MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea leucorodia leucorodia) under Climate Change in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Species Occurrence Data
2.2. Environmental Variables
2.3. MaxEnt Model Prediction
2.4. Habitat Distribution Change and the Core Distributional Shifts
3. Results
3.1. Model Performance and Potential Distribution of Current Wintering Habitat
3.2. Major Environmental Factors Affecting the Distribution of Wintering Spoonbills
3.3. Future Changes in Suitable Habitat Area
3.4. The Shift of the Core Suitable Habitat Center under Different Climate Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skea, J.; Sjukla, P.; Reisinger, A.; Slade, R.; Pathak, M.; Some, P.; Vyas, P.; Fradera, R.; Belkacemi, M.; Hasija, A.; et al. IPCC Climate Change 2022: Mitigation of Climate Change, Working Group III; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Araújo, M.B.; Rahbek, C. How Does Climate Change Affect Biodiversity? Science 2006, 313, 1396–1397. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, T.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araujo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengard, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, 6332. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.A.; Skagen, S.K.; Melcher, C.P. Implications of Climate Change for Wetland Dependent Birds in the Prairie Pothole Region. Wetlands 2016, 36 (Suppl. 2), 445–459. [Google Scholar] [CrossRef]
- Valerie, S.; Skagen, S.K.; Noon, B.R.; Mark, B.R. Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A. PLoS ONE 2014, 9, e96747. [Google Scholar] [CrossRef] [Green Version]
- Borger, L.; Nudds, T.D. Fire, humans, and climate: Modeling distribution dynamics of boreal forest waterbirds. Ecol. Appl. 2014, 24, 121–141. [Google Scholar] [CrossRef]
- Sparks, T.; Crick, H.; Elkins, N.; Moss, R.; Moss, S.; Mylne, K. Birds, weather and climate. Weather 2002, 57, 399–410. [Google Scholar] [CrossRef]
- Gregory, R.D.; Willis, S.G.; Jiguet, F.; Voříšek, P.; Klvaňová, A.; Strien, A.V.; Huntley, B.; Collingham, Y.C.; Couvet, D.; Green, R.E. An indicator of the impact of climatic change on European bird populations. PLoS ONE 2009, 4, e4678. [Google Scholar] [CrossRef] [Green Version]
- Niven, D.K.; Butcher, G.S.; Bancroft, G.T. Birds and Climate Change: Ecological Disruption in Motion; National Audubon Society: New York, NY, USA, 2009. [Google Scholar]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Maclean, I.M.D.; Austin, G.E.; Rehfisch, M.M.; Blew, J.; Crowe, O.; Delany, S.; Devos, K.; Deceuninck, B.; Günther, K.; Laursen, K.; et al. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob. Chang. Biol. 2008, 14, 2489–2500. [Google Scholar] [CrossRef]
- Hu, J.; Hu, H.; Jiang, Z. The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia 2010, 164, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Papeş, M.; Gaubert, P. Modelling ecological niches from lownumber of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers. Distrib. 2007, 13, 890–902. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudı´k, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Wiensa, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. 2), 19729–19736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Hannah, L.; Andelman, S.; Midgley, G.; Araújo, M.; Hughes, G.; Manne, L.; Martinez-Meyer, E.; Pearson, R. Planning for Climate Change: Ide-ntifying Minimum Dispersal Corridors for the Cape Proteaceae. Conserv. Biol. 2010, 19, 1063–1074. [Google Scholar] [CrossRef]
- Pyke, C.R.; Andelman, S.J.; Midgley, G. Identifying priority areas for bioclimatc representation under climate change: A case study for Proteaceae in the Cape Floristic Region, South Africa. Biol. Conserv. 2005, 125, 1–9. [Google Scholar] [CrossRef]
