Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Seawater Carbonate Chemistry
2.1.1. Standing System
2.1.2. Flow through System
2.1.3. Seawater Parameters
2.2. Larval Assays
2.2.1. Micro-Respirometry
2.2.2. Effect of Food Availability on Larvae Resilience to Elevated pCO2
2.3. Adults
2.3.1. Effect of Elevated pCO2 on Algae Selection
2.3.2. Biochemical Analyses
2.4. Statistical Analyses
3. Results
3.1. Effect of Elevated pCO2 on Larvae Respiration
3.2. Effect of Food Availability on Larvae Resilience to Elevated pCO2
3.3. Effect of Elevated pCO2 on Algae Selection
3.4. Biochemical Analyses
4. Discussion
4.1. Enhanced Metabolic Demand of Oyster Larvae under Elevated pCO2
4.2. Abundant Food Helps to Mitigate the Impacts of Elevated pCO2 on D-Stage Larvae
4.3. Adult Oysters in the Elevated pCO2 Condition Had Greater Selectivity and Sorting Efficiency
4.4. Depletion of Energy Reserves after 10 Months of Adult Oyster Exposure to Elevated pCO2
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, W.J.; Hu, X.; Huang, W.J.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Chou, W.C.; Zhai, W.; Hollibaugh, J.T.; Wang, Y.; et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Johnson, Z.I.; Wheeler, B.J.; Blinebry, S.K.; Carlson, C.M.; Ward, C.S.; Hunt, D.E. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS ONE 2013, 8, e85117. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.B.; Baumann, H.; Grear, J.S.; Aller, R.C.; Gobler, C.J. Coastal Ocean Acidification: The other eutrophication problem. Estuar. Coast. Shelf Sci. 2014, 148, 1–13. [Google Scholar] [CrossRef]
- Baumann, H.; Wallace, R.B.; Tagliaferri, T.; Gobler, C.J. Large natural pH, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuar. Coasts 2015, 38, 220–231. [Google Scholar] [CrossRef]
- Sokolova, I.M.; Frederich, M.; Bagwe, R.; Lannig, G.; Sukhotin, A.A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 2012, 79, 1–15. [Google Scholar] [CrossRef]
- Wood, H.L.; Spicer, J.I.; Widdicombe, S. Ocean acidification may increase calcification rates, but at a cost. Proc. Royal Soc. B 2008, 275, 1767–1773. [Google Scholar] [CrossRef] [Green Version]
- Turner, L.M.; Ricevuto, E.; Massa-Gallucci, A.; Gambi, M.C.; Calosi, P. Energy metabolism and cellular homeostasis trade-offs provide the basis for a new type of sensitivity to ocean acidification in a marine polychaete at a high-CO2 vent: Adenylate and phosphagen energy pools versus carbonic anhydrase. J. Exp. Biol. 2015, 218, 2148–2151. [Google Scholar] [CrossRef] [Green Version]
- Hornstein, J.; Pales Espinosa, E.; Cerrato, R.; Lwiza, K.; Allam, B. The influence of temperature stress on the physiology of the Atlantic surfclam, Spisula slidissima. Comp. Biochem. Physiol. A 2018, 222, 66–73. [Google Scholar] [CrossRef]
- Kelley, A.L.; Lunden, J.J. Meta-analysis identifies metabolic sensitivities to ocean acidification running title: Ocean acidification impacts metabolic function. AIMS Environ. Sci. 2017, 4, 709–729. [Google Scholar] [CrossRef]
- Michaelidis, B.; Ouzounis, C.; Paleras, A.; Pörtner, H.O. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. 2005, 293, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; He, M. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chin. J. Oceanol. Limnol. 2012, 30, 206–211. [Google Scholar] [CrossRef]
- Seibel, B.A.; Maas, A.E.; Dierssen, H.M. Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina antarctica. PLoS ONE 2012, 7, e30464. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, L.; Hu, M.; Lu, W. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress. Sci. Total Environ. 2015, 514, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, W.; Han, Y.; Liu, S.; Guo, C.; Fu, W.; Chai, X.; Liu, G. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa. Mar. Environ. Res. 2017, 125, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Lardies, M.A.; Arias, M.B.; Poupin, M.J.; Manríquez, P.H.; Torres, R.; Vargas, C.A.; Navarro, J.M.; Lagos, N.A. Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. J. Sea Res. 2014, 90, 127–134. [Google Scholar] [CrossRef]
