Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Committee and Experiment Location
2.2. Animals and Experimental Design
2.3. Experimental Diets and Chemical Analyses
2.4. Voluntary Feed Intake and Performance
2.5. Rumen Degradability
2.6. Statistical Analysis
3. Results
3.1. Voluntary Feed Intake
3.2. Degradability
3.3. Performance
4. Discussion
4.1. Feed Intake
4.2. Degradability
4.3. Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, R.D.O.; Barioni, L.G.; Moran, D. Fire, deforestation, and livestock: When the smoke clears. Land Use Policy 2021, 100, 104949. [Google Scholar] [CrossRef]
- França, F.; Solar, R.; Lees, A.C.; Martins, L.P.; Berenguer, E.; Barlow, J. Reassessing the role of cattle and pasture in Brazil’s deforestation: A response to “Fire, deforestation, and livestock: When the smoke clears”. Land Use Policy 2021, 108, 105195. [Google Scholar] [CrossRef]
- Da Rosa, P.P.; Nunes, L.P.; Chesini, R.G.; Pozada, T.N.; Silva, G.F.; Camacho, J.D.S.; Faria, M.R.; Mota, G.N.; Ferreira, O.G.L.; Lopes, A.A. Utilização De Coprodutos Industriais Na Alimentação De Ruminantes: Revisão Bibliográfica. Rev. Cient. Rural. 2019, 21, 387–407. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [Green Version]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Lisboa, M.D.M.; Silva, R.R.; da Silva, F.F.; de Carvalho, G.G.P.; da Silva, J.W.D.; Paixão, T.R.; da Silva, A.P.G.; de Carvalho, V.M.; Santos, L.V.; Santos, M.D.C.; et al. Replacing sorghum with palm kernel cake in the diet decreased intake without altering crossbred cattle performance. Trop. Anim. Health Prod. 2021, 53, 1–6. [Google Scholar] [CrossRef]
- Ribeiro, R.; Oliveira, R.L.; Oliveira, R.L.; de Carvalho, G.; Medeiros, A.; Correia, B.; Silva, T.; Bezerra, L. Palm kernel cake from the biodiesel industry in diets for goat kids. Part 1: Nutrient intake and utilization, growth performance and carcass traits. Small Rumin. Res. 2018, 165, 17–23. [Google Scholar] [CrossRef]
- Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Mesquita, B.M.A.d.C.; Santos, S.A.; Tosto, M.S.L.; da Costa, M.P.; Pina, D.d.S.; Gordiano, L.A.; Garcia, A.O.; et al. Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals 2021, 11, 3501. [Google Scholar] [CrossRef]
- Rodrigues, T.C.G.C.; Santos, S.A.; Cirne, L.G.A.; Pina, D.D.S.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Silva, W.P.; Nascimento, C.O.; Rodrigues, C.S.; de Carvalho, G.G.P. Palm kernel cake in high-concentrate diets improves animal performance without affecting the meat quality of goat kids. Anim. Prod. Sci. 2021, 62, 78. [Google Scholar] [CrossRef]
- Abdeltawab, A.M.; Khattab, M.S. Utilization of Palm Kernel Cake as a Ruminant Feed for Animal: A Review. Asian J. Biol. Sci. 2018, 11, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Sollenberger, L.E.; Cherney, D.J.R. Evaluating forage production and quality. Forages Sci. Grassl. Agric. 1995, 2, 97–110. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Hall, M.B. Neutral Detergent-Soluble Carbohydrates: Nutritional Relevance and Analysis; University of Florida: Gainesville, FL, USA, 2000; 76p. [Google Scholar]
