Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Samples Collection
2.2. Microbiota Evaluation–Genomic Sequencing
2.2.1. DNA Extraction
2.2.2. 16S Ribosomal RNA (rRNA) Gene Sequencing
2.2.3. Sequence Analysis
2.2.4. Functional Predictions
2.3. Statistical Analysis
2.4. Data Availability Statement
3. Results
3.1. Sequencing Results
3.2. Taxonomic Composition of Gut Microbiota along the Rabbit Gastrointestinal Tract of CTRL and 2.5 and 5% BC Groups
3.3. Comparison of Microbiota Composition in Different Intestinal Tracts
3.4. Comparison of Microbiota Composition in Rabbits according to Bovine Colostrum Diet Supplement
3.5. Functional Prediction on Microbial Profiles of Rabbits according to Bovine Colostrum Diet Supplement
3.6. Firmicutes:Bacteroidetes Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, R.R.; Davies, J.A.E.R. Rabbit gastrointestinal physiology. Vet. Clin. North Am. Exot. Anim. Pract. 2003, 6, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Gidenne, T.; Lebas, F. Feeding behaviour in rabbits. In Feeding in Domestic Vertebrates; Bels, V., Ed.; CABI Publishing: Wallingford, UK, 2006; pp. 179–194. [Google Scholar]
- Gidenne, T.; Feugier, A. Feed restriction strategy in the growing rabbit. 1. Impact on digestion, rate of passage and microbial activity. Animal 2009, 3, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abecia, L.; Fondevila, M.; Rodríguez-Romero, N.; Martínez, G.; Yáñez-Ruiz, D.R. Comparative study of fermentation and methanogen community structure in the digestive tract of goats and rabbits. J. Anim. Physiol. Anim. Nutr. 2013, 97, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Padilha, M.T.S.; Licois, D.; Gidenne, T.; Carré, B.; Fonty, G. Relationships between microflora and caecal fermentation in rabbits before and after weaning. Reprod. Nutr. Dev. 1995, 35, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martignon, M.H.; Combes, S.; Gidenne, T. Digestive physiology and hindgut bacterial community of the young rabbit (Oryctolagus cuniculus): Effects of age and short-term intake limitation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 156, 156–162. [Google Scholar] [CrossRef]
- Combes, S.; Fortun-Lamothe, L.; Cauquil, L.; Gidenne, T. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal 2013, 7, 1429–1439. [Google Scholar] [CrossRef] [Green Version]
- Cremonesi, P.; Curone, G.; Biscarini, F.; Cotozzolo, E.; Menchetti, L.; Riva, F.; Marongiu, M.L.; Castiglioni, B.; Barbato, O.; Munga, A.; et al. Dietary Supplementation with Goji Berries (Lycium barbarum) Modulates the Microbiota of Digestive Tract and Caecal Metabolites in Rabbits. Animals 2022, 12, 121. [Google Scholar] [CrossRef]
- Curone, G.; Biscarini, F.; Cotozzolo, E.; Menchetti, L.; Dal Bosco, A.; Riva, F.; Cremonesi, P.; Agradi, S.; Mattioli, S.; Castiglioni, B.; et al. Could Dietary Supplementation with Different Sources of N-3 Polyunsaturated Fatty Acids Modify the Rabbit Gut Microbiota? Antibiotics 2022, 11, 227. [Google Scholar] [CrossRef]
- Menchetti, L.; Barbato, O.; Filipescu, I.E.; Traina, G.; Leonardi, L.; Polisca, A.; Troisi, A.; Guelfi, G.; Piro, F.; Brecchia, G. Effects of local lipopolysaccharide administration on the expression of Toll-like receptor 4 and pro-inflammatory cytokines in uterus and oviduct of rabbit does. Theriogenology 2018, 107, 162–174. [Google Scholar] [CrossRef]
- Collodel, G.; Moretti, E.; Brecchia, G.; Kuželová, L.; Arruda, J.; Mourvaki, E.; Castellini, C. Cytokines release and oxidative status in semen samples from rabbits treated with bacterial lipopolysaccharide. Theriogenology 2015, 83, 1233–1240. [Google Scholar] [CrossRef]