- Peterson, A.T.; Ortega-Huerta, M.A.; Bartley, J.; Sanchez-Cordero, V.; Soberon, J.; Buddemeier, R.H.; Stockwell, D.R.B. Future projections for Mexican faunas under global climate change scenarios. Nature 2002, 416, 626–629. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 2009, 32, 66–77. [Google Scholar] [CrossRef]
- Busby, J.R. BIOCLIM: A bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, T.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Peterson, A.T. Predicting species distri-butions from small numbers of occurrence records: A test case using cryptic geckos in madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Wintle, B.A.; Mccarthy, M.A.; Parris, K.M.; Burgman, M.A. Precisionand bias of methods for estimating point survey detectionprobabilities. Ecol. Appl. 2004, 14, 703–712. [Google Scholar] [CrossRef]
- Li, M.; Zhou, H.; Bai, J.; Zhang, T.; Liu, Y.; Ran, J. Distribution of Breeding Population and Predicting Future Habitat under Climate Change of Black-Necked Crane (Grus nigricollis Przevalski, 1876) in Shaluli Mountains. Animals 2022, 12, 2594. [Google Scholar] [CrossRef]
- Almalki, M.; AlRashidi, M.; O’Connell, M.; Shobrak, M.; Székely, T. Modelling the distribution of wetland birds on the Red Sea coast in the Kingdom of Saudi Arabia. Appl. Ecol. Environ. Res. 2015, 13, 67–84. [Google Scholar] [CrossRef]
- Bertrand, R.; Perez, V.; Gégout, G.C. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: The case of Quercus pubescens in France. Glob. Chang. Biol. 2012, 18, 2648–2660. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Li, Y.; Xu, N.; Gao, Y.; Guo, L.; Huo, T.; Peng, C.; Meng, F. Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models. Ecol. Indic. 2021, 133, 108399. [Google Scholar] [CrossRef]
- Mafuwe, K.; Broadley, S.; Moyo, S. Use of maximum entropy (Maxent) niche modelling to predict the occurrence of threatened freshwater species in a biodiversity hotspot of Zimbabwe. Afr. J. Ecol. 2022, 60, 557–565. [Google Scholar] [CrossRef]
- The IUCN Red List of Threatened Species 2016. Available online: https://www.iucnredlist.org/species/22697555/155460986 (accessed on 20 November 2022).
- List of National Key Protected Wildlife in China. Available online: http://www.forestry.gov.cn/main/5461/20210205/122418860831352.html (accessed on 20 November 2022).
- Jiang, Z.; Jiang, J.; Wang, Y.; Zhang, E.; Zhang, Y.; Li, L.; Xie, F.; Cai, B.; Cao, L.; Zheng, G.; et al. Red List of China’s Vertebrates. Biodivers. Sci. 2016, 24, 500–551. [Google Scholar] [CrossRef] [Green Version]
- Overdijk, O.; Lok, T.; Olff, H.; Piersma, T. Home Range, Habitat Selection, and Foraging Rhythm in Mauritanian Spoonbills (Platalea leucorodia balsaci): A Satellite Tracking Study. Waterbirds 2013, 36, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Xing, B.J.; Yu, H.C.; Chen, H.; Gao, Z.S.; Zhang, Y.X.; Cui, S.B. Study on brooding behavior of White Spoonbill in Qixinghe National Nature Reserve, Heilongjiang Province. Wetl. Sci. 2019, 17, 166–171. [Google Scholar] [CrossRef]
- Zheng, G.M. A Checklist on the Classification and Distribution of the Birds of the China, 3rd ed.; Science Press: Beijing, China, 2018; (In Chinese with English Abstract). [Google Scholar]
- Sanderson, F.J.; Donald, P.F.; Pain, D.J.; Burfield, I.J.; van Bommel, F.P.J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 2006, 131, 93–105. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Martin, T.G.; Rhodes, J.R. Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta-analysis. Glob. Chang. Biol. 2012, 18, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Bellisario, B. Conserving migration in a changing climate, a case study: The Eurasian Spoonbill, Platalea leucorodia leucorodia. Biol. Conserv. 2018, 217, 222–231. [Google Scholar] [CrossRef]
