar. Cereal Chem. 1994, 71, 227–234. [Google Scholar]
- Moraru, C.I.; Kokini, J.L. Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr. Rev. Food Sci. Food. Saf. 2003, 2, 120–138. [Google Scholar] [CrossRef]
- Koppel, K.; Monti, M.; Gibson, M.; Alavi, S.; Donfrancesco, B.D.; Carciofi, A.C. The Effects of Fiber Inclusion on Pet Food Sensory Characteristics and Palatability. Animals 2015, 5, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Loureiro, B.A.; Sakomura, N.K.; Vasconcellos, R.S.; Sembenelli, G.; Gomes, M.O.S.; Monti, M.; Malheiros, E.B.; Kawauchi, I.M.; Carciofi, A.C. Insoluble fibres, satiety and food intake in cats fed kibble diets. J. Anim. Physiol. Anim. Nutr. 2017, 101, 824–834. [Google Scholar] [CrossRef]
- Brunetto, M.A.; Sá, F.C.; Nogueira, S.P.; Gomes, M.; Pinarel, A.G.; Jeremias, J.T.; de Paula, F.J.; Carciofi, A.C. The intravenous glucose tolerance and postprandial glucose tests may present different responses in the evaluation of obese dogs. Br. J. Nutr. 2011, 106 (Suppl. S1), S194–S197. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, É.M.; Peixoto, M.C.; Putarov, T.C.; Monti, M.; Pacheco, P.D.G.; Loureiro, B.A.; Pereira, G.T.; Carciofi, A.C. The effects of age and dietary resistant starch on digestibility, fermentation end products in faeces and postprandial glucose and insulin responses of dogs. Arch. Anim. Nutr. 2019, 73, 485–504. [Google Scholar] [CrossRef]
- de O.S. Gomes, M.; Beraldo, M.C.; Putarov, T.C.; Brunetto, M.A.; Zaine, L.; Glória, M.B.; Carciofi, A.C. Old beagle dogs have lower faecal concentrations of some fermentation products and lower peripheral lymphocyte counts than young adult beagles. Br. J. Nutr. 2011, 106 (Suppl. S1), S187–S190. [Google Scholar] [CrossRef] [Green Version]
- Maria, A.P.J.; Ayane, L.; Putarov, T.C.; Loureiro, B.A.; Neto, B.P.; Casagrande, M.F.; Gomes, M.O.S.; Glória, M.B.A.; Carciofi, A.C. The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs. J. Anim. Sci. 2017, 95, 2452–2466. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Urena, L.J.; Cortes-Garcia, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Rakita, S.; Banjac, V.; Djuragic, O.; Cheli, F.; Pinotti, L. Soybean molasses in animal nutrition. Animals 2021, 11, 514. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can agro-industrial by-prod- ucts rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 2020, 10, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Branciari, R.; Galarini, R.; Trabalza-Marinucci, M.; Miraglia, D.; Roila, R.; Acuti, G.; Giusepponi, D.; Dal Bosco, A.; Ranucci, D. Effects of olive mill vegetation water phenol metabolites transferred to muscle through animal diet on rabbit meat microbial quality. Sustainability 2021, 13, 4522. [Google Scholar] [CrossRef]
- Chiofalo, B.; Di Rosa, A.R.; Lo Presti, V.; Chiofalo, V.; Liotta, L. Effect of supplementation of herd diet with olive cake on the composition profile of milk and on the composition, quality and sensory profile of cheeses made therefrom. Animals 2020, 10, 977. [Google Scholar] [CrossRef]
- Chiofalo, V.; Liotta, L.; Lo Presti, V.; Gresta, F.; Di Rosa, A.R.; Chiofalo, B. Effect of Dietary Olive Cake Supplementation on Performance, Carcass Characteristics, and Meat Quality of Beef Cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef]
- European Commission. A European Green Deal. 2020. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 4 May 2022).