- Thomsen, J.; Melzner, F. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar. Biol. 2010, 157, 2667–2676. [Google Scholar] [CrossRef]
- Pousse, E.; Poach, M.E.; Redman, D.H.; Sennefelder, G.; White, L.E.; Lindsay, J.M.; Munroe, D.; Hart, D.; Hennen, D.; Dixon, M.S.; et al. Energetic response of Atlantic surfclam Spisula solidissima to ocean acidification. Mar. Pollut. Bull. 2020, 161, 111740. [Google Scholar] [CrossRef] [PubMed]
- Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar. Coast. Shelf Sci. 2010, 86, 675–682. [Google Scholar] [CrossRef]
- Stumpp, M.; Trübenbach, K.; Brennecke, D.; Hu, M.Y.; Melzner, F. Resource allocation and extracellular acid–base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat. Toxicol. 2012, 110, 194–207. [Google Scholar] [CrossRef]
- Pansch, C.; Schaub, I.; Havenhand, J.; Wahl, M. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Glob. Chang. Biol. 2014, 20, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.C.F.; Applebaum, S.L.; Manahan, D.T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl. Acad. Sci. USA 2015, 112, 4696–4701. [Google Scholar] [CrossRef] [Green Version]
- Stumpp, M.; Wren, J.; Melzner, F.; Thorndyke, M.C.; Dupont, S.T. CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. A 2011, 160, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Havenhand, J.; Thorndyke, W.; Peck, L.; Thorndyke, M. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser. 2008, 373, 285–294. [Google Scholar] [CrossRef]
- Parker, L.M.; Ross, P.M.; O’Connor, W.A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 2011, 158, 689–697. [Google Scholar] [CrossRef]
- Waldbusser, G.G.; Hales, B.; Langdon, C.J.; Haley, B.A.; Schrader, P.; Brunner, E.L.; Gray, M.W.; Miller, C.A.; Gimenez, I. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang. 2015, 5, 273–280. [Google Scholar] [CrossRef]
- Waldbusser, G.G.; Gray, M.W.; Hales, B.; Langdon, C.J.; Haley, B.A.; Gimenez, I.; Smith, S.R.; Brunner, E.B.; Hutchinson, G. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 2016, 61, 1969–1983. [Google Scholar] [CrossRef] [Green Version]
- Milano, S.; Schöne, B.R.; Wang, S.; Müller, W.E. Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule. Mar. Environ. Res. 2016, 119, 144–155. [Google Scholar] [CrossRef]
- Frieder, C.A.; Applebaum, S.L.; Pan, T.C.F.; Hedgecock, D.; Manahan, D.T. Metabolic cost of calcification in bivalve larvae under experimental ocean acidification. ICES J. Mar. Sci. 2017, 74, 941–954. [Google Scholar] [CrossRef] [Green Version]
- Wessel, N.; Martin, S.; Badou, A.; Dubois, P.; Huchette, S.; Julia, V.; Nunes, F.; Harney, E.; Paillard, C.; Auzoux-Bordenave, S. Effect of CO2–induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata). J. Exp. Mar. Biol. Ecol. 2018, 508, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Omoregie, E.; Mwatilifange, N.S.I.; Liswaniso, G. Futuristic ocean acidification levels reduce growth and reproductive viability in the pacific oyster (Crassostrea gigas). J. Appl. Sci. Environ. Manag. 2019, 23, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Sanders, T.; Schmittmann, L.; Nascimento-Schulze, J.C.; Melzner, F. High calcification costs limit mussel growth at low salinity. Front. Mar. Sci. 2018, 5, 352. [Google Scholar] [CrossRef] [Green Version]
- Waldbusser, G.G.; Bergschneider, H.; Green, M.A. Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Mar. Ecol. Prog. Ser. 2010, 417, 171–182. [Google Scholar] [CrossRef]
- Melzner, F.; Stange, P.; Trübenbach, K.; Thomsen, J.; Casties, I.; Panknin, U.; Gorb, S.N.; Gutowska, M.A. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 2011, 6, e24223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, J.; Casties, I.; Pansch, C.; Körtzinger, A.; Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Glob. Chang. Biol. 2013, 19, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Renaud, S.M.; Thinh, L.V.; Lambrinidis, G.; Parry, D.L. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 2002, 211, 195–214. [Google Scholar] [CrossRef]