- Johnson, A.D. Sample preparation and chemical analisys of vegetation. In Measurement of Grassland Vegetation and Animal Production; t’Mannejte, L., Ed.; CAB: Berkshire, UK, 1978; pp. 96–102. [Google Scholar]
- Ferreira, M.D.A.; Filho, S.V.; Marcondes, M.; Paixão, M.L.; Paulino, M.F.; Valadares, R.F.D. Avaliação de indicadores em estudos com ruminantes: Digestibilidade. Rev. Bras. de Zootec. 2009, 38, 1568–1573. [Google Scholar] [CrossRef] [Green Version]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef] [Green Version]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; pp. 334–336. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Casali, A.O.; Detmann, E.; Filho, S.D.C.V.; Pereira, J.C.; Henriques, L.T.; De Freitas, S.G.; Paulino, M.F. Influência do tempo de incubação e do tamanho de partículas sobre os teores de compostos indigestíveis em alimentos e fezes bovinas obtidos por procedimentos in situ. Rev. Bras. Zootec. 2008, 37, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Nocek, J.; Kohn, R. In Situ Particle Size Reduction of Alfalfa and Timothy Hay as Influenced by Form and Particle Size. J. Dairy Sci. 1988, 71, 932–945. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Van Der Honing, Y.; Alderman, G. III. 2. Ruminants. Livest. Prod. Sci. 1988, 19, 217–278. [Google Scholar] [CrossRef]
- McDonald, I. A revised model for the estimation of protein degradability in the rumen. J. Agric. Sci. 1981, 96, 251–252. [Google Scholar] [CrossRef]
- Regazzi, A.J.; Silva, C.H.O. Testes para verificar a igualdade de parâmetros e a identidade de modelos de regressão não-linear em dados de experimento com delineamento em blocos casualizados. Rev. Ceres 2010, 57, 315–320. [Google Scholar] [CrossRef]
- Joysowal, M.; Tyagi, A.K.; Tyagi, N.; Kumar, S.; Keshri, A.; Singh, D. Use of slow release ammonia products in ruminant diet: A review. J. Entomol. Zool. Stud. 2019, 7, 882–888. Available online: https://www.entomoljournal.com/archives/2019/vol7issue2/PartO/7-1-83-922.pdf (accessed on 21 November 2022).
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E.O. Diet and Genetics Influence Beef Cattle Performance and Meat Quality Characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, F.R.A.F.; Fontes, C.A.A.; Fernandes, A.M.; Oliveira, T.S.; Processi, E.F.; Silva, R.S.T. Performance, digestibility, microbial protein synthesis, and body composition of Brangus x Zebu steers on tropical pasture receiving supplementation. Trop. Anim. Health Prod. 2020, 52, 2491–2498. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Garces, P. Supplementation of beef cattle raised on pasture: Biological and economical considerations. Simpósio De Produção De Gado De Corte 2006, 5, 1–14. [Google Scholar]
