Satellite Tracking of Head-Started Juvenile Green Turtles (Chelonia mydas) Reveals Release Effects and an Ontogenetic Shift
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Satellite Tag Deployment and Turtle Releases
2.2. Environmental Data Annotation
2.3. Graphical Assessments of Turtle Trajectories
2.4. Generalized Additive Mixed Model
3. Results
3.1. Tag Summaries
3.2. Graphical Assessments of Turtle Trajectories
3.3. Generalized Additive Mixed Model
4. Discussion
4.1. Effects of Release Location and Timing on Dispersal
4.2. Individual and Current Influences on Dispersal
4.3. Evidence of Long-Term Nearshore Recruitment
4.4. Implications for Head-Starting and Conservation Initiatives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nathan, R.; Getz, W.M.; Revilla, E.; Holyoak, M.; Kadmon, R.; Saltz, D.; Smouse, P.E. A Movement Ecology Paradigm for Unifying Organismal Movement Research. Proc. Natl. Acad. Sci. USA 2008, 105, 19052–19059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flack, A.; Nagy, M.; Fiedler, W.; Couzin, I.D.; Wikelski, M. From Local Collective Behavior to Global Migratory Patterns in White Storks. Science 2018, 360, 911–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Fiedler, W.; Wikelski, M.; Flack, A. “Closer-to-Home” Strategy Benefits Juvenile Survival in a Long-Distance Migratory Bird. Ecol. Evol. 2019, 9, 8945–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shillinger, G.L.; Bailey, H.; Bograd, S.J.; Hazen, E.L.; Hamann, M.; Gaspar, P.; Godley, B.J.; Wilson, R.P.; Spotila, J.R. Tagging through the Stages: Technical and Ecological Challenges in Observing Life Histories through Biologging. Mar. Ecol. Prog. Ser. 2012, 457, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Hazen, E.L.; Maxwell, S.M.; Bailey, H.; Bograd, S.J.; Hamann, M.; Gaspar, P.; Godley, B.J.; Shillinger, G.L. Ontogeny in Marine Tagging and Tracking Science: Technologies and Data Gaps. Mar. Ecol. Prog. Ser. 2012, 457, 221–240. [Google Scholar] [CrossRef] [Green Version]
- Barbour, N.; Shillinger, G.L.; Hoover, A.L.; Williamson, S.A.; Coles, V.J.; Liang, D.; Fagan, W.F.; Bailey, H. Environmental and Biological Factors Influencing Dispersal of Neonate Leatherback Turtles (Dermochelys coriacea) from an Endangered Costa Rican Nesting Population. Front. Mar. Sci. 2020, 7, 937. [Google Scholar] [CrossRef]
- Chambault, P.; Dalleau, M.; Nicet, J.-B.; Mouquet, P.; Ballorain, K.; Jean, C.; Ciccione, S.; Bourjea, J. Contrasted Habitats and Individual Plasticity Drive the Fine Scale Movements of Juvenile Green Turtles in Coastal Ecosystems. Mov. Ecol. 2020, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Breed, G.A.; Cameron, M.; Ver Hoef, J.; Boveng, P.; Whiting, A.; Frost, K. Seasonal Sea Ice Dynamics Drive Movement and Migration of Juvenile Bearded Seals (Erignathus barbatus). Mar. Ecol. Prog. Ser. 2018, 600, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Péron, C.; Grémillet, D. Tracking through Life Stages: Adult, Immature and Juvenile Autumn Migration in a Long-Lived Seabird. PLoS ONE 2013, 8, e72713. [Google Scholar] [CrossRef] [Green Version]
- Vega, M.L.; Willemoes, M.; Thomson, R.L.; Tolvanen, J.; Rutila, J.; Samaš, P.; Strandberg, R.; Grim, T.; Fossøy, F.; Stokke, B.G.; et al. First-Time Migration in Juvenile Common Cuckoos Documented by Satellite Tracking. PLoS ONE 2016, 11, e0168940. [Google Scholar] [CrossRef] [Green Version]