- Wu, C.S.; Xu, T. Observation on ecological habits of White Spoonbill. Wild Anim. 1983, 5, 5–7, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, B.S.; Gao, Z.S.; Cui, S.B.; Zhang, Y.X.; Chen, H. Breeding season behavior ethogram and PAE coding system of Eurasian Spoonbill (Platalea leucorodia). Chin. Agric. Sci. Bull. 2014, 30, 259–265, (In Chinese with English Abstract). [Google Scholar]
- Liu, J.S.; Wang, D.H.; Sun, R.Y. Growth and Development of Homeothermy in Nestlings of Eurasian Spoonbill (Platalea eucorodia). Zool. Res. 2003, 24, 249–253, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Garaita, R.; Arizaga, J. The benefits of a constructed lagoon for the conservation of Eurasian Spoonbills (Platalea leucorodia) in a tidal marsh. J. Nat. Conserv. 2015, 25, 35–41. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.K.; Miu, L.J.; Xie, G.Y.; Yuan, F.K.; Huang, Y.; Xu, P. The effect of cli-mate in wintering area on the population size of the Eurasian Spoonbill (Platalea leucorodia) in the Poyang Lake National Nature Reserve, China. Acta Ecol. Sin. 2014, 34, 5522–5529, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Hu, W.H.; Yu, G.Q.; He, S.C.; Liu, Z.Y.; Xu, W.B. Overwintering ecology of white Spoonbill. Territ. Nat. Resour. Study 1999, 1, 69–71, (In Chinese with English Abstract). [Google Scholar]
- Gao, E.H.; (Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing, China); Wang, Z.C.; (Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing, China). Personal communication, Unpublished work. 2022.
- Geng, G.B. Take Efficient Efforts To Protect Endangered Wildlife. Green China 2016, 3, 24–27, (In Chinese with English Abstract). [Google Scholar]
- Sun, L.; Xu, H.G.; Wu, J.; Lei, J.C.; Cui, P. Impact of Climate Change on Distribution of Breeding Places of White-Naped Crane in China. J. Ecol. Rural. Environ. 2014, 30, 595–600, (In Chinese with English Abstract). [Google Scholar]
- Son, S.J.; Kang, J.H.; Lee, S.K.; Kim, I.K.; Yoo, J.C. Breeding and wintering home ranges of the black-faced spoonbill Platalea minor. J. Asia-Pac. Biodivers. 2020, 13, 7–12. [Google Scholar] [CrossRef]
- Zhu, B.R. Research on Breeding Habitat of Eurasian Spoonbill (Platalea leucorodia) Based on NDVI. Master’s Thesis, Northeast Forestry University, Heilongjiang, China, 2014. (In Chinese with English Abstract). [Google Scholar]
- Deng, Q.H.; Niu, E.W. Research on the Breeding Ecology of Platalea leucorodia in Dalaihu Ulan Noel Natural Reserve. J. Anhui Agric. Sci. 2012, 40, 6559–6560, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jin, X.; Ren, X.T.; Peng, H.B.; Ma, Q.; Tang, C.D.; Niu, D.L.; Ma, Z.J. Habitat use and factors affecting distribution of wintering waterbirds in the wetland restoration areaat Chongming Dongtan. Chin. J. Zool. 2013, 48, 686–692, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cui, S.B. The preliminary study on numerical distribution and breeding behaboirs of spoonbill Platalea leucorodia in Qixinghe Nation Natural Reserve of Heilongjiang province. Heilongjiang Sci. 2017, 8, 57–59, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Wu, T.; Li, W.; Ji, J.; Xin, X.; Li, L.; Wang, Z.; Zhang, Y.; Li, J.; Zhang, F.; Wei, M.; et al. Global carbon budgets simulated by the Beijing Climate Center C-limate System Model for the last century. J. Geophys. Res. Atmos. 2013, 118, 4326–4347. [Google Scholar] [CrossRef]
- Xin, X.G.; Wu, T.W.; Li, J.L.; Wang, Z.Z.; Li, W.P.; Wu, F.H. How well does BCC_CSM1.1 reproduce the 20th Century Climate Change over China? Atmos. Ocean. Sci. Lett. 2013, 6, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; Volume 1535. [Google Scholar]
- Resource and Environment Science and Data Center. Spatial Distribution of 1 Million Vegetation Types in China. Available online: https://www.resdc.cn/data.aspx?DATAID=122 (accessed on 6 August 2022).