- Detmann, E.; Paulino, M.F.; Filho, S.D.C.V.; Cecon, P.R.; Zervoudakis, J.T.; Cabral, L.D.S.; Gonçalves, L.C.; Valadares, R.F.D. Níveis de proteína em suplementos para terminação de bovinos em pastejo durante o período de transição Seca/Águas: Digestibilidade aparente e parâmetros do metabolismo ruminal e dos compostos nitrogenados. Rev. Bras. de Zootec. 2005, 34, 1380–1391. [Google Scholar] [CrossRef] [Green Version]
- Grummer, R.R.; Hatfield, M.L.; Dentine, M.R. Acceptability of Fat Supplements in Four Dairy Herds. J. Dairy Sci. 1990, 73, 852–857. [Google Scholar] [CrossRef]
- Rodrigues, T.C.G.D.C.; Santos, S.A.; Cirne, L.G.A.; Pina, D.D.S.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Silva, W.P.; Nascimento, C.D.O.; Rodrigues, C.S.; Tosto, M.S.L.; et al. Palm kernel cake in high-concentrate diets for feedlot goat kids: Nutrient intake, digestibility, feeding behavior, nitrogen balance, blood metabolites, and performance. Trop. Anim. Health Prod. 2021, 53, 1–11. [Google Scholar] [CrossRef]
- Garleb, K.A.; Fahey, G.C.; Lewis, S.M.; Kerley, M.S.; Montgomery, L. Chemical Composition and Digestibility of Fiber Fractions of Certain By-Product Feedstuffs Fed to Ruminants. J. Anim. Sci. 1988, 66, 2650–2662. [Google Scholar] [CrossRef] [Green Version]
- Cruz, C.H.; Silva, T.M.; Filho, N.B.S.; Leão, A.G.; Ribeiro, O.L.; Carvalho, G.G.P.; Bezerra, L.R.; Oliveira, R.L. Effects of palm kernel cake (Elaeis guineensis) on intake, digestibility, performance, ingestive behaviour and carcass traits in Nellore bulls. J. Agric. Sci. 2018, 156, 1145–1152. [Google Scholar] [CrossRef]
- Nahúm, B.D.S.; Saraiva, N.Z.; Faturi, C.; e Silva, A.G.M.; Lourenço, J.D.B.; de Sousa, J.S.; Amaral, J.M.D.; Nogueira, G.D.P.; Mingoti, G.Z. Effect of dietary supplementation of palm kernel cake on ovarian and hepatic function in buffalo (Bubalus bubalis). Anim. Reprod. Sci. 2019, 204, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.G.; Allen, M.S. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Lynch, J.; Jin, L.; Lara, E.; Baah, J.; Beauchemin, K. The effect of exogenous fibrolytic enzymes and a ferulic acid esterase-producing inoculant on the fibre degradability, chemical composition and conservation characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2014, 193, 21–31. [Google Scholar] [CrossRef]
- Tenório, E.C. O Babaçu e Coqueiros Assemelhados em Minas Gerais; CETEC: Belo Horizonte, Brazil, 1982; 216p. [Google Scholar]
- Kendall, E.M.; Ingalls, J.R.; Boila, R.J. Variability in the rumen degradability and postruminal digestion of the dry matter, nitrogen and amino acids of canola meal. Can. J. Anim. Sci. 1991, 71, 739–754. [Google Scholar] [CrossRef]
- Vastolo, A.; Matera, R.; Serrapica, F.; Cutrignelli, M.I.; Neglia, G.; Kiatti, D.D.; Calabrò, S. Improvement of Rumen Fermentation Efficiency Using Different Energy Sources: In Vitro Comparison between Buffalo and Cow. Fermentation 2022, 8, 351. [Google Scholar] [CrossRef]