- Orgeret, F.; Péron, C.; Enstipp, M.R.; Delord, K.; Weimerskirch, H.; Bost, C.A. Exploration during Early Life: Distribution, Habitat and Orientation Preferences in Juvenile King Penguins. Mov. Ecol. 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.; Coffey, D.M.; Holland, K.; Itano, D.; Leroy, B.; Kohin, S.; Vetter, R.; Williams, A.J.; Wren, J. Movements and Habitat Use of Juvenile Silky Sharks in the Pacific Ocean Inform Conservation Strategies. Fish. Res. 2019, 210, 131–142. [Google Scholar] [CrossRef]
- Bonar, M.; Ellington, E.H.; Lewis, K.P.; Wal, E.V. Implementing a Novel Movement-Based Approach to Inferring Parturition and Neonate Caribou Calf Survival. PLoS ONE 2018, 13, e0192204. [Google Scholar] [CrossRef] [Green Version]
- Bolten, A.B.; Lutz, P.L.; Musick, J.A.; Wyneken, J. Variation in Sea Turtle Life History Patterns: Neritic vs. Oceanic Developmental Stages. Biol. Sea Turt. 2003, 2, 243–257. [Google Scholar]
- Meylan, P.A.; Meylan, A.B.; Gray, J.A. The Ecology and Migrations of Sea Turtles 8. Tests of the Developmental Habitat Hypothesis. Bull. Am. Mus. Nat. Hist. 2011, 2011, 1–70. [Google Scholar] [CrossRef]
- Godley, B.J.; Blumenthal, J.M.; Broderick, A.C.; Coyne, M.S.; Godfrey, M.H.; Hawkes, L.A.; Witt, M.J. Satellite Tracking of Sea Turtles: Where Have We Been and Where Do We Go Next? Endanger. Species Res. 2008, 4, 3–22. [Google Scholar] [CrossRef]
- Carr, A. New Perspectives on the Pelagic Stage of Sea Turtle Development. Conserv. Biol. 1987, 1, 103–121. [Google Scholar] [CrossRef]
- Reich, K.J.; Bjorndal, K.A.; Bolten, A.B. The ‘Lost Years’ of Green Turtles: Using Stable Isotopes to Study Cryptic Lifestages. Biol. Lett. 2007, 3, 712–714. [Google Scholar] [CrossRef] [Green Version]
- Witherington, B.; Hirama, S.; Hardy, R. Young Sea Turtles of the Pelagic Sargassum-Dominated Drift Community: Habitat Use, Population Density, and Threats. Mar. Ecol. Prog. Ser. 2012, 463, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Wildermann, N.; Critchell, K.; Fuentes, M.M.P.B.; Limpus, C.J.; Wolanski, E.; Hamann, M. Does Behaviour Affect the Dispersal of Flatback Post-Hatchlings in the Great Barrier Reef? R. Soc. Open Sci. 2017, 4, 170164. [Google Scholar] [CrossRef] [Green Version]
- Putman, N.F.; Mansfield, K.L. Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle “Lost Years”. Curr. Biol. 2015, 25, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfield, K.L.; Wyneken, J.; Luo, J. First Atlantic Satellite Tracks of ‘Lost Years’ Green Turtles Support the Importance of the Sargasso Sea as a Sea Turtle Nursery. Proc. R. Soc. B Biol. Sci. 2021, 288, 20210057. [Google Scholar] [CrossRef] [PubMed]
- Fuxjager, M.J.; Eastwood, B.S.; Lohmann, K.J. Orientation of Hatchling Loggerhead Sea Turtles to Regional Magnetic Fields along a Transoceanic Migratory Pathway. J. Exp. Biol. 2011, 214, 2504–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putman, N.F.; Verley, P.; Endres, C.S.; Lohmann, K.J. Magnetic Navigation Behavior and the Oceanic Ecology of Young Loggerhead Sea Turtles. J. Exp. Biol. 2015, 218, 1044–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, P.; Lalire, M. A Model for Simulating the Active Dispersal of Juvenile Sea Turtles with a Case Study on Western Pacific Leatherback Turtles. PLoS ONE 2017, 12, e0181595. [Google Scholar] [CrossRef] [Green Version]
- Lalire, M.; Gaspar, P. Modeling the Active Dispersal of Juvenile Leatherback Turtles in the North Atlantic Ocean. Mov. Ecol. 2019, 7, 7. [Google Scholar] [CrossRef]