- Resource and Environment Science and Data Center. Multi-Period Land Use Remote Sensing Monitoring Data in China (CNLUCC). Available online: http://www.resdc.cn/DOI (accessed on 6 August 2022).
- National Catalogue Service for Geographic Information. 1 Million Public Version of Basic Geographic Information Data. Available online: http://www.webmap.cn/ (accessed on 6 August 2022).
- Thuiller, W.; Broennimann, O.; Hughes, G.; Alkemade, J.R.M.; Midgley, G.F.; Corsi, F. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Chang. Biol. 2006, 12, 424–440. [Google Scholar] [CrossRef]
- Stanton, J.C.; Pearson, R.G.; Horning, N.; Ersts, P.; Akcakaya, H.R. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 2012, 3, 349–357. [Google Scholar] [CrossRef]
- Lemke, D.; Hulme, P.E.; Brown, J.A.; Tadesse, W. Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. For. Ecol. Manag. 2011, 262, 139–149. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.C.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Raes, N.; Steege, H.T. A null model for significance testing of presence only species distribution models. Ecography 2007, 30, 727–736. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xie, Y.B.; Batbayar, N.; Zhu, B.G.; Dong, S.B.; Barma, A. Discussion of existing protection for three waterbirds’ habitats in the Yellow River basin nature reserves, based on satellite tracking. Biodivers. Sci. 2020, 28, 1483–1495, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sullender, B.K.; Barzen, J.; Silbernagel, J. Foraging success and habitat selection of the Eurasian Spoonbill (Platalea leucorodia) at Poyang Lake, China. Waterbirds 2016, 39, 356–364. [Google Scholar] [CrossRef]
- Liu, J.S.; Yang, X.Z.; Li, Y.F.; Han, Z.Y.; Wang, Y.J. Observation on the Breeding Habit of White Spoonbill and the Development of Its Nesting. Chin. J. Zool. 1997, 32, 249–253, (In Chinese with English Abstract). [Google Scholar]
- Guan, L.; Jing, L.; Lei, J.L.; Lei, J.C. Distribution of wintering waterbirds and assessment of their habitat in Dongting Lake, China. J. Beijing For. Univ. 2016, 38, 64–70, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.G. A Comparative Study on the Habitats of the White Spoonbill (Platalea leucorodia) in Different Periods. Master’s Thesis, Northeast Forestry University, Heilongjiang, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Banda, L.B.; Tassie, N. Modeling the distribution of four-bird species under climate change in Ethiopia. Ethiop. J. Biol. Sci. 2018, 17, 1–17, (In Chinese with English Abstract). [Google Scholar]
- Cao, M.C.; Wu, J.; Wu, W.W.; Xu, H.G. The impact of climate change on birds: A review. Biodivers. Sci. 2012, 20, 108–115, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wormworth, J.; Mallon, D.K. Bird Species and Climate Change: A Summary of The Global Status Report, Austrialia, November 2006. Available online: https://wwfint.awsassets.panda.org/downloads/wwfsummaryfinal.pdf (accessed on 6 August 2022).
- Wormworth, J.; Mallon, D.K. Bird Species and Climate Change-The Global Status Report, Austrialia, August 2006. Available online: https://wwfint.awsassets.panda.org/downloads/birdsclimatereportfinal.pdf(accessed on 6 August 2022).