- da Silva, L.O.; de Carvalho, G.G.P.; Tosto, M.S.L.; Lima, V.G.O.; Cirne, L.G.A.; Pina, D.D.S.; Santos, S.A.; Rodrigues, C.S.; Ayres, M.C.C.; Azevedo, J.A.G. Digestibility, nitrogen metabolism, ingestive behavior and performance of feedlot goats fed high-concentrate diets with palm kernel cake. Livest. Sci. 2020, 241, 104226. [Google Scholar] [CrossRef]
- Santos, L.V.; Silva, R.R.; Silva, F.F.; Silva, J.W.D.; Barroso, D.S.; Silva, A.P.G.; Souza, S.O.; Santos, M.C. Increasing levels of palm kernel cake (Elaeis guineensis Jacq.) in diets for feedlot cull cows. Chil. J. Agric. Res. 2019, 79, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Mott, G.O. Symposium: Forage evaluation in the 80’s the legacy of Dr. HL “Curly” Lucas: Measuring forage quantity and quality in grazing trials. In Proceedings of the Southern Pasture and Forage Crop Improvement Conference, Nashville, TN, USA, 19–20 May 1980; pp. 3–9. [Google Scholar]
Items | PKC | WB | MG | |||
---|---|---|---|---|---|---|
LR 1 | WS 2 | LR | WS | LR | WS | |
DM 3% | 90.47 | 89.30 | 88.32 | 89.70 | 31.10 | 27.90 |
CP 4 (%DM) | 11.12 | 13.40 | 15.49 | 16.28 | 8.19 | 8.84 |
NDFcp 5 (%DM) | 69.87 | 59.90 | 44.19 | 42.61 | 68.14 | 67.19 |
ADFcp 6 (%DM) | 48.23 | 31.40 | 14.27 | 13.21 | 40.55 | 38.21 |
Ash (%DM) | 4.61 | 4.26 | 5.88 | 5.03 | 6.76 | 6.44 |
EE 7 (%DM) | 11.64 | 13.19 | 3.48 | 3.19 | 2.54 | 2.63 |
NFC 8 (%DM) | 2.76 | 9.25 | 30.96 | 32.89 | 14.37 | 14.90 |
Items | Supplement Treatments | |||
---|---|---|---|---|
PKC 0 | PKC 0.2 | PKC 0.5 | PKC 1 | |
DM 1 (g/kg supplement) | 883.2 | 883.0 | 899.0 | 902.0 |
CP 2 (g/kg DM) | 154.9 | 127.0 | 121.0 | 117.0 |
NDFcp 3 (g/kg DM) | 441.9 | 602.0 | 640.0 | 666.0 |
ADFcp 4 (g/kg DM) | 142.7 | 355.0 | 405.0 | 439.0 |
Ash (g/kg DM) | 58.8 | 50.8 | 48.9 | 47.7 |
EE 5 (g/kg DM) | 34.8 | 85.8 | 97.9 | 106.0 |
NFC 6 (g/kg DM) | 309.6 | 133.0 | 91.4 | 63.6 |
Period | Inclusion PKC (% BW) | Average 1 | CV | DMS | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.25 | 0.50 | 1.0 | G | p | G × p | |||||
Average supplement consumption (kg of DM) | |||||||||||
WS 4 | 0.98 d | 2.56 c | 4.15 b | 5.57 a | 3.31 A | 10.8 | 0.406 | 0.142 | <0.01 | 0.08 | 0.89 |
LR 5 | 0.91 d | 2.40 c | 3.93 b | 5.31 a | 3.14 A | ||||||
Average 2 | 0.94 d | 2.48 c | 4.04 b | 5.44 a | 0.287 | 0.100 | |||||
Average forage consumption (kg of DM) | |||||||||||
WS | 11.12 a | 7.97 b | 7.07 b | 5.73 c | 7.98 A | 11.2 | 0.958 | 0.335 | <0.01 | <0.01 | 0.37 |
LR | 9.17 a | 7.15 b | 5.97 c | 4.27 d | 6.64 B | ||||||
Average | 10.15 a | 7.56 b | 6.52 c | 4.99 d | 0.677 | 0.237 | |||||
Average of total consumption (kg of DM) | |||||||||||
WS | 12.10 | 10.52 | 11.22 | 11.3 | 11.28 A | 9.3 | 1.147 | 0.401 | 0.087 | <0.01 | 0.58 |
LR | 10.08 | 9.56 | 9.902 | 9.57 | 9.780 B | ||||||
Average | 11.09 | 10.04 | 10.56 | 10.43 | 0.811 | 0.283 | |||||
Supplement consumption (% LW) | |||||||||||
WS | 0.15 d | 0.400 c | 0.650 b | 0.900 a | 0.525 A | 1.7 | 0.010 | 0.003 | <0.01 | 0.41 | 0.57 |
LR | 0.15 d | 0.400 c | 0.650 b | 0.908 a | 0.527 A | ||||||