- Brecchia, G.; Menchetti, L.; Cardinali, R.; Castellini, C.; Polisca, A.; Zerani, M.; Maranesi, M.; Boiti, C. Effects of a bacterial lipopolysaccharide on the reproductive functions of rabbit does. Anim. Reprod. Sci. 2014, 147, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Agradi, S.; Draghi, S.; Cotozzolo, E.; Barbato, O.; Castrica, M.; Quattrone, A.; Sulce, M.; Vigo, D.; Menchetti, L.; Ceccarini, M.; et al. Goji Berries Supplementation in the Diet of Rabbits and Other Livestock Animals: A Mini-Review of the Current Knowledge. Front. Vet. Sci. 2022, 8, 823589. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, S.; Collodel, G.; Signorini, C.; Cotozzolo, E.; Noto, D.; Cerretani, D.; Micheli, L.; Fiaschi, A.I.; Brecchia, G.; Menchetti, L.; et al. Tissue antioxidant status and lipid peroxidation are related to dietary intake of n-3 polyunsaturated acids: A rabbit model. Antioxidants 2021, 10, 681. [Google Scholar] [CrossRef] [PubMed]
- Menchetti, L.; Curone, G.; Andoni, E.; Barbato, O.; Troisi, A.; Fioretti, B.; Polisca, A.; Codini, M.; Canali, C.; Vigo, D.; et al. Impact of goji berries (Lycium barbarum) supplementation on the energy homeostasis of rabbit does: Uni- and multivariate approach. Animals 2020, 10, 2000. [Google Scholar] [CrossRef]
- Boiti, C.; Canali, C.; Brecchia, G.; Zanon, F.; Facchin, E. Effects of induced endometritis on the life-span of corpora lutea in pseudopregnant rabbits and incidence of spontaneous uterine infections related to fertility of breeding does. Theriogenology 1999, 52, 1123–1132. [Google Scholar] [CrossRef]
- Boiti, C.; Guelfi, G.; Zerani, M.; Zampini, D.; Brecchia, G.; Gobbetti, A. Expression patterns of cytokines, p53 and nitric oxide synthase isoenzymes in corpora lutea of pseudopregnant rabbits during spontaneous luteolysis. Reproduction 2004, 127, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Zerani, M.; Boiti, C.; Dall’Aglio, C.; Pascucci, L.; Maranesi, M.; Brecchia, G.; Mariottini, C.; Guelfi, G.; Zampini, D.; Gobbetti, A. Leptin receptor expression and in vitro leptin actions on prostaglandin release and nitric oxide synthase activity in the rabbit oviduct. J. Endocrinol. 2005, 185, 319–325. [Google Scholar] [CrossRef]
- Castellini, C.; Mattioli, S.; Signorini, C.; Cotozzolo, E.; Noto, D.; Moretti, E.; Brecchia, G.; Dal Bosco, A.; Belmonte, G.; Durand, T.; et al. Effect of Dietary n-3 Source on Rabbit Male Reproduction. Oxid. Med. Cell. Longev. 2019, 2019, 3279670. [Google Scholar] [CrossRef] [Green Version]
- Langer, P. Differences in the composition of colostrum and milk in eutherians reflect differences in immunoglobulin transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Playford, R.J.; Weiser, M.J. Bovine colostrum: Its constituents and uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Menchetti, L.; Traina, G.; Tomasello, G.; Casagrande-Proietti, P.; Leonardi, L.; Barbato, O.; Brecchia, G. Potential benefits of colostrum in gastrointestinal diseases. Front. Biosci. Sch. 2016, 8, 331–351. [Google Scholar] [CrossRef] [Green Version]
- García, M.C.; Muñoz, J.A.M.; López, J.J.; Seuma, M.R.P. New ingredients in infant formula. Health and functional benefits. Nutr. Hosp. 2017, 34, 8–12. [Google Scholar] [CrossRef]
- Donovan, S.M.; Comstock, S.S. Human milk oligosaccharides influence neonatal mucosal and systemic immunity. Ann. Nutr. Metab. 2017, 69, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Šuligoj, T.; Vigsnæs, L.K.; Van den Abbeele, P.; Apostolou, A.; Karalis, K.; Savva, G.M.; McConnell, B.; Juge, N. Effects of human milk oligosaccharides on the adult gut microbiota and barrier function. Nutrients 2020, 12, 2808. [Google Scholar] [CrossRef] [PubMed]
- Sangild, P.T.; Vonderohe, C.; Melendez Hebib, V.; Burrin, D.G. Potential benefits of bovine colostrum in pediatric nutrition and health. Nutrients 2021, 13, 2551. [Google Scholar] [CrossRef] [PubMed]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef]
- Davison, G. The use of bovine colostrum in sport and exercise. Nutrients 2021, 13, 1789. [Google Scholar] [CrossRef] [PubMed]