- Mansfield, K.; Wyneken, J.; Rittschof, D.; Walsh, M.; Lim, C.; Richards, P. Satellite Tag Attachment Methods for Tracking Neonate Sea Turtles. Mar. Ecol. Prog. Ser. 2012, 457, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.R.; Farman, R.; Polovina, J.J.; Parker, D.M.; Rice, M.; Balazs, G.H. “Going with the Flow” or Not: Evidence of Positive Rheotaxis in Oceanic Juvenile Loggerhead Turtles (Caretta caretta) in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data. PLoS ONE 2014, 9, e103701. [Google Scholar] [CrossRef] [Green Version]
- Briscoe, D.K.; Parker, D.M.; Balazs, G.H.; Kurita, M.; Saito, T.; Okamoto, H.; Rice, M.; Polovina, J.J.; Crowder, L.B. Active Dispersal in Loggerhead Sea Turtles (Caretta caretta) during the ‘Lost Years’. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160690. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, K.L.; Mendilaharsu, M.L.; Putman, N.F.; dei Marcovaldi, M.A.G.; Sacco, A.E.; Lopez, G.; Pires, T.; Swimmer, Y. First Satellite Tracks of South Atlantic Sea Turtle ‘Lost Years’: Seasonal Variation in Trans-Equatorial Movement. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171730. [Google Scholar] [CrossRef]
- Groombridge, B.; Wright, L. The IUCN Amphibia-Reptilia Red Data Book; Part 1, IUCN: Gland, Switzerland, 1982. [Google Scholar]
- Blumenthal, J.M.; Hardwick, J.L.; Austin, T.J.; Broderick, A.C.; Chin, P.; Collyer, L.; Ebanks-Petrie, G.; Grant, L.; Lamb, L.D.; Olynik, J.; et al. Cayman Islands Sea Turtle Nesting Population Increases over 22 Years of Monitoring. Front. Mar. Sci. 2021, 8, 461. [Google Scholar] [CrossRef]
- Bell, C.D.L.; Parsons, J.; Austin, T.J.; Broderick, A.C.; Ebanks-Petrie, G.; Godley, B.J. Some of Them Came Home: The Cayman Turtle Farm Headstarting Project for the Green Turtle Chelonia Mydas. Oryx 2005, 39, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Moncada, F.; Abreu-Grobois, F.A.; Muhlia-Melo, A.; Bell, C.; Tröeng, S.; Bjorndal, K.A.; Bolten, A.B.; Meylan, A.B.; Zurita, J.; Espinosa, G.; et al. Movement Patterns of Green Turtles (Chelonia mydas) in Cuba and Adjacent Caribbean Waters Inferred from Flipper Tag Recaptures. J. Herpetol. 2006, 40, 22–34. [Google Scholar] [CrossRef]
- Blumenthal, J.M.; Solomon, J.L.; Bell, C.D.; Austin, T.J.; Ebanks-Petrie, G.; Coyne, M.S.; Broderick, A.C.; Godley, B.J. Satellite Tracking Highlights the Need for International Cooperation in Marine Turtle Management. Endanger. Species Res. 2006, 2, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Divers, S.J.; Stahl, S.J. Mader’s Reptile and Amphibian Medicine and Surgery-E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 2 February 2022).
- Jonsen, I.D.; Patterson, T.A. foieGras: Fit latent variable movement models to animal tracking data for location quality control and behavioral inference. Zenodo 2020. [Google Scholar] [CrossRef]
- Jonsen, I.D.; Patterson, T.A.; Costa, D.P.; Doherty, P.D.; Godley, B.J.; Grecian, W.J.; Guinet, C.; Hoenner, X.; Kienle, S.S.; Robinson, P.W.; et al. A Continuous-Time State-Space Model for Rapid Quality Control of Argos Locations from Animal-Borne Tags. Mov. Ecol. 2020, 8, 31. [Google Scholar] [CrossRef]
- Gaspar, P.; Georges, J.-Y.; Fossette, S.; Lenoble, A.; Ferraroli, S.; Le Maho, Y. Marine Animal Behaviour: Neglecting Ocean Currents Can Lead Us up the Wrong Track. Proc. R. Soc. B Biol. Sci. 2006, 273, 2697–2702. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, C. Mapping and Quantifying Sargassum Distribution and Coverage in the Central West Atlantic Using MODIS Observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Agostinelli, C.; Lund, U. R Package ‘Circular’: Circular Statistics (Version 0.4-95). 2022. Available online: https://r-forge.r-project.org/projects/circular/ (accessed on 15 January 2023).