Average | 0.15 d | 0.400 c | 0.650 b | 0.904 a | 0.007 | 0.002 | |||||
Forage consumption (% LW) | |||||||||||
WS | 1.726 a | 1.247 b | 1.109 bc | 0.931 c | 1.253 A | 13.3 | 0.184 | 0.064 | <0.01 | <0.01 | 0.65 |
LR | 1.533 a | 1.195 b | 0.987 c | 0.738 d | 1.113 B | ||||||
Average | 1.629 a | 1.221 b | 1.048 c | 0.834 d | 0.130 | 0.045 | |||||
Total consumption (% LW) | |||||||||||
WS | 1.876 | 1.647 | 1.759 | 1.831 | 1.778 A | 9.13 | 0.182 | 0.063 | 0.09 | <0.01 | 0.66 |
LR | 1.683 | 1.595 | 1.637 | 1.646 | 1.640 B | ||||||
Average | 1.779 | 1.621 | 1.698 | 1.738 | 0.128 | 0.045 | |||||
Supplement consumption (BW0.75) | |||||||||||
WS | 0.042 d | 0.113 c | 0.183 b | 0.252 a | 0.147 A | 3.53 | 0.003 | 0.001 | <0.01 | 0.28 | 0.97 |
LR | 0.041 d | 0.111 c | 0.181 b | 0.250 a | 0.146 A | ||||||
Average | 0.042 d | 0.112 c | 0.182 b | 0.251 a | 0.004 | 0.001 | |||||
Forage consumption (BW0.75) | |||||||||||
WS | 259.6 aA | 89.09 bA | 54.95 cA | 34.89 dA | 109.6 A | 9.0 | 10.59 | 3.706 | <0.01 | <0.01 | <0.01 |
LR | 214.0 aB | 79.99 bA | 46.40 cA | 25.80 dA | 91.56 B | ||||||
Average | 236.8 a | 84.54 b | 50.68 c | 30.34 d | 7.490 | 2.620 | |||||
Total Consumption (BW0.75) | |||||||||||
WS | 45.47 c | 50.20 c | 58.59 b | 67.64 a | 55.48 A | 11.1 | 7.03 | 2.459 | <0.01 | 0.25 | 0.78 |
LR | 41.67 c | 47.20 c | 56.34 b | 68.58 a | 53.45 A | ||||||
Average | 43.57 d | 48.70 c | 57.46 b | 68.11 a | 4.97 | 1.73 |
Items | Inclusion PKC | Periods | Effects | R2 | SEM | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.25 | 0.5 | 1.0 | LR | WS | TREAT | PER | TREAT*PER | |||
Consumption (kg of DM) | |||||||||||
CP | 1.017 | 0.981 | 1.085 | 1.120 | 0.929 B | 1.172 A | NS | * | NS | - | 0.005 |
NDF | 7.266 | 6.516 | 6.824 | 6.747 | 6.498 B | 7.179 A | NS | * | NS | - | 0.045 |
EE | 0.293 d | 0.418 c | 0.587 b | 0.72 a | 0.464 B | 0.546 A | * | * | NS | 96.01 | 0.019 |
NFC | 1.785 a | 1.496 b | 1.436 b | 1.240 c | 1.274 B | 1.705 A | * | * | NS | 90.12 | 0.058 |
Consumption (% BW) | |||||||||||
CP | 0.169 | 0.159 | 0.176 | 0.179 | 0.157 B | 0.185 A | NS | * | NS | - | 0.011 |
NDF | 1.213 | 1.058 | 1.113 | 1.085 | 1.097 B | 1.137 A | NS | * | NS | - | 0.074 |
EE | 0.049 d | 0.067 c | 0.095 b | 0.116 a | 0.078 B | 0.086 A | * | * | NS | 95.74 | 0.006 |
NFC | 0.298 a | 0.242 b | 0.233 b | 0.20 b | 0.215 B | 0.270 A | * | * | NS | 88.44 | 0.015 |
Consumption (BW0.75) | |||||||||||
CP | 8.394 | 7.928 | 8.784 | 8.971 | 7.738 B | 9.301 A | NS | * | NS | - | 0.498 |
NDF | 59.999 | 52.695 | 55.34 | 54.12 | 54.09 B | 56.983 A | NS | * | NS | - | 3.230 |
EE | 2.425 d | 3.382 c | 4.756 b | 5.81 a | 3.862 B | 4.322 A | * | * | NS | 95.79 | 0.259 |
NFC | 14.743 a | 12.08 b | 11.61 bc | 9.89 c | 10.62 B | 13.545 A | * | * | * | 88.92 | 0.690 |
Period | Inclusion PKC | p1 | R2 | SEM 2 | |||
---|---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 1.0 | ||||
WS 3 | 16.0 aA | 13.1 bA | 13.1 bA | 12.0 bA | * | 73.6 | 0.506 |