- Gordillo, F.J.; Carmona, R.; Viñegla, B.; Wiencke, C.; Jiménez, C. Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar Biol. 2016, 39, 1993–2007. [Google Scholar] [CrossRef]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Edwards, M.; Richardson, A.J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 2004, 430, 881–884. [Google Scholar] [CrossRef]
- Gray, M.W.; Langdon, C.J.; Waldbusser, G.G.; Hales, B.; Kramer, S. Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Mar. Ecol. Prog. Ser. 2017, 563, 81–89. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Caldeira, K.; Jain, A.K.; Hoffert, M.I. Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 2003, 299, 2052–2054. [Google Scholar] [CrossRef] [Green Version]
- Schwaner, C.; Barbosa, M.; Connors, P.; Park, T.; Silva, D.; Griffith, A.; Gobler, C.J.; Pales, E.; Allam, B. Experimental acidification increases susceptibility of Mercenaria mercenaria to infection by Vibrio species. Mar. Environ. Res. 2020, 154, 104872. [Google Scholar] [CrossRef] [PubMed]
- Gattuso, J.P.; Lee, K.; Rost, B.; Schulz, K.G. Approaches and tools to manipulate the carbonate chemistry. In Guide for Best Practices in Ocean Acidification Research and Data Reporting; Riebesell, U., Fabry, V.J., Hansson, L., Gattuso, J., Eds.; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Millero, F.J. Carbonate constants for estuarine waters. Mar. Freshw. Res. 2010, 62, 139–142. [Google Scholar] [CrossRef]
- Helm, M.M.; Bourne, N. Hatchery Culture of Bivalves; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004. [Google Scholar]
- Schwemmer, T.G.; Baumann, H.; Murray, C.S.; Molina, A.I.; Nye, J.A. Acidification and hypoxia interactively affect metabolism in embryos, but not larvae, of the coastal forage fish Menidia menidia. J. Exp. Biol. 2020, 223, jeb228015. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.K.; Waters, P.; Rikard, F.S. Oyster Hatchery Techniques; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2008. [Google Scholar]
- Pales Espinosa, E.; Cerrato, R.; Wikfors, G.; Allam, B. Modeling food choice in the two suspension-feeding bivalves, Crassostrea virginica and Mytilus edulis. Mar. Biol. 2016, 163, 40. [Google Scholar] [CrossRef]
- Barber, B.J.; Blake, N.J. Growth and reproduction of the bay scallop, Argopecten irradians (Lamarck) at its southern distribution limit. J. Exp. Mar. Biol. Ecol. 1983, 66, 247–256. [Google Scholar] [CrossRef]
- Dridi, S.L.; DePaola, A.; Jaykus, L. Seasonal variation in weight and biochemical composition of the Pacific Oyster, Crassostrea gigas in relation to the gametogenic cycle and environmental conditions of the Bizert lagoon, Tunisia. Aquaculture 2007, 263, 238–248. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Hurd, C.L. Experimental design in ocean acidification research: Problems and solutions. ICES J. Mar. Sci. 2016, 73, 572–581. [Google Scholar] [CrossRef]
- Gerdes Gerdes, D. The Pacific oyster Crassostrea gigas: Part II. Oxygen consumption of larvae and adults. Aquaculture 1983, 31, 221–231. [Google Scholar] [CrossRef]
- Gibbs, A.; Somero, G.N. Na+-K+-adenosine triphosphatase activities in gills of marine teleost fishes: Changes with depth, size and locomotory activity level. Mar. Biol. 1990, 106, 315–321. [Google Scholar] [CrossRef]
- Dineshram, R.; Sharma, R.; Chandramouli, K.; Yalamanchili, H.K.; Chu, I.; Thiyagarajan, V. Comparative and quantitative proteomics reveal the adaptive strategies of oyster larvae to ocean acidification. Proteomics 2015, 15, 4120–4134. [Google Scholar] [CrossRef]
- Beniash, E.; Ivanina, A.; Lieb, N.S.; Kurochkin, I.; Sokolova, I.M. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar. Ecol. Prog. Ser. 2010, 419, 95–108. [Google Scholar] [CrossRef]
- Stevens, A.M.; Gobler, C.J. Interactive effects of acidification, hypoxia, and thermal stress on growth, respiration, and survival of four North Atlantic bivalves. Mar. Ecol. Prog. Ser. 2018, 604, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Gallager, S.M.; Mann, R. Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to broodstock conditioning and lipid content of eggs. Aquaculture 1986, 56, 105–121. [Google Scholar] [CrossRef]
- Sanders, M.B.; Bean, T.P.; Hutchinson, T.H.; Le Quesne, W.J. Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted. PLoS ONE 2013, 8, e74118. [Google Scholar] [CrossRef] [Green Version]