- Menchetti, L.; Curone, G.; Filipescu, I.E.; Barbato, O.; Leonardi, L.; Guelfi, G.; Traina, G.; Casagrande-Proietti, P.; Riva, F.; Casano, A.B.; et al. The prophylactic use of bovine colostrum in a murine model of TNBS-induced colitis. Animals 2020, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Jeon, W.K.; Kim, E.J. Combined effects of bovine colostrum and glutamine in diclofenac-induced bacterial translocation in rat. Clin. Nutr. 2005, 24, 785–793. [Google Scholar] [CrossRef]
- Fenger, C.K.; Tobin, T.; Casey, P.J.; Roualdes, E.A.; Langemeier, J.L.; Cowles, R.; Haines, D.M. Enhanced Bovine Colostrum Supplementation Shortens the Duration of Respiratory Disease in Thoroughbred Yearlings. J. Equine Vet. Sci. 2016, 42, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Huguet, A.; le Dividich, J.; le Huërou-Luron, I. Improvement of growth performance and sanitary status of weaned piglets fed a bovine colostrum-supplemented diet. J. Anim. Sci. 2012, 90, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Satyaraj, E.; Reynolds, A.; Pelker, R.; Labuda, J.; Zhang, P.; Sun, P. Supplementation of diets with bovine colostrum influences immune function in dogs. Br. J. Nutr. 2013, 110, 2216–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giffard, C.J.; Seino, M.M.; Markwell, P.J.; Bektash, R.M. Benefits of bovine colostrum on fecal quality in recently weaned puppies. J. Nutr. 2004, 134, 2126S–2127S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Yang, Y.; Wu, T.; Qi, Y.; Huang, D.; Han, R.; Chen, S.; Tang, J.; Ren, M.; Zhao, X. Bovine colostrum promoted ileal health in newborn lambs at 24 h after birth: Insight from intestinal morphology and innate immunity. Animal 2022, 16, 100592. [Google Scholar] [CrossRef]
- Lucio, B.; Schultz, R.D. Prevention of infectious bursal disease (IBD) by feeding IBD virus-immune bovine colostrum. Vet. Immunol. Immunopathol. 1980, 1, 379–386. [Google Scholar] [CrossRef]
- Kindlein, L.; Moretti, D.B.; Pauletti, P.; Bagaldo, A.R.; Rodrigues, A.P.O.; Machado-Neto, R. Bovine colostrum enriched with lyophilized bovine colostrum stimulates intestinal epithelium renewal of Holstein calves in the first days of life. J. Anim. Physiol. Anim. Nutr. 2018, 102, 514–524. [Google Scholar] [CrossRef]
- Castrica, M.; Menchetti, L.; Agradi, S.; Curone, G.; Vigo, D.; Pastorelli, G.; Di Giancamillo, A.; Modina, S.C.; Riva, F.; Serra, V.; et al. Effect of Bovine Colostrum Dietary Supplementation on Rabbit Meat Quality. Foods 2022, 11, 3433. [Google Scholar] [CrossRef]
- Nagaraja, L.; Dar, A.A.; Pandey, N.N.; Mondal, D.B. Bovine colostrum as immunomodulator for prevention of Escherichia coli diarrhea in weaned rabbits. African J. Agric. Res. 2011, 6, 5066–5072. [Google Scholar] [CrossRef]
- Cotozzolo, E.; Cremonesi, P.; Curone, G.; Menchetti, L.; Riva, F.; Biscarini, F.; Marongiu, M.L.; Castrica, M.; Castiglioni, B.; Miraglia, D.; et al. Characterization of bacterial microbiota composition along the gastrointestinal tract in rabbits. Animals 2020, 11, 31. [Google Scholar] [CrossRef]
- Hu, X.; Wang, F.; Yang, S.; Yuan, X.; Yang, T.; Zhou, Y.; Li, Y. Rabbit microbiota across the whole body revealed by 16S rRNA gene amplicon sequencing. BMC Microbiol. 2021, 21, 312. [Google Scholar] [CrossRef]
- Arrazuria, R.; Elguezabal, N.; Juste, R.A.; Derakhshani, H.; Khafipour, E. Mycobacterium avium subspecies paratuberculosis infection modifies gut microbiota under different dietary conditions in a rabbit model. Front. Microbiol. 2016, 7, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016, 081257. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pẽa, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Franzosa, E.A.; McIver, L.J.; Rahnavard, G.; Thompson, L.R.; Schirmer, M.; Weingart, G.; Lipson, K.S.; Knight, R.; Caporaso, J.G.; Segata, N.; et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 2018, 15, 962–968. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Kaakoush, N.O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 2015, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Lema, I.; Araújo, J.R.; Rolhion, N.; Demignot, S. Jejunum: The understudied meeting place of dietary lipids and the microbiota. Biochimie 2020, 178, 124–136. [Google Scholar] [CrossRef]