Citrus Pulp Pellet 1 | g/kg, as Fed 2 |
---|---|
Moisture | 107.2 |
Crude protein | 272.0 |
Starch | 33.9 |
Crude fat | 56.0 |
Crude fiber | 157.2 |
Total dietary fiber | 502.2 |
Ash | 94.0 |
Calcium | 22.5 |
Phosphorus | 0.05 |
Item | Experimental Formulations a | ||||
---|---|---|---|---|---|
CO | CPP5 | CPP10 | CPP15 | CPP20 | |
Dry formula | |||||
Maize | 570.2 | 520.2 | 470.2 | 420.2 | 370.2 |
Poultry by-product meal | 300 | 300 | 300 | 300 | 300 |
Citrus pulp pellet b | - | 50 | 100 | 150 | 200 |
Potassium chloride | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 |
Sodium chloride | 5 | 5 | 5 | 5 | 5 |
Vitamin and mineral mix c | 5 | 5 | 5 | 5 | 5 |
Choline chloride | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Antioxidant d | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Mold inhibitor e | 1 | 1 | 1 | 1 | 1 |
D-L methionine | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Coating | |||||
Poultry fat | 90 | 90 | 90 | 90 | 90 |
Palatant enhancer f | 20 | 20 | 20 | 20 | 20 |
Item | Experimental Formulations a | |||||
---|---|---|---|---|---|---|
CO | CPP5 | CPP10 | CPP15 | CPP20 | ||
dd b | ||||||
Dry Matter | ||||||
7 mm | 938 | 946 | 954 | 948 | 952 | |
5 mm | 949 | 950 | 947 | 951 | 947 | |
Starch | ||||||
7 mm | 342 | 320 | 315 | 294 | 267 | |
5 mm | 350 | 346 | 296 | 285 | 252 | |
Crude Protein | ||||||
7 mm | 286 | 281 | 274 | 263 | 271 | |
5 mm | 295 | 272 | 274 | 281 | 275 | |
Fat | ||||||
7 mm | 110 | 116 | 115 | 112 | 96 | |
5 mm | 105 | 112 | 122 | 119 | 100 | |
Crude Fiber | ||||||
7 mm | 26.8 | 24.6 | 31.1 | 40.2 | 52.1 | |
5 mm | 26.0 | 24.1 | 30.9 | 40.2 | 54.5 | |
Ash | ||||||
7 mm | 97.2 | 80.8 | 85.8 | 87.6 | 95.8 | |
5 mm | 81.1 | 104.7 | 87.1 | 91.6 | 93 | |
Gross Energy | ||||||
7 mm | 4211 | 4309 | 4253 | 4200 | 4139 | |
5 mm | 4234 | 4405 | 4298 | 4226 | 4307 |
Item | dd e | Experimental Formulations a | SEM b | p Value c | Contrast d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CPP5 | CPP10 | CPP15 | CPP20 | dd | CPP | dd × CPP | Linear | Quadratic | |||
In barrel moisture (%) | ||||||||||||
7 mm | 24.6 | 23.4 | 23.1 | 25.1 | 25.5 | 0.16 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 27.8 | 24.2 | 28.7 | 27.6 | 27.2 | 0.17 | 0.141 | <0.001 | ||||
Product Flow Rate (kg/h) | ||||||||||||
7 mm | 204.3 | 227 | 218.5 | 221.8 | 225.8 | 1.16 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 174.3 | 161 | 174.2 | 171.0 | 173.8 | 1.2 | 0.053 | 0.056 | ||||
Extruder open area (mm2/ton/h) | ||||||||||||
7 mm | 221.7 | 169.6 | 174.7 | 173.6 | 170.5 | 0.66 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 112.7 | 122.2 | 112.7 | 114.9 | 113.1 | 0.68 | 0.047 | 0.005 | ||||
Specific mechanical energy application (kW-h/ton) | ||||||||||||
7 mm | 12.5 | 9.77 | 10.4 | 8.87 | 8.35 | 0.13 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 15.7 | 13.7 | 12.8 | 10.7 | 9.6 | 0.13 | 0.009 | <0.001 | ||||
Pressure before extruder die (bar) | ||||||||||||
7 mm | 22.4 | 22.7 | 25.2 | 23.6 | 23.0 | 0.36 | <0.001 | <0.001 | <0.001 | 0.262 | 0.012 | |
5 mm | 18.8 | 18.9 | 16.2 | 18.9 | 15.5 | 0.34 | 0.001 | 0.428 | ||||
Motor amperage (A) | ||||||||||||
7 mm | 37.8 | 37.7 | 37.6 | 36.8 | 36.5 | 0.15 | <0.001 | <0.001 | <0.001 | <0.001 | 0.007 | |
5 mm | 36.4 | 37.2 | 37.7 | 36.3 | 35.8 | 0.15 | 0.006 | <0.001 | ||||