- Cole, V.J.; Parker, L.M.; O’Connor, S.J.; O’Connor, W.A.; Scanes, E.; Byrne, M.; Ross, P.M. Effects of multiple climate change stressors: Ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi. Mar. Biol. 2016, 163, 125. [Google Scholar] [CrossRef]
- Parker, L.M.; O’Connor, W.A.; Byrne, M.; Coleman, R.A.; Virtue, P.; Dove, M.; Gibbs, M.; Spohr, L.; Scanes, E.; Ross, P.M. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors. Biol. Lett. 2017, 13, 20160798. [Google Scholar] [CrossRef] [Green Version]
- Ramajo, L.; Pérez-León, E.; Hendriks, I.E.; Marbà, N.; Krause-Jensen, D.; Sejr, M.K.; Blicher, M.E.; Lagos, N.A.; Olsen, Y.S.; Duarte, C.M. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 2016, 6, 19374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cominassi, L.; Moyano, M.; Claireaux, G.; Howald, S.; Mark, F.C.; Zambonino-Infante, J.L.; Peck, M.A. Food availability modulates the combined effects of ocean acidification and warming on fish growth. Sci. Rep. 2020, 10, 2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramajo, L.; Marbà, N.; Prado, L.; Peron, S.; Lardies, M.A.; Rodriguez-Navarro, A.B.; Vargas, C.A.; Lagos, N.A.; Duarte, C.M. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 2016, 22, 2025–2037. [Google Scholar] [CrossRef] [Green Version]
- Hettinger, A.; Sanford, E.; Hill, T.M.; Hosfelt, J.D.; Russell, A.D.; Gaylord, B. The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences 2013, 10, 6629–6638. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, L.M.; Parra, D.; San Martin, V.; Lagos, N.A.; Vargas, C.A. Local Habitat Influences on Feeding and Respiration of the Intertidal Mussels Perumytilus purpuratus Exposed to Increased pCO2 Levels. Estuar. Coasts 2018, 41, 1118–1129. [Google Scholar] [CrossRef]
- Xu, X.; Yang, F.; Zhao, L.; Yan, X. Seawater acidification affects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation. Comp. Biochem. Physiol. Mol. Integr. Physiol. 2016, 196, 20–29. [Google Scholar] [CrossRef]
- Fernández-Reiriz, M.J.; Range, P.; Álvarez-Salgado, X.A.; Labarta, U. Physiological energetics of juvenile clams Ruditapes decussatus in a high CO2 coastal ocean. Mar. Ecol. Prog. Ser. 2011, 433, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.M.; Torres, R.; Acuña, K.; Duarte, C.; Manriquez, P.H.; Lardies, M.; Aguilera, V. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 2013, 90, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.A.; Aguilera, V.M.; Martín, V.S.; Manríquez, P.H.; Navarro, J.M.; Duarte, C.; Torres, R.; Lardies, M.A.; Lagos, N.A. CO2-driven ocean acidification disrupts the filter feeding behavior in Chilean gastropod and bivalve species from different geographic localities. Estuar. Coasts 2015, 38, 1163–1177. [Google Scholar] [CrossRef]
- Lutier, M.; Di Poi, C.; Gazeau, F.; Appolis, A.; Le Luyer, J.; Pernet, F. Revisiting tolerance to ocean acidification: Insights from a new framework combining physiological and molecular tipping points of Pacific oyster. Glob. Chang. Biol. 2022, 28, 3333–3348. [Google Scholar] [CrossRef]
- Vargas, C.A.; De La Hoz, M.; Aguilera, V.; Martín, V.S.; Manríquez, P.H.; Navarro, J.M.; Torres, R.; Lardies, M.A.; Lagos, N.A. CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. J. Plankton Res. 2013, 35, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Duarte, C.; López, J.; Benítez, S.; Manríquez, P.H.; Navarro, J.M.; Bonta, C.C.; Torres, R.; Quijón, P. Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia 2016, 180, 453–462. [Google Scholar] [CrossRef]
- Alldredge, A.L.; Silver, M.W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 1988, 20, 41–82. [Google Scholar] [CrossRef]
- Pales Espinosa, E.; Allam, B.; Ford, S.E. Particle selection in the ribbed mussel Geukensia demissa and the Eastern oyster Crassostrea virginica: Effect of microalgae growth stage. Estuar. Coast. Shelf Sci. 2008, 79, 1–6. [Google Scholar] [CrossRef]