LR 4 | 13.5 aB | 11.1 bB | 10.1 bB | 7.8 cB | * | 96.2 | 0.506 |
p | * | * | * | * |
Items | Equations 1 | R2 % | CT (h:min) | ED (2%/h) % | ED (5%/h) % | ED (8%/h) % | |
---|---|---|---|---|---|---|---|
Dry Matter | |||||||
TP0 | p = 26.28 + 52.11 (1 − exp−0.0709t) | A | 97.70 | 3:54 | 50.30 | 39.06 | 35.96 |
TP0.2 | p = 27.08 + 52.97 (1 − exp−0.0596t) | A | 96.10 | 4:46 | 50.59 | 39.10 | 35.89 |
TP0.5 | p = 26.32 + 60.42 (1 − exp−0.0367t) | A | 97.30 | 6:39 | 50.85 | 39.29 | 35.14 |
TP1 | p = 22.87 + 52.77 (1 − exp−0.0316t) | B | 98.60 | 7:04 | 50.98 | 39.79 | 34.09 |
Fiber in Neutral Detergent | |||||||
TP0 | p = 6.31 + 72.06 (1 − exp−0.0227t) | B | 98.20 | 3:40 | 44.68 | 28.86 | 22.28 |
TP0.2 | p = 8.66 + 84.38 (1 − exp−0.0145t) | A | 92.00 | 6:43 | 44.12 | 27.63 | 21.60 |
TP0.5 | p = 6.23 + 70.97 (1 − exp−0.0236t) | B | 98.30 | 3:33 | 44.68 | 29.01 | 22.42 |
TP1 | p = 5.61 + 75.08 (1 − exp−0.0220t) | B | 97.80 | 3:16 | 44.97 | 28.57 | 21.82 |
Crude Protein | |||||||
TP0 | p = 39.05 + 60.12 (1 − exp−0.0193t) | A | 98.10 | 1:20 | 68.58 | 55.80 | 50.74 |
TP0.2 | p = 36.82 + 64.30 (1 − exp−0.0196t) | A | 98.40 | 0:30 | 68.72 | 54.99 | 49.52 |
TP0.5 | p = 26.32 + 60.42 (1 − exp−0.0367t) | A | 98.30 | 0:15 | 69.14 | 55.14 | 49.78 |
TP1 | p = 22.87 + 52.77 (1 − exp−0.0316t) | A | 98.40 | 0:03 | 69.69 | 56.03 | 50.92 |
Items | Equations 1 | R2 % | CT (h:min) | ED (2%/h) % | ED (5%/h) % | ED (8%/h) % | |
---|---|---|---|---|---|---|---|
Dry matter | |||||||
TP0 | p = 16.64 + 73.96 (1 − exp−0.0265t) | A | 99.40 | 02:30 | 50.83 | 35.93 | 29.31 |
TP0.2 | p = 17.43 + 71.66 (1 − exp−0.0273t) | A | 99.60 | 02:27 | 50.76 | 35.42 | 30.22 |
TP0.5 | p = 18.60 + 82.04 (1 − exp−0.0226t) | A | 98.90 | 02:07 | 50.44 | 35.20 | 29.83 |
TP1 | p = 16.20 + 77.93 (1 − exp−0.0254t) | A | 99.60 | 01:09 | 50.16 | 34.59 | 28.81 |
Fiber in neutral detergent | |||||||
TP0 | p = 1.17 + 79.23 (1 − exp−0.0230t) | B | 99.20 | 00:37 | 43.62 | 26.20 | 18.91 |
TP0.2 | p = 1.64 + 78.76 (1 − exp−0.0238t) | AB | 99.30 | 00:41 | 44.45 | 26.05 | 19.70 |
TP0.5 | p = 1.48 + 81.01 (1 − exp−0.0243t) | AB | 99.20 | 00:48 | 44.21 | 26.49 | 19.15 |
TP1.0 | p = 1.71 + 78.35 (1 − exp−0.0258t) | A | 99.50 | 00:51 | 45.15 | 27.75 | 20.30 |
Crude Protein | |||||||
TP0 | p = 39.89 + 28.64 (1 − exp−0.0518t) | B | 97.10 | 00:40 | 60.56 | 54.47 | 51.15 |
TP0.2 | p = 37.04 + 30.73 (1 − exp−0.0570t) | A | 97.30 | 02:08 | 59.85 | 53.49 | 49.90 |
TP0.5 | p = 36.22 + 30.88 (1 − exp−0.0575t) | A | 97.70 | 02:18 | 59.57 | 52.74 | 48.91 |
TP1.0 | p = 37.15 + 30.80 (1 − exp−0.0605t) | A | 95.90 | 02:27 | 60.31 | 54.03 | 50.42 |
Items | Equations 1 | R2 % | CT (h:min) | ED (2%/h) % | ED (5%/h) % | ED (8%/h) % | |
---|---|---|---|---|---|---|---|
Dry Matter | |||||||
TP0 | p = 48.77 + 30.31 (1 − exp−0.0886t) | C | 97.60 | 0:28 | 73.50 | 68.15 | 64.70 |
TP0.2 | p = 57.19 + 23.84 (1 − exp−0.0368t) | B | 97.40 | 2:00 | 72.64 | 67.30 | 64.70 |
TP0.5 | p = 59.62 + 24.85 (1 − exp−0.0358t) | A | 82.10 | 2:09 | 75.57 | 70.00 | 67.31 |