Mass temperature before extruder die (° C) | ||||||||||||
7 mm | 135.7 | 144.3 | 142.0 | 140.8 | 142 | 0.57 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 135.3 | 124.3 | 139.3 | 136.5 | 137.5 | 0.57 | <0.001 | 0.128 |
Item | dd e | Experimental Formulations a | SEM b | p Value c | Contrast d | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | CPP5 | CPP10 | CPP15 | CPP20 | dd | CPP | dd × CPP | Linear | Quadratic | |||
Piece volume (mm3) | ||||||||||||
7 mm | 49.3 | 39.7 | 31.1 | 31.6 | 34.8 | 0.53 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 43.1 | 41.1 | 40.4 | 38.9 | 37.4 | 0.55 | 0.024 | 0.945 | ||||
Radial expansion rate | ||||||||||||
7 mm | 10.7 | 7.56 | 6.31 | 6.1 | 6.16 | 0.13 | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 | |
5 mm | 13.9 | 12.7 | 11.8 | 10.5 | 9.8 | 0.14 | <0.001 | 0.670 | ||||
Specific length (mm/g) | ||||||||||||
7 mm | 2.31 | 2.16 | 1.98 | 2.08 | 2.18 | 0.02 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 3.75 | 3.75 | 4.13 | 4.39 | 4.64 | 0.02 | <0.001 | 0.054 | ||||
Kibble bulk density after extruder (g/L) | ||||||||||||
7 mm | 471 | 507 | 537 | 530 | 527 | 1.63 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 332 | 346 | 324 | 342 | 342 | 1.69 | 0.036 | 0.189 | ||||
Piece density (g/cm3) | ||||||||||||
7 mm | 0.43 | 0.64 | 0.84 | 0.82 | 0.78 | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 0.40 | 0.43 | 0.43 | 0.44 | 0.46 | 0.006 | 0.058 | 0.662 | ||||
Cutting force (N) | ||||||||||||
7 mm | 21.9 | 29 | 72.2 | 74.6 | 59.7 | 0.81 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
5 mm | 21.3 | 26.9 | 26.4 | 30.1 | 29.2 | 0.81 | <0.001 | <0.001 | ||||
Starch gelatinization degree (%) e | ||||||||||||
7 mm | 90 | 89.9 | 80.8 | 81.4 | 82.5 | 0.71 | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 | |
5 mm | 95.5 | 94.8 | 92.9 | 94 | 89.6 | 0.82 | <0.001 | <0.001 | ||||
In vitro digestibility of organic matter | ||||||||||||
7 mm | 0.82 | 0.79 | 0.74 | 0.75 | 0.73 | 0.005 | 0.001 | <0.001 | <0.001 | <0.001 | 0.013 | |
5 mm | 0.81 | 0.80 | 0.78 | 0.76 | 0.73 | 0.005 | <0.001 | 0.156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cucinotta, S.; Oteri, M.; Baller, M.A.; Scarpim, L.B.; Goloni, C.; Chiofalo, B.; Carciofi, A.C. Effect of Citrus Pellet on Extrusion Parameters, Kibble Macrostructure, Starch Cooking and In Vitro Digestibility of Dog Foods. Animals 2023, 13, 745. https://doi.org/10.3390/ani13040745
Cucinotta S, Oteri M, Baller MA, Scarpim LB, Goloni C, Chiofalo B, Carciofi AC. Effect of Citrus Pellet on Extrusion Parameters, Kibble Macrostructure, Starch Cooking and In Vitro Digestibility of Dog Foods. Animals. 2023; 13(4):745. https://doi.org/10.3390/ani13040745
Chicago/Turabian StyleCucinotta, Salvatore, Marianna Oteri, Mayara Aline Baller, Lucas Bassi Scarpim, Camila Goloni, Biagina Chiofalo, and Aulus Cavalieri Carciofi. 2023. "Effect of Citrus Pellet on Extrusion Parameters, Kibble Macrostructure, Starch Cooking and In Vitro Digestibility of Dog Foods" Animals 13, no. 4: 745. https://doi.org/10.3390/ani13040745
APA StyleCucinotta, S., Oteri, M., Baller, M. A., Scarpim, L. B., Goloni, C., Chiofalo, B., & Carciofi, A. C. (2023). Effect of Citrus Pellet on Extrusion Parameters, Kibble Macrostructure, Starch Cooking and In Vitro Digestibility of Dog Foods. Animals, 13(4), 745. https://doi.org/10.3390/ani13040745