- Wu, J.G.; Shi, Y.J. Attribution index for changes in migratory bird distributions:The role of climate change over the past 50 years in China. Ecol. Inform. 2016, 31, 147–155. [Google Scholar] [CrossRef]
- Li, X.Y.; Clinton, N.; Si, Y.L.; Liao, J.S.; Liang, l.; Gong, P. Projected impacts of climate change on protected birds and nature reserves in China. Sci. Bull. 2015, 19, 1644–1653. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Guan, L.; Zhao, H.; Huang, Y.; Hu, J. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol. Inform. 2021, 63, 101324. [Google Scholar] [CrossRef]
- Tingley, M.W.; Monahan, W.B.; Beissinger, S.R.; Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. USA 2009, 106 (Suppl. 2), 19637–19643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, C.M.; Baker, N.E.; Brewer, M.J.; Lennon, J.J. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 2013, 16, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.; Powell, A.N. Potential effects of climate change on the distribution of waterbirds in the prairie pothole region, USA. Waterbirds 2012, 35, 217–229. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Thompson, F.R., III. Poleward shifts in winter ranges of North American birds. Ecology 2007, 88, 1803–1812. [Google Scholar] [CrossRef]
- Gao, X.J.; Wang, M.L.; Filippo, G. Climate Change over China in the 21st Century as Simulated by BCC_CSM1.1-RegCM4.0. Atmos. Ocean. Sci. Lett. 2013, 6, 381–386. [Google Scholar]
- Bai, X.H.; Wang, W.J.; Jiang, W.G.; Shi, H.D.; Chen, k.; Chen, M. Simulation of Potential Suitable Distribution of Endangered Waterfowl and Its Gap Analysis of National Nature Reserves in Beijing-Tianjin-Hebei Region under the background of Climate Change and analysis of protection gap. Scenar. Res. Environ. Sci. 2019, 32, 1001–1011. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Zou, X.; Shi, F.; Gao, X.; Hu, L.; Zhang, Z.Y. Bird Habitat Suitability Distribution in Dongting Lake Basin Under Different Climate Change Scenarios. J. Hydroecology 2022, 4, 56–62, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Princé, K.; Zuckerberg, B. Climate change in our backyards: The reshuffling of North America’s winter bird communities. Glob. Chang. Biol. 2015, 21, 572–585. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Jaatinen, K.; Vähätalo, A.V.; Clausen, P.; Crowe, O.; Deceuninck, B.; Hearn, R.; Holt, C.A.; Hornman, M.; Keller, V.; et al. Rapid climate driven shifts i-n wintering distributions of three common waterbird species. Glob. Chang. Biol. 2013, 19, 2071–2081. [Google Scholar] [CrossRef]
- Li, G.F.; Yin, W.P.; Li, X.M. The Research Status and Forecast of Threskiornithidae in China. Chin. J. Wildl. 2016, 37, 234–238, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lu, H.W.; Hu, W.M.; Yu, J.Y.; Zeng, W.; Song, Y.B. Study on the influence of Ecological Poplar Withdrawal on the la-ndscape pattern of Dongting Lake wetland. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 171–178, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, X.B.; Han, Z.; Wang, S.Y.; Peng, W.Q. A research thinking of Poyang Lake wetland from the perspective of Yang-tze River protection. J. China Inst. Water Resour. Hydropower Res. 2021, 19, 201–209, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Case, M.J.; Lawler, J.J.; Tomasevic, J.A. Relative sensitivity to climate change of species in northwestern North America. Biol. Conserv. 2015, 187, 127–133. [Google Scholar] [CrossRef]
- Araújo, M.B.; Cabeza, M.; Thuiller, W.; Hannah, L.; Williams, P.H. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob. Chang. Biol. 2004, 10, 1618–1626. [Google Scholar] [CrossRef]
- Lawler, J.; Watson, J.; Game, E. Conservation in the face of climate change: Recent developments. F1000Research 2015, 4, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Description | Unit |
---|---|---|
Bio2 | Monthly mean diurnal temperature range | °C × 10 |