- Signer, J.; Fieberg, J.; Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 2019, 9, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Gurarie, E.; Andrews, R.D.; Laidre, K.L. A Novel Method for Identifying Behavioural Changes in Animal Movement Data. Ecol. Lett. 2009, 12, 395–408. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Van Rij, J.; Wieling, M.; Baayen, R.; van Rijn, H. Itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs, R Package Version 2.4.1; 2022. Available online: https://cran.r-project.org/web/packages/itsadug/index.html (accessed on 15 January 2023).
- Shillinger, G.L.; Di Lorenzo, E.; Luo, H.; Bograd, S.J.; Hazen, E.L.; Bailey, H.; Spotila, J.R. On the Dispersal of Leatherback Turtle Hatchlings from Mesoamerican Nesting Beaches. Proc. R. Soc. B Biol. Sci. 2012, 279, 2391–2395. [Google Scholar] [CrossRef] [PubMed]
- Hays, G.C.; Bradshaw, C.J.A.; James, M.C.; Lovell, P.; Sims, D.W. Why Do Argos Satellite Tags Deployed on Marine Animals Stop Transmitting? J. Exp. Mar. Biol. Ecol. 2007, 349, 52–60. [Google Scholar] [CrossRef]
- Blumenthal, J.M.; Austin, T.J.; Bothwell, J.B.; Broderick, A.C.; Ebanks-Petrie, G.; Olynik, J.R.; Orr, M.F.; Solomon, J.L.; Witt, M.J.; Godley, B.J. Life in (and out of) the Lagoon: Fine-Scale Movements of Green Turtles Tracked Using Time-Depth Recorders. Aquat. Biol. 2010, 9, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, P.; Benson, S.R.; Dutton, P.H.; Réveillère, A.; Jacob, G.; Meetoo, C.; Dehecq, A.; Fossette, S. Oceanic Dispersal of Juvenile Leatherback Turtles: Going beyond Passive Drift Modeling. Mar. Ecol. Prog. Ser. 2012, 457, 265–284. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, P.C.H. Criteria for Scientific Evaluation of Head-Starting. Mar. Turt. Newsl. 1981, 19, 3–4. [Google Scholar]
- Resende, P.S.; Viana-Junior, A.B.; Young, R.J.; Azevedo, C.S. What Is Better for Animal Conservation Translocation Programmes: Soft- or Hard-Release? A Phylogenetic Meta-Analytical Approach. J. Appl. Ecol. 2021, 58, 1122–1132. [Google Scholar] [CrossRef]
- Wells, R.S.; Bassos-Hull, K.; Norris, K.S. Experimental Return to the Wild of Two Bottlenose Dolphins. Mar. Mammal Sci. 1998, 14, 51–71. [Google Scholar] [CrossRef]
- Mazzoil, M.; McCulloch, S.; Youngbluth, M.; Kilpatrick, D.; Murdoch Titcomb, E.; Mase, B.; Odell, D.; Bossart, G. Radio-Tracking and Survivorship of Two Rehabilitated Bottlenose Dolphins (Tursiops truncatus) in the Indian River Lagoon, Florida. Aquat. Mamm. 2008, 34, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Adimey, N.; Ross, M.; Hall, M.; Reid, J.; Barlas, M.; Keith-Diagne, L.; Bonde, R. Twenty-Six Years of Post-Release Monitoring of Florida Manatees (Trichechus manatus latirostris): Evaluation of a Cooperative Rehabilitation Program. Aquat. Mamm. 2016, 42, 376–391. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Kourafalou, V.; Olascoaga, M.J.; Beron-Vera, F.J.; Le Hénaff, M.; Kang, H.; Ntaganou, N. Impact of Caribbean Anticyclones on Loop Current Variability. Ocean Dyn. 2021, 71, 935–956. [Google Scholar] [CrossRef]
