Effects of Dietary Wheat Bran on Ileal and Hindgut Digestibility of Nutrient in Pigs and Influences of Ileal Digesta Collection on Proceeding Fecal Nutrient Digestibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Feeding
2.2. Sample Collection
2.3. Chemical Analyses
2.4. Calculations
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; de Lange, C.F. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Kornegay, E.T.; Webb, K.E., Jr. Effects of fiber and virginiamycin on nutrient absorption, nutrient retention and rate of passage in growing swine. J. Anim. Sci. 1984, 59, 400–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urriola, P.E.; Cervantes-Pahm, S.K.; Stein, H.H. Fiber in Swine Nutrition. In Sustainable Swine Nutrition; Chiba, L., Ed.; Wiley-Blackwell: Ames, IA, USA, 2012; pp. 255–261. [Google Scholar]
- Zhao, J.; Liu, P.; Huang, C.; Liu, L.; Li, E.; Zhang, G.; Zhang, S. Effect of wheat bran on apparent total tract digestibility, growth performance, fecal microbiota and their metabolites in growing pigs. Anim. Feed Sci. Technol. 2018, 239, 14–26. [Google Scholar] [CrossRef]
- Chassé, É.; Guay, F.; Bach Knudsen, K.E.; Zijlstra, R.T.; Létourneau-Montminy, M.-P. Toward precise nutrient value of feed in growing pigs: Effect of meal size, frequency and dietary fibre on nutrient utilisation. Animals 2021, 11, 2598. [Google Scholar] [CrossRef]
- Wenk, C. The role of dietary fibre in the digestive physiology of the pig. Anim. Feed Sci. Technol. 2001, 90, 21–33. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Nyachoti, C.M. Nutritional and metabolic consequences of feeding high-fiber diets to swine: A review. Engineering 2017, 3, 716–725. [Google Scholar] [CrossRef]
- Li, H.; Yin, J.; Tan, B.; Chen, J.; Zhang, H.; Li, Z.; Ma, X. Physiological function and application of dietary fiber in pig nutrition: A review. Anim. Nutr. 2021, 7, 259–267. [Google Scholar] [CrossRef]
- Le Goff, G.; van Milgen, J.; Noblet, J. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows. Anim. Sci. 2002, 74, 503–515. [Google Scholar] [CrossRef]
- Navarro, D.M.D.L.; Bruininx, E.M.A.M.; de Jong, L.; Stein, H.H. Effects of inclusion rate of high fiber dietary ingredients on apparent ileal, hindgut, and total tract digestibility of dry matter and nutrients in ingredients fed to growing pigs. Anim. Feed Sci. Technol. 2019, 248, 1–9. [Google Scholar] [CrossRef]
- Petry, A.L.; Masey O’Neill, H.V.; Patience, J.F. Xylanase, and the role of digestibility and hindgut fermentation in pigs on energetic differences among high and low energy corn samples. J. Anim. Sci. 2019, 97, 4293–4297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Chen, L.; Huang, Q.; Meng, L.; Zhong, R.; Liu, C.; Tang, X.; Zhang, H. Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs. Livest. Sci. 2015, 174, 53–58. [Google Scholar] [CrossRef]
- Mok, C.H.; Lee, J.H.; Kim, B.G. Effects of exogenous phytase and β-mannanase on ileal and total tract digestibility of energy and nutrient in palm kernel expeller-containing diets fed to growing pigs. Anim. Feed Sci. Technol. 2013, 186, 209–213. [Google Scholar] [CrossRef]