- Berry, D. The emerging view of Firmicutes as key fibre degraders in the human gut. Environ. Microbiol. 2016, 18, 2081–2083. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The controversial role of human gut lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, P.; Li, J.; An, Y.; Wang, M.; Zhong, G. The differences between luminal microbiota and mucosal microbiota in mice. J. Microbiol. Biotechnol. 2020, 30, 287–295. [Google Scholar] [CrossRef]
- Asbjornsdottir, B.; Miranda-ribera, A.; Fiorentino, M.; Konno, T.; Cetinbas, M.; Birgisdottir, B.E.; Fasano, A. Prophylactic Effect of Bovine Colostrum on Intestinal Microbiota and Behavior in Wild-Type and Zonulin Transgenic Mice. Biomedicines 2023, 11, 91. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, J.; Zhang, F. Influence of goat colostrum and mature milk on intestinal microbiota. J. Funct. Foods 2021, 86, 104704. [Google Scholar] [CrossRef]
- Sun, M.; Ma, N.; He, T.; Johnston, L.J.; Ma, X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr. 2020, 60, 1760–1768. [Google Scholar] [CrossRef]
- Ganji-Arjenaki, M.; Rafieian-Kopaei, M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J. Cell. Physiol. 2018, 233, 2091–2103. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Du, Y.; Ren, D.; Yang, X.; Zhao, Y. Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of turmeric polysaccharides against DSS-induced ulcerative colitis. Food Funct. 2021, 12, 9793–9807. [Google Scholar] [CrossRef]
- Rzeznitzeck, J.; Breves, G.; Rychlik, I.; Hoerr, F.J.; von Altrock, A.; Rath, A.; Rautenschlein, S. The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys. Gut Pathog. 2022, 14, 33. [Google Scholar] [CrossRef]
- Valentini, V.; Silvestri, V.; Bucalo, A.; Marraffa, F.; Risicato, M.; Grassi, S.; Pellacani, G.; Ottini, L.; Richetta, A.G. A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients. J. Pers. Med. 2022, 12, 1118. [Google Scholar] [CrossRef] [PubMed]
- Bressa, C.; Bailén-Andrino, M.; Pérez-Santiago, J.; González-Soltero, R.; Pérez, M.; Montalvo-Lominchar, M.G.; Maté-Muñoz, J.L.; Domínguez, R.; Moreno, D.; Larrosa, M. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE 2017, 12, e0171352. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Daza, M.C.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, E.; Marette, A.; Roy, D.; Desjardins, Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front. Microbiol. 2020, 11, 2032. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saier, M.H. Gut Bacteroides species in health and disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef] [PubMed]
- Castro-Mejía, J.L.; Khakimov, B.; Aru, V.; Lind, M.V.; Garne, E.; Paulová, P.; Tavakkoli, E.; Hansen, L.H.; Smilde, A.K.; Holm, L.; et al. Gut Microbiome and Its Cofactors Are Linked to Lipoprotein Distribution Profiles. Microorganisms 2022, 10, 2156. [Google Scholar] [CrossRef]
- Yang, G.; Xiang, Y.; Wang, S.; Tao, Y.; Xie, L.; Bao, L.; Shen, K.; Li, J.; Hu, B.; Wen, C.; et al. Response of Intestinal Microbiota to the Variation in Diets in Grass Carp (Ctenopharyngodon idella). Metabolites 2022, 12, 1115. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is best? J. Sport. Sci. Med. 2004, 3, 118–130. [Google Scholar]
- Gutiérrez, I.; Espinosa, A.; García, J.; Carabaño, R.; De Blas, J.C. Effect of levels of starch, fiber, and lactose on digestion and growth performance of early-weaned rabbits. J. Anim. Sci. 2002, 80, 1029–1037. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef] [PubMed]
- PICRUSt2 Major Bug Reports and Announcements. Available online: https://web.archive.org/web/20230215090100/https://github.com/picrust/picrust2/wiki/Major-Bug-Reports-and-Announcements (accessed on 5 January 2023).