- Hays, G.C.; Åkesson, S.; Broderick, A.C.; Glen, F.; Godley, B.J.; Papi, F.; Luschi, P. Island-Finding Ability of Marine Turtles. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270 (Suppl. 1), S5–S7. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Luschi, P.; Hays, G.C. Goal Navigation and Island-Finding in Sea Turtles. J. Exp. Mar. Biol. Ecol. 2008, 356, 83–95. [Google Scholar] [CrossRef]
- Shaver, D.J.; Lamont, M.M.; Maxwell, S.; Walker, J.S.; Dillingham, T. Head-Started Kemp’s Ridley Turtle (Lepidochelys kempii) Nest Recorded in Florida: Possible Implications. Chelonian Conserv. Biol. 2016, 15, 138–143. [Google Scholar] [CrossRef]
- Girard, C.; Sudre, J.; Benhamou, S.; Roos, D.; Luschi, P. Homing in Green Turtles Chelonia Mydas: Oceanic Currents Act as a Constraint Rather than as an Information Source. Mar. Ecol. Prog. Ser. 2006, 322, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Luschi, P.; Benhamou, S.; Girard, C.; Ciccione, S.; Roos, D.; Sudre, J.; Benvenuti, S. Marine Turtles Use Geomagnetic Cues during Open-Sea Homing. Curr. Biol. 2007, 17, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, K.J.; Lohmann, C.M.F. There and Back Again: Natal Homing by Magnetic Navigation in Sea Turtles and Salmon. J. Exp. Biol. 2019, 222 (Suppl. 1), jeb184077. [Google Scholar] [CrossRef] [Green Version]
- Wallace, B.P.; Zolkewitz, M.; James, M.C. Fine-Scale Foraging Ecology of Leatherback Turtles. Front. Ecol. Evol. 2015, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Goshe, L.R.; Avens, L.; Scharf, F.S.; Southwood, A.L. Estimation of Age at Maturation and Growth of Atlantic Green Turtles (Chelonia mydas) Using Skeletochronology. Mar. Biol. 2010, 157, 1725–1740. [Google Scholar] [CrossRef]
- Haskell, A.; Graham, T.E.; Griffin, C.R.; Hestbeck, J.B. Size Related Survival of Headstarted Redbelly Turtles (Pseudemys rubriventris) in Massachusetts. J. Herpetol. 1996, 30, 524–527. [Google Scholar] [CrossRef]
- Haegen, W.M.V.; Clark, S.L.; Perillo, K.M.; Anderson, D.P.; Allen, H.L. Survival and Causes of Mortality of Head-Started Western Pond Turtles on Pierce National Wildlife Refuge, Washington. J. Wildl. Manag. 2009, 73, 1402–1406. [Google Scholar] [CrossRef]
- Bona, M.; Novotny, M.; Danko, S.; Buresova, A. Headstarting in a Small Population of European Pond Turtles (Emys orbicularis) in Central European Conditions: First Results. Herpetol. Notes 2012, 5, 547–550. [Google Scholar]
- Price, E.R.; Jones, T.T.; Wallace, B.P.; Guglielmo, C.G. Serum Triglycerides and SS-Hydroxybutyrate Predict Feeding Status in Green Turtles (Chelonia mydas): Evaluating a Single Blood Sample Method for Assessing Feeding/Fasting in Reptiles. J. Exp. Mar. Biol. Ecol. 2013, 439, 176–180. [Google Scholar] [CrossRef]
- Ábrego, M.E.; Acuña-Perales, N.; Alfaro-Shigueto, J.; Azócar, J.; Barragán Rocha, A.R.; Baquero, A.; Cotto, A.; Darquea, J.; de Paz, N.; Donoso, M.; et al. Enhanced, Coordinated Conservation Efforts Required to Avoid Extinction of Critically Endangered Eastern Pacific Leatherback Turtles. Sci. Rep. 2020, 10, 4772. [Google Scholar] [CrossRef] [Green Version]
- Copsey, J.; Ábrego, M.; Alvarez, C.; Bandimere, A.; Baron, J.; Barragán, A.; Benson, S.; Cáceres, V.; Davalos, N.; Dueñas, C.; et al. Eastern Pacific Leatherback Turtle: Ex Situ Management Recommendation Development Workshop Report; IUCN SSC Conservation Planning Specialist Group: Apple Valley, MN, USA, 2021. [Google Scholar]