- Cervantes-Pahm, S.K.; Liu, Y.; Evans, A.; Stein, H.H. Effect of novel fiber ingredients on ileal and total tract digestibility of energy and nutrients in semi-purified diets fed to growing pigs. J. Sci. Food Agric. 2014, 94, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Shipley, C.F.; Easter, R.A. Technical note: A technique for inserting a T-cannula into the distal ileum of pregnant sows. J. Anim. Sci. 1998, 76, 1433–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.G.; Stein, H.H. A spreadsheet program for making a balanced Latin square design. Rev. Colomb. Cienc. Pecu. 2009, 22, 591–596. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Choi, H.; Kim, B.G. A low-fiber diet requires a longer adaptation period before collecting feces of pigs compared with a high-fiber diet in digestibility experiments using the inert marker method. Anim. Feed Sci. Technol. 2019, 256, 114254. [Google Scholar] [CrossRef]
- Kim, B.G.; Lee, S.A.; Park, K.R.; Stein, H.H. At least 3 days of adaptation are required before indigestible markers (chromium, titanium, and acid insoluble ash) are stabilized in the ileal digesta of 60-kg pigs, but values for amino acid digestibility are affected by the marker. J. Anim. Sci. 2020, 98, skaa027. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Blavi, L.; Navarro, D.M.D.L.; Stein, H.H. Addition of hydrochloric acid to collection bags or collection containers did not change basal endogenous losses or ileal digestibility of amino acid in corn, soybean meal, or wheat middlings fed to growing pigs. Anim. Biosci. 2021, 34, 1632. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Kong, C.; Adeola, O. Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australas. J. Anim. Sci. 2014, 27, 917. [Google Scholar]
- Wilfart, A.; Montagne, L.; Simmins, P.H.; van Milgen, J.; Noblet, J. Sites of nutrient digestion in growing pigs: Effect of dietary fiber. J. Anim. Sci. 2007, 85, 976–983. [Google Scholar]
- Rosenfelder-Kuon, P.; Strang, E.J.P.; Spindler, H.K.; Eklund, M.; Mosenthin, R. Ileal starch digestibility of different cereal grains fed to growing pigs. J. Anim. Sci. 2017, 95, 2711–2717. [Google Scholar] [CrossRef]
- Huang, Q.; Su, Y.B.; Li, D.F.; Liu, L.; Huang, C.F.; Zhu, Z.P.; Lai, C.H. Effects of inclusion levels of wheat bran and body weight on ileal and fecal digestibility in growing pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, N.W.; Liu, D.W.; Li, D.F.; Stein, H.H. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. J. Anim. Sci. 2016, 94, 3012–3021. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Sung, J.; Kim, B. Neutral detergent fiber as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs. Asian-Australas. J. Anim. Sci. 2020, 33, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Bach Knudsen, K.E. Triennial growth symposium: Effects of polymeric carbohydrates on growth and development in pigs. J. Anim. Sci. 2011, 89, 1965–1980. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Lindemann, M.D.; Cromwell, G.L.; Balfagon, A.; Agudelo, J.H. The correlation between passage rate of digesta and dry matter digestibility in various stages of swine. Livest. Sci. 2007, 109, 81–84. [Google Scholar] [CrossRef]