Bio3 | Isothermality | Dimensionless |
Bio6 | Min. temperature of the coldest month | °C × 10 |
Bio9 | Mean temperature of the driest quarter | °C × 10 |
Bio10 | Mean temperature of the warmest quarter | °C × 10 |
Bio15 | CV of precipitation | Dimensionless |
Bio17 | Precipitation of the driest quarter | mm |
Alt | Altitude | m |
Veg | Vegetation type | Dimensionless |
LUCC | Land-use type | Dimensionless |
Water_distance | Distance to water | m |
Road_distance | Distance to road | m |
Village_distance | Distance to village | m |
Variable | Contribution Rate (%) | Variable | Contribution Rate (%) |
---|---|---|---|
Water_distance | 52.2 | CV of precipitation | 1.8 |
Precipitation of the driest quarter | 15.3 | Land-use | 0.7 |
Altitude | 10 | Vegetation type | 0.5 |
Mean temperature of the driest quarter | 8 | Village_distance | 0.3 |
Min. temperature of the coldest month | 6.8 | Road_distance | 0.1 |
Mean temperature of the warmest quarter | 2.5 | Isothermality | 0.1 |
Monthly mean diurnal temperature range | 1.8 |
Period | Climate Scenario | Highly Suitable | Moderately Suitable | Poorly Suitable | Suitable Area | |||
---|---|---|---|---|---|---|---|---|
Area km2 | Percentage % | Area km2 | Percentage % | Area km2 | percentage % | Area km2 | ||
Current | 22,197 | 21 | 30,185 | 28 | 54,239 | 51 | 106,621 | |
2050s | RCP2.6 | 22,658 | 18 | 39,725 | 32 | 62,191 | 50 | 124,574 |
RCP4.5 | 17,939 | 16 | 31,966 | 29 | 59,669 | 55 | 109,574 | |
RCP6.0 | 23,486 | 21 | 29,409 | 26 | 59,735 | 53 | 112,630 | |
RCP8.5 | 39,491 | 23 | 48,611 | 28 | 83,625 | 49 | 171,727 | |
2070s | RCP2.6 | 22,121 | 19 | 32,063 | 27 | 63,053 | 54 | 117,237 |
RCP4.5 | 19,037 | 18 | 32,616 | 31 | 53,157 | 51 | 104,810 | |
RCP6.0 | 45,243 | 24 | 48,433 | 26 | 95,499 | 50 | 189,175 | |
RCP8.5 | 20,556 | 17 | 31,597 | 25 | 72,137 | 58 | 124,290 |
Climate Scenario | Year | Area (km2) | Proportion of Area (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Gain | Loss | Stable | Total Change | Gain | Loss | Stable | Total Change | ||
Representative concentration Pathway (RCP)2.6 | 2050 | 40,320 | 21,680 | 85,737 | 18,640 | 37.82 | 20.33 | 80.41 | 17.49 |
2070 | 46,764 | 35,805 | 71,565 | 10,959 | 43.86 | 33.58 | 67.12 | 10.28 | |
Representative concentration Pathway (RCP)4.5 | 2050 | 31,611 | 27,459 | 79,735 | 4152 | 29.65 | 25.75 | 74.78 | 3.9 |
2070 | 30,041 | 30,759 | 76,379 | −718 | 28.18 | 28.85 | 71.64 | −0.67 | |
Representative concentration Pathway (RCP)6.0 | 2050 | 30,090 | 23,801 | 83,424 | 6289 | 28.22 | 22.32 | 78.24 | 5.9 |
2070 | 91,603 | 9200 | 98,679 | 82,403 | 85.91 | 8.63 | 92.55 | 77.28 | |
Representative concentration Pathway (RCP)8.5 | 2050 | 85,274 | 19,821 | 87,741 | 65,453 | 79.98 | 18.60 | 82.30 | 61.38 |
2070 | 58,911 | 40,269 | 66,821 | 18,642 | 55.25 | 37.77 | 62.67 | 17.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, A.; Gao, E.; Tang, X.; Liu, Z.; Hu, F.; Zhan, Z.; Wang, J.; Luan, X. MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea leucorodia leucorodia) under Climate Change in China. Animals 2023, 13, 856. https://doi.org/10.3390/ani13050856
Fu A, Gao E, Tang X, Liu Z, Hu F, Zhan Z, Wang J, Luan X. MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea leucorodia leucorodia) under Climate Change in China. Animals. 2023; 13(5):856. https://doi.org/10.3390/ani13050856
Chicago/Turabian StyleFu, Aihua, Erhu Gao, Xiaoping Tang, Zengli Liu, Faxiang Hu, Zhenjie Zhan, Jiadong Wang, and Xiaofeng Luan. 2023. "MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea leucorodia leucorodia) under Climate Change in China" Animals 13, no. 5: 856. https://doi.org/10.3390/ani13050856
APA StyleFu, A., Gao, E., Tang, X., Liu, Z., Hu, F., Zhan, Z., Wang, J., & Luan, X. (2023). MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea leucorodia leucorodia) under Climate Change in China. Animals, 13(5), 856. https://doi.org/10.3390/ani13050856