- Frazer, N.B. Sea Turtle Conservation and Halfway Technology*. Conserv. Biol. 1992, 6, 179–184. [Google Scholar] [CrossRef]
- Heppell, S.; Crowder, L.; Crouse, D. Models to Evaluate Headstarting as a Management Tool for Long-Lived Turtles. Ecol. Appl. 1996, 6, 556. [Google Scholar] [CrossRef]
- Burke, R.L. Head-Starting Turtles: Learning from Experience. Herpetol. Conserv. Biol. 2015, 10, 299–308. [Google Scholar]
- Senko, J.F.; Burgher, K.M.; del Mar Mancha-Cisneros, M.; Godley, B.J.; Kinan-Kelly, I.; Fox, T.; Humber, F.; Koch, V.; Smith, A.T.; Wallace, B.P. Global Patterns of Illegal Marine Turtle Exploitation. Glob. Change Biol. 2022, 28, 6509–6523. [Google Scholar] [CrossRef]
- Lewison, R.; Hobday, A.J.; Maxwell, S.; Hazen, E.; Hartog, J.R.; Dunn, D.C.; Briscoe, D.; Fossette, S.; O’Keefe, C.E.; Barnes, M.; et al. Dynamic Ocean Management: Identifying the Critical Ingredients of Dynamic Approaches to Ocean Resource Management. BioScience 2015, 65, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Welch, H.; Hazen, E.L.; Bograd, S.J.; Jacox, M.G.; Brodie, S.; Robinson, D.; Scales, K.L.; Dewitt, L.; Lewison, R. Practical Considerations for Operationalizing Dynamic Management Tools. J. Appl. Ecol. 2019, 56, 459–469. [Google Scholar] [CrossRef]
- Jonsen, I.D.; Flemming, J.M.; Myers, R.A. Robust State–Space Modeling of Animal Movement Data. Ecology 2005, 86, 2874–2880. [Google Scholar] [CrossRef]
- Jonsen, I.D.; Myers, R.A.; James, M.C. Identifying Leatherback Turtle Foraging Behaviour from Satellite Telemetry Using a Switching State-Space Model. Mar. Ecol. Prog. Ser. 2007, 337, 255–264. [Google Scholar] [CrossRef]
- Jonsen, I.D.; Basson, M.; Bestley, S.; Bravington, M.V.; Patterson, T.A.; Pedersen, M.W.; Thomson, R.; Thygesen, U.H.; Wotherspoon, S.J. State-Space Models for Bio-Loggers: A Methodological Road Map. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 88–89, 34–46. [Google Scholar] [CrossRef]
- Jonsen, I.D.; McMahon, C.R.; Patterson, T.A.; Auger-Méthé, M.; Harcourt, R.; Hindell, M.A.; Bestley, S. Movement Responses to Environment: Fast Inference of Variation among Southern Elephant Seals with a Mixed Effects Model. Ecology 2019, 100, e02566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hays, G.C.; Cerritelli, G.; Esteban, N.; Rattray, A.; Luschi, P. Open Ocean Reorientation and Challenges of Island Finding by Sea Turtles during Long-Distance Migration. Curr. Biol. 2020, 30, 3236–3242.e3. [Google Scholar] [CrossRef] [PubMed]
ID | Tracking Period | Age Class | Track Duration days | Mean 24-Hr Displacement km | Mean Bearing 0–360 deg | Mean Sea Surface Temp deg C | Mean Current Velocity km day−1 | Mean Swimming Speed km day−1 | Total Displacement km |
---|---|---|---|---|---|---|---|---|---|
203084 | Jan | 1–2 Yrs | 6 | 52 (±39) | 178 | 27 (±0.20) | 29 (±10) | 53 (±22) | 243 |
203408 | Jan | 1–2 Yrs | 9 | 35 (±9) | 216 | 27 (±0.16) | 27 (±9) | 38 (±17) | 271 |
203410 | Jan | 1–2 Yrs | 9 | 58 (±22) | 275 | 27 (±0.17) | 38 (±12) | 54 (±38) | 309 |
214069 | Jan | 1–2 Yrs | 6 | 41 (±13) | 278 | 27 (±0.36) | 10 (±5) | 42 (±10) | 185 |