- Kim, B.G.; Kil, D.Y.; Stein, H.H. In growing pigs, the true ileal and total tract digestibility of acid hydrolyzed ether extract in extracted corn oil is greater than in intact sources of corn oil or soybean oil. J. Anim. Sci. 2013, 91, 755–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Jo, Y.Y.; Kim, B.G. Energy concentrations and nutrient digestibility of high-fiber ingredients for pigs based on in vitro and in vivo assays. Anim. Feed Sci. Technol. 2022, 294, 115507. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.F.; Gao, L.X.; Zhao, F.; Lu, Q.P.; Sa, R.N. Effect of graded levels of fiber from alfalfa meal on intestinal nutrient and energy flow, and hindgut fermentation in growing pigs. J. Anim. Sci. 2013, 91, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Iyayi, E.A.; Adeola, O. Quantification of short-chain fatty acids and energy production from hindgut fermentation in cannulated pigs fed graded levels of wheat bran. J. Anim. Sci. 2015, 93, 4781–4787. [Google Scholar] [CrossRef]
- de-Oliveira, L.D.; Takakura, F.S.; Kienzle, E.; Brunetto, M.A.; Teshima, E.; Pereira, G.T.; Vasconcellos, R.S.; Carciofi, A.C. Fibre analysis and fibre digestibility in pet foods–A comparison of total dietary fibre, neutral and acid detergent fibre and crude fibre. J. Anim. Physiol. Anim. Nutr. 2012, 96, 895–906. [Google Scholar] [CrossRef]
- Sulabo, R.C.; Mathai, J.K.; Usry, J.L.; Ratliff, B.W.; McKilligan, D.M.; Moline, J.D.; Xu, G.; Stein, H.H. Nutritional value of dried fermentation biomass, hydrolyzed porcine intestinal mucosa products, and fish meal fed to weanling pigs. J. Anim. Sci. 2013, 91, 2802–2811. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ragland, D.; Adeola, O. Comparison of apparent ileal and total tract digestibility of calcium in calcium sources for pigs. Can. J. Anim. Sci. 2016, 96, 563–569. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.D. Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
Item, % | Ingredient | ||
---|---|---|---|
Wheat | Soybean Meal | Wheat Bran | |
Gross energy, kcal/kg | 4009 | 4413 | 4234 |
Dry matter | 90.2 | 91.6 | 90.4 |
Crude protein | 13.0 | 48.9 | 16.3 |
Ether extract | 2.04 | 2.39 | 4.17 |
Amylase-treated neutral detergent fiber | 8.27 | 5.40 | 39.64 |
Ash | 1.64 | 5.46 | 4.42 |
Calcium | 0.10 | 0.28 | 0.08 |
Phosphorus | 0.33 | 0.66 | 0.95 |
Item | Wheat Bran (%) | ||
---|---|---|---|
0 | 20 | 40 | |
Ingredient, % | |||
Ground wheat | 31.1 | 32.4 | 33.5 |
Soybean meal, 49% crude protein | 23.0 | 23.0 | 23.0 |
Cornstarch | 40.0 | 20.0 | - |
Wheat bran | - | 20.0 | 40.0 |
Soybean oil | 3.0 | 2.0 | 1.0 |
Ground limestone | 0.8 | 1.1 | 1.1 |
Dicalcium phosphate | 0.7 | 0.1 | - |
Vitamin-mineral premix 1 | 0.5 | 0.5 | 0.5 |
Chromic oxide | 0.5 | 0.5 | 0.5 |
Salt | 0.4 | 0.4 | 0.4 |
Calculated composition 2, % | |||
Crude protein | 15.41 | 18.78 | 22.12 |
Ether extract | 4.09 | 3.98 | 3.87 |
Amylase-treated neutral detergent fiber | 3.81 | 11.85 | 19.87 |
Calcium | 0.56 | 0.53 | 0.53 |
Total phosphorus | 0.39 | 0.47 | 0.64 |
Standardized total tract digestible phosphorus | 0.25 | 0.28 | 0.37 |
Analyzed composition 3, % | |||
Gross energy, kcal/kg | 4050 | 4118 | 4080 |
Dry matter | 92.1 | 90.6 | 90.0 |
Crude protein | 16.1 | 20.1 | 22.0 |
Ether extract | 4.17 | 4.23 | 4.01 |
Amylase-treated neutral detergent fiber | 3.97 | 11.44 | 19.72 |
Ash | 4.13 | 4.69 | 5.40 |
Calcium | 0.69 | 0.63 | 0.68 |
Phosphorus | 0.44 | 0.48 | 0.63 |
Item, % | Wheat Bran, % | SEM | p-Value | |||
---|---|---|---|---|---|---|
0 | 20 | 40 | Linear | Quadratic | ||
Number of observations | 5 | 5 | 6 | |||
Gross energy | ||||||
AID | 84.5 | 75.0 | 62.5 | 1.9 | <0.001 | 0.542 |
ATTD | 92.1 | 84.8 | 75.7 | 0.6 | <0.001 | 0.267 |
HD | 7.6 | 9.8 | 13.2 | 2.3 | 0.108 | 0.842 |
Dry matter | ||||||
AID | 82.5 | 70.4 | 56.8 | 1.9 | <0.001 | 0.747 |