Chemical Composition | Group | ||
---|---|---|---|
CTRL | 2.5% BC | 5% BC | |
Dry matter | 92.34 | 91.71 | 91.69 |
Crude protein | 14.82 | 14.76 | 15.23 |
Ether extract | 2.79 | 2.95 | 3.02 |
Ash | 7.04 | 7.23 | 7.62 |
NDF 1 | 40.00 | 36.81 | 35.79 |
ADF 2 | 27.04 | 24.92 | 24.31 |
ADL 3 | 12.02 | 10.03 | 9.11 |
L2/L3 Pathway | L4 Pathway | Jejunum | Caecum | Colon | |||
---|---|---|---|---|---|---|---|
Lumen | Mucosa | Lumen | Mucosa | Lumen | Mucosa | ||
Cofactor biosynthesis | NAD-BS | ↓ | ↑ | ↓ | |||
GGPP-BS | ↑ | ↓ | ↓ | ||||
Biotine-BS | ↔ | ||||||
DHNA-BS | ↑ | ||||||
demethylmenaquinone-BS | ↑ | ||||||
menaquinone-BS | ↑ | ||||||
phylloquinone-BS | ↑ | ↑ | |||||
vitamin B6-BS | ↑ | ↑ | |||||
Terpenoids biosynthesis | diterpenoids-BS | ↑ | |||||
isoprenoids-BS | ↑ | ↓ | ↓ | ||||
Amino acid biosynthesis | phenylalanine-BS | ↓ | ↔ | ||||
tyrosine-BS | ↓ | ↔ | |||||
threonine-BS | ↓ | ||||||
lysine-BS | ↓ | ||||||
Amino acid degradation | Lysine-DEG | ↑ | ↑ | ↑ | |||
Histidine-DEG | ↑ | ↑ | ↑ | ||||
Glutamate-DEG | ↑ | ||||||
Nucleotide biosynthesis | 5-aminoimidazole ribonucleotide-BS | ↓ | |||||
purine nucleotides salvage | ↓ | ↓ | ↓ | ||||
Carbohydrate biosynthesis | Glycogen-BS | ↓ | ↓ | ||||
sugar nucleotides-BS | ↑ | ||||||
Carbohydrate degradation | lactose-DEG | ↑ | |||||
Lipid biosynthesis | unsaturated fatty acids-BS | ↓ | |||||
cdp-diacylglycerol-BS | ↓ | ||||||
phosphatidylglycerol-BS | ↓ | ||||||
stearate-BS | ↔ |
Intestinal Tract | Site | Diet Group | p-Value | ||
---|---|---|---|---|---|
CTRL | 2.5% BC | 5% BC | |||
Jejunum | Lumen | 57,981.4 | 29,803.4 | 58,117.8 | 0.396 |
Mucosa | 29,271.3 | 15,290.1 | 987.9 | 0.762 | |
Caecum | Lumen | 3.8 | 3.1 § | 4.2 | 0.046 * |
Mucosa | 72.7 | 15.5 | 354.3 | 0.224 | |
Colon | Lumen | 4.4 | 3.5 | 3.4 | 0.212 |
Mucosa | 16.8 | 14.7 | 20.6 | 0.478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agradi, S.; Cremonesi, P.; Menchetti, L.; Balzaretti, C.; Severgnini, M.; Riva, F.; Castiglioni, B.; Draghi, S.; Di Giancamillo, A.; Castrica, M.; et al. Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits. Animals 2023, 13, 976. https://doi.org/10.3390/ani13060976
Agradi S, Cremonesi P, Menchetti L, Balzaretti C, Severgnini M, Riva F, Castiglioni B, Draghi S, Di Giancamillo A, Castrica M, et al. Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits. Animals. 2023; 13(6):976. https://doi.org/10.3390/ani13060976
Chicago/Turabian StyleAgradi, Stella, Paola Cremonesi, Laura Menchetti, Claudia Balzaretti, Marco Severgnini, Federica Riva, Bianca Castiglioni, Susanna Draghi, Alessia Di Giancamillo, Marta Castrica, and et al. 2023. "Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits" Animals 13, no. 6: 976. https://doi.org/10.3390/ani13060976
APA StyleAgradi, S., Cremonesi, P., Menchetti, L., Balzaretti, C., Severgnini, M., Riva, F., Castiglioni, B., Draghi, S., Di Giancamillo, A., Castrica, M., Vigo, D., Modina, S. C., Serra, V., Quattrone, A., Angelucci, E., Pastorelli, G., Curone, G., & Brecchia, G. (2023). Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits. Animals, 13(6), 976. https://doi.org/10.3390/ani13060976