214085 | Jan | 1–2 Yrs | 9 | 44 (±33) | 226 | 27 (±0.36) | 22 (±9) | 57 (±29) | 235 |
203087 | Jan | 2–3 Yrs | 8 | 44 (±26) | 145 | 27 (±0.23) | 13 (±5) | 48 (±42) | 240 |
212847 | Jan | 2–3 Yrs | 11 | 49 (±10) | 264 | 27 (±0.33) | 28 (±10) | 27 (±12) | 470 |
212867 | Jan | 2–3 Yrs | 21 | 16 (±22) | 80 | 26 (±0.37) | 16 (±7) | 28 (±23) | 220 |
214081 | Jan | 2–3 Yrs | 11 | 38 (±28) | 146 | 27 (±0.38) | 27 (±13) | 46 (±32) | 310 |
203409 | Jan | 3–4 Yrs | 8 | 43 (±34) | 223 | 27 (±0.19) | 33 (±10) | 58 (±23) | 323 |
203411 | Jan | 3–4 Yrs | 22 | 65 (±27) | 172 | 27 (±0.24) | 27 (±12) | 60 (±22) | 1138 |
228045 | Jan | 3–4 Yrs | 16 | 29 (±30) | 211 | 27 (±0.13) | 23 (±14) | 38 (±33) | 382 |
229669 | Jul | 1–2 Yrs | 10 | 37 (±12) | 170 | 29 (±0.13) | 18 (±9) | 18 (±15) | 96 |
229670 | Jul | 1–2 Yrs | 10 | 18 (±14) | 97 | 29 (±0.10) | 10 (±5) | 29 (±11) | 151 |
229671 | Jul | 1–2 Yrs | 10 | 41 (±12) | 295 | 29 (±0.41) | 26 (±7) | 35 (±16) | 396 |
229672 | Jul | 1–2 Yrs | 9 | 31 (±14) | 183 | 29 (±0.13) | 17 (±7) | 23 (±14) | 52 |
229673 | Jul | 1–2 Yrs | 9 | 22 (±13) | 193 | 29 (±0.19) | 20 (±4) | 42 (±10) | 91 |
229674 | Jul | 1–2 Yrs | 10 | 43 (±12) | 141 | 29 (±0.17) | 16 (±5) | 22 (±15) | 233 |
229675 | Jul | 1–2 Yrs | 10 | 27 (±18) | 206 | 29 (±0.11) | 15 (±4) | 25 (±13) | 213 |
229676 | Jul | 1–2 Yrs | 10 | 11 (±5) | 143 | 29 (±0.15) | 19 (±8) | 25 (±11) | 27 |
229677 | Jul | 1–2 Yrs | 10 | 47 (±23) | 191 | 29 (±0.23) | 22 (±9) | 44 (±23) | 32 |
229678 | Jul | 1–2 Yrs | 7 | 38 (±13) | 319 | 29 (±0.20) | 21 (±6) | 24 (±13) | 270 |
Response Variable | ||||
---|---|---|---|---|
Fixed Effects | Estimate | Estimate Error | p-value | |
Intercept | −0.7 | 1.9 | 0.70 | |
Persistence Velocity | Tracking Period (January) | 6.2 | 3.8 | 0.10 |
Smoother Term | EDF | F-statistic | p-value | |
Latitude, Longitude | 6.3 | 17 | <2 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbour, N.; Bailey, H.; Fagan, W.F.; Mustin, W.; Baboolal, V.; Casella, F.; Candela, T.; Gaspar, P.; Williamson, S.; Turla, E.; et al. Satellite Tracking of Head-Started Juvenile Green Turtles (Chelonia mydas) Reveals Release Effects and an Ontogenetic Shift. Animals 2023, 13, 1218. https://doi.org/10.3390/ani13071218
Barbour N, Bailey H, Fagan WF, Mustin W, Baboolal V, Casella F, Candela T, Gaspar P, Williamson S, Turla E, et al. Satellite Tracking of Head-Started Juvenile Green Turtles (Chelonia mydas) Reveals Release Effects and an Ontogenetic Shift. Animals. 2023; 13(7):1218. https://doi.org/10.3390/ani13071218
Chicago/Turabian StyleBarbour, Nicole, Helen Bailey, William F. Fagan, Walter Mustin, Vandanaa Baboolal, Francesca Casella, Tony Candela, Philippe Gaspar, Sean Williamson, Emily Turla, and et al. 2023. "Satellite Tracking of Head-Started Juvenile Green Turtles (Chelonia mydas) Reveals Release Effects and an Ontogenetic Shift" Animals 13, no. 7: 1218. https://doi.org/10.3390/ani13071218
APA StyleBarbour, N., Bailey, H., Fagan, W. F., Mustin, W., Baboolal, V., Casella, F., Candela, T., Gaspar, P., Williamson, S., Turla, E., & Shillinger, G. L. (2023). Satellite Tracking of Head-Started Juvenile Green Turtles (Chelonia mydas) Reveals Release Effects and an Ontogenetic Shift. Animals, 13(7), 1218. https://doi.org/10.3390/ani13071218