TP1 | p = 59.90 + 23.18 (1 − exp−0.0380t) | A | 92.90 | 2:09 | 75.10 | 69.92 | 67.37 |
Neutral detergent fiber | |||||||
TP0 | p = 1.32 + 89.99 (1 − exp−0.0492t) | A | 99.00 | 0:17 | 65.33 | 45.99 | 35.62 |
TP0.2 | p = 1.85 + 89.98 (1 − exp−0.0452t) | A | 98.70 | 0:27 | 64.24 | 44.58 | 34.35 |
TP0.5 | p = 1.12 + 89.99 (1 − exp−0.0487t) | A | 99.30 | 0:15 | 64.92 | 45.53 | 35.18 |
TP1 | p = 1.96 + 89.99 (1 − exp−0.0484t) | A | 99.30 | 0:26 | 65.65 | 46.24 | 35.90 |
Crude Protein | |||||||
TP0 | p = 37.54 + 55.44 (1 − exp−0.1488t) | A | 98.30 | 0:14 | 86.41 | 79.04 | 73.60 |
TP0.2 | p = 27.19 + 64.46 (1 − exp−0.1991t) | B | 98.40 | 1:03 | 85.78 | 78.72 | 73.19 |
TP0.5 | p = 17.18 + 74.82 (1 − exp−0.1898t) | C | 98.50 | 1:52 | 84.91 | 76.44 | 69.85 |
TP1 | p = 21.95 + 89.99 (1 − exp−0.2088t) | D | 98.40 | 2:34 | 84.09 | 74.57 | 67.03 |
Variables | Treatments | R2 | SEM 1 | CV 2 | p | |||
---|---|---|---|---|---|---|---|---|
TP0 | TP0.25 | TP0.5 | TP1 | |||||
LR 7 | ||||||||
IW 3 (Kg) | 508.0 | 494.0 | 502.0 | 508.0 | - | 57.27 | 0.11 | 0.94 |
FW 4 (Kg) | 606.0 | 580.0 | 595.0 | 596.0 | - | 48.66 | 0.08 | 0.89 |
TAG 5 (Kg) | 98.0 | 86.0 | 93.0 | 88.0 | - | 19.40 | 0.21 | 0.57 |
ADG 6 (Kg) | 0.544 | 0.478 | 0.517 | 0.489 | - | 0.11 | 0.21 | 0.57 |
WS 8 | ||||||||
IW (Kg) | 612.0 | 604.0 | 603.0 | 601.0 | - | 57.01 | 0.09 | 0.76 |
FW (Kg) | 673.0 | 656.0 | 629.0 | 639.0 | - | 56.72 | 0.09 | 0.29 |
TAG (Kg) | 61.00 | 52.0 | 26.0 | 38.0 | - | 27.19 | 0.61 | 0.12 |
ADG (Kg) | 0.339 | 0.289 | 0.144 | 0.211 | - | 0.15 | 0.61 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral-Júnior, J.M.d.; Morais, E.d.; Lima, A.C.S.; Martorano, L.G.; Nahúm, B.d.S.; Sousa, L.F.; Lourenço-Júnior, J.d.B.; Rodrigues, T.C.G.d.C.; Silva, J.A.R.d.; Silva, A.L.d.C.; et al. Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon. Animals 2023, 13, 934. https://doi.org/10.3390/ani13050934
Amaral-Júnior JMd, Morais Ed, Lima ACS, Martorano LG, Nahúm BdS, Sousa LF, Lourenço-Júnior JdB, Rodrigues TCGdC, Silva JARd, Silva ALdC, et al. Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon. Animals. 2023; 13(5):934. https://doi.org/10.3390/ani13050934
Chicago/Turabian StyleAmaral-Júnior, João Maria do, Eziquiel de Morais, Alyne Cristina Sodré Lima, Lucieta Guerreiro Martorano, Benjamim de Souza Nahúm, Luciano Fernandes Sousa, José de Brito Lourenço-Júnior, Thomaz Cyro Guimarães de Carvalho Rodrigues, Jamile Andréa Rodrigues da Silva, Artur Luiz da Costa Silva, and et al. 2023. "Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon" Animals 13, no. 5: 934. https://doi.org/10.3390/ani13050934
APA StyleAmaral-Júnior, J. M. d., Morais, E. d., Lima, A. C. S., Martorano, L. G., Nahúm, B. d. S., Sousa, L. F., Lourenço-Júnior, J. d. B., Rodrigues, T. C. G. d. C., Silva, J. A. R. d., Silva, A. L. d. C., & Maciel e Silva, A. G. (2023). Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon. Animals, 13(5), 934. https://doi.org/10.3390/ani13050934