ATTD | 91.1 | 83.4 | 74.2 | 0.7 | <0.001 | 0.398 |
HD | 8.6 | 13.0 | 17.4 | 2.4 | 0.021 | 0.988 |
Organic matter | ||||||
AID | 85.4 | 75.2 | 62.4 | 1.8 | <0.001 | 0.574 |
ATTD | 93.7 | 87.0 | 78.8 | 0.5 | <0.001 | 0.252 |
HD | 8.3 | 11.8 | 16.4 | 2.1 | 0.016 | 0.844 |
Crude protein | ||||||
AID | 78.3 | 77.3 | 68.9 | 2.4 | 0.013 | 0.232 |
ATTD | 89.5 | 88.3 | 84.1 | 0.6 | <0.001 | 0.082 |
HD | 11.2 | 11.0 | 15.2 | 2.7 | 0.304 | 0.519 |
Ether extract | ||||||
AID | 90.6 | 87.9 | 83.4 | 2.5 | 0.061 | 0.780 |
ATTD | 80.5 | 68.5 | 53.6 | 6.1 | 0.007 | 0.848 |
HD | –10.1 | –19.4 | –29.8 | 8.2 | 0.108 | 0.956 |
Amylase-treated neutral detergent fiber | ||||||
AID | 12.5 | 26.1 | 33.3 | 9.5 | 0.151 | 0.788 |
ATTD | 32.6 | 40.4 | 42.5 | 2.8 | 0.027 | 0.444 |
HD | 19.4 | 14.3 | 9.2 | 9.5 | 0.467 | 0.999 |
Calcium | ||||||
AID | 25.7 | 22.0 | 27.5 | 5.3 | 0.812 | 0.515 |
ATTD | 45.3 | 40.4 | 37.5 | 4.8 | 0.249 | 0.874 |
HD | 19.5 | 18.4 | 10.1 | 3.8 | 0.085 | 0.478 |
Phosphorus | ||||||
AID | 41.4 | 21.2 | 18.5 | 4.9 | 0.005 | 0.175 |
ATTD | 45.3 | 31.7 | 21.3 | 4.9 | 0.004 | 0.795 |
HD | 3.9 | 10.5 | 2.8 | 5.9 | 0.900 | 0.346 |
Item, % | Fecal Collection Period: | Before Ileal Collection | After Ileal Collection | RMSE | p-Value 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wheat Bran (%): | 0 | 20 | 40 | 0 | 20 | 40 | Time | Lin | Quad | T × L | T × Q | ||
Number of observations | 5 | 5 | 6 | 5 | 5 | 6 | |||||||
Gross energy | 92.1 | 84.8 | 75.7 | 92.1 | 83.3 | 75.3 | 1.5 | 0.270 | <0.001 | 0.660 | 0.754 | 0.287 | |
Dry matter | 91.1 | 83.4 | 74.2 | 90.9 | 81.8 | 73.7 | 1.5 | 0.167 | <0.001 | 0.864 | 0.849 | 0.271 | |
Organic matter | 93.7 | 87.0 | 78.8 | 93.7 | 85.6 | 78.1 | 1.2 | 0.076 | <0.001 | 0.602 | 0.479 | 0.269 | |
Crude protein | 89.5 | 88.3 | 84.1 | 89.0 | 86.6 | 84.2 | 1.4 | 0.196 | <0.001 | 0.191 | 0.631 | 0.201 | |
Ether extract | 80.5 | 68.5 | 53.6 | 78.0 | 62.1 | 49.7 | 10.3 | 0.253 | <0.001 | 0.969 | 0.874 | 0.684 | |
aNDF | 32.6 | 40.4 | 42.5 | 38.6 | 32.1 | 38.4 | 6.3 | 0.405 | 0.125 | 0.521 | 0.111 | 0.104 | |
Calcium | 45.3 | 40.4 | 37.5 | 37.3 | 34.3 | 40.1 | 10.4 | 0.329 | 0.587 | 0.537 | 0.247 | 0.697 | |
Phosphorus | 45.3 | 31.7 | 21.3 | 37.5 | 26.7 | 26.0 | 10.5 | 0.475 | <0.001 | 0.410 | 0.175 | 0.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, A.R.; Son, J.; Kim, B.G. Effects of Dietary Wheat Bran on Ileal and Hindgut Digestibility of Nutrient in Pigs and Influences of Ileal Digesta Collection on Proceeding Fecal Nutrient Digestibility. Animals 2023, 13, 799. https://doi.org/10.3390/ani13050799
Son AR, Son J, Kim BG. Effects of Dietary Wheat Bran on Ileal and Hindgut Digestibility of Nutrient in Pigs and Influences of Ileal Digesta Collection on Proceeding Fecal Nutrient Digestibility. Animals. 2023; 13(5):799. https://doi.org/10.3390/ani13050799
Chicago/Turabian StyleSon, Ah Reum, Jeonghyeon Son, and Beob Gyun Kim. 2023. "Effects of Dietary Wheat Bran on Ileal and Hindgut Digestibility of Nutrient in Pigs and Influences of Ileal Digesta Collection on Proceeding Fecal Nutrient Digestibility" Animals 13, no. 5: 799. https://doi.org/10.3390/ani13050799
APA StyleSon, A. R., Son, J., & Kim, B. G. (2023). Effects of Dietary Wheat Bran on Ileal and Hindgut Digestibility of Nutrient in Pigs and Influences of Ileal Digesta Collection on Proceeding Fecal Nutrient Digestibility. Animals, 13(5), 799. https://doi.org/10.3390/ani13050799