- Pales Espinosa, E.; Hassan, D.; Ward, J.E.; Shumway, S.E.; Allam, B. Role of epicellular molecules in the selection of particles by the blue mussel, Mytilus edulis. Biol. Bull. 2010, 219, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Ward, J.E.; Shumway, S.E.; Wikfors, G.H.; Pales Espinosa, E.; Allam, B. Effects of Particle Surface Properties on Feeding Selectivity in the Eastern oyster Crassostrea virginica and the Blue mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 2013, 446, 320–327. [Google Scholar] [CrossRef]
- Foe, C.; Knight, A. Growth of Corbicula fluminea (Bivalvia) fed artificial and algal diets. Hydrobiologia 1986, 133, 155–164. [Google Scholar] [CrossRef]
- Aldana-Aranda, D.; Patiño-Suárez, V.; Brulé, T. Nutritional potentialities of Chlamydomonas coccoides and Thalassiosira fluviatilis, as measured by their ingestion and digestion rates by the Queen Conch larvae (Strombus gigas). Aquaculture 1997, 156, 9–20. [Google Scholar] [CrossRef]
- Rosa, M.; Padilla, D.K. Determinants of food selection by bivalve larvae. Invertebr. Biol. 2022, 141, e12366. [Google Scholar] [CrossRef]
- Maboloc, E.A.; Chan, K.Y.K. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification. Sci. Rep. 2017, 7, 12062. [Google Scholar] [CrossRef] [Green Version]
- Patterson, M.A.; Parker, B.C.; Neves, R.J. Glycogen concentration in the mantle tissue of freshwater mussels (Bivalvia: Unionidae) during starvation and controlled feeding. Am. Malacol. Bull. 1999, 15, 47–50. [Google Scholar]
- Benomar, S.; Costil, K.; El Filali, F.; Mathieu, M.; Moukrim, A. Annual dynamics of glycogen, lipids and proteins during the sexual cycle of Perna perna (Mollusca: Bivalvia) from south-western Morocco. J. Mar. Biolog. Assoc. 2010, 90, 335–346. [Google Scholar] [CrossRef]
- Bibby, R.; Widdicombe, S.; Parry, H.; Spicer, J.; Pipe, R. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat. Biol. 2008, 2, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Shi, W.; Guo, C.; Zhao, X.; Han, Y.; Peng, C.; Chai, X.; Liu, G. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways. Fish Shellfish Immunol. 2016, 54, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Pires, A.; Velez, C.; Almeida, A.; Moreira, A.; Wrona, F.J.; Soares, A.M.V.M.; Figueira, E. Effects of seawater acidification on Diopatra neapolitana (Polychaete, Onuphidae): Biochemical and regenerative capacity responses. Ecol. Indic. 2016, 60, 152–161. [Google Scholar] [CrossRef]
- Liao, H.; Yang, Z.; Dou, Z.; Sun, F.; Kou, S.; Zhang, Z.; Huang, X.; Bao, Z. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 2019, 9, 1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lannig, G.; Eilers, S.; Pörtner, H.O.; Sokolova, I.M.; Bock, C. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas-changes in metabolic pathways and thermal response. Mar. Drugs 2010, 8, 2318–2339. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, M.C.; Parker, L.M.; Scanes, E.; Byrne, M.; O’Connor, W.A.; Ross, P.M. Energetic lipid responses of larval oysters to ocean acidification. Mar. Pollut. Bull. 2021, 168, 112441. [Google Scholar] [CrossRef]
- Talmage, S.C.; Gobler, C.J. Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic Bivalves. PLoS ONE 2011, 6, e26941. [Google Scholar] [CrossRef]
- Gobler, C.J.; Talmage, S.C. Physiological response and resilience of early life-stage Eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conserv. Physiol. 2014, 2, cou004. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwaner, C.; Barbosa, M.; Schwemmer, T.G.; Pales Espinosa, E.; Allam, B. Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification. Animals 2023, 13, 1161. https://doi.org/10.3390/ani13071161
Schwaner C, Barbosa M, Schwemmer TG, Pales Espinosa E, Allam B. Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification. Animals. 2023; 13(7):1161. https://doi.org/10.3390/ani13071161
Chicago/Turabian StyleSchwaner, Caroline, Michelle Barbosa, Teresa G. Schwemmer, Emmanuelle Pales Espinosa, and Bassem Allam. 2023. "Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification" Animals 13, no. 7: 1161. https://doi.org/10.3390/ani13071161
APA StyleSchwaner, C., Barbosa, M., Schwemmer, T. G., Pales Espinosa, E., & Allam, B. (2023). Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification. Animals, 13(7), 1161. https://doi.org/10.3390/ani13071161