Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Individual Samples and Sequencing
2.2. Genotyping Quality Control and Filtering
2.3. Population Structure
2.4. Association Study
2.5. Population Index Building
2.6. Identification of Candidate Genes
3. Results
3.1. Phenotypic Distribution
3.2. SNP Calling and Population Structure
3.3. GWAS and Candidate Genes
3.4. Genotype Correlation in the LD Block
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ran, H.H.B.; Yang, Y.Z.N.M.; Luo, M.N.; Liu, X.R.; Yue, B.L.; Chai, Z.X.; Zhong, J.C.; Wang, H. Molecular Regulation of Yak Preadipocyte Differentiation and Proliferation by LncFAM200B and ceRNA Regulatory Network Analysis. Cells 2022, 11, 2366. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. The distributions of Chinese yak breeds in response to climate change over the past 50 years. Anim. Sci. J. 2016, 87, 947–958. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xue, M.; Wang, Z.; Chang, H.; Han, X.; Liao, X.; Wang, D. Analysis of genetic diversity and population structure of Chinese yak breeds (Bos grunniens) using microsatellite markers. J. Genet. Genom. 2008, 35, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Junior, G.A.; Schenkel, F.S.; Alcantara, L.; Houlahan, K.; Lynch, C.; Baes, C.F. Estimated genetic parameters for all genetically evaluated traits in Canadian Holsteins. J. Dairy Sci. 2021, 104, 9002–9015. [Google Scholar] [CrossRef] [PubMed]
- Khojastehkey, M.; Aslaminejad, A.A.; Shariati, M.M.; Dianat, R. Body size estimation of new born lambs using image processing and its effect on the genetic gain of a simulated population. J. Appl. Anim. Res. 2016, 44, 326–330. [Google Scholar] [CrossRef]
- Zhang, L.N.; Wu, P.; Jiang, X.H.; Xuan, C.Z.; Ma, Y.H.; Zhang, Y.A. Development and validation of a visual image analysis for monitoring the body size of sheep. J. Appl. Anim. Res. 2018, 46, 1004–1015. [Google Scholar] [CrossRef]
- Gomes, R.A.; Monteiro, G.R.; Assis, G.J.; Busato, K.C.; Ladeira, M.M.; Chizzotti, M.L. Technical note: Estimating body weight and body composition of beef cattle trough digital image analysis. J. Anim. Sci. 2016, 94, 5414–5422. [Google Scholar] [CrossRef]
- Cole, J.B.; Wiggans, G.R.; Ma, L.; Sonstegard, T.S.; Thomas, J.L.J.; Crooker, B.A.; Curtis, V.T.; Yang, J.; Wang, S.W.; Matukumalli, L.K.; et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genom. 2011, 12, 408. [Google Scholar] [CrossRef]
- Sherva, R.; Farrer, L.A. Power and pitfalls of the genome-wide association study approach to identify genes for Alzheimer’s disease. Curr. Psychiatry Rep. 2011, 13, 138–146. [Google Scholar] [CrossRef]
- Psifidi, A.; Banos, G.; Matika, O.; Desta, T.T.; Bettridge, J.; Hume, D.A.; Dessie, T.; Christley, R.; Wigley, P.; Hanotte, O.; et al. Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genet. Sel. Evol. 2016, 48, 74. [Google Scholar] [CrossRef]
- Patron, J.; Serra-Cayuela, A.; Han, B.; Li, C.; Wishart, D.S. Assessing the performance of genome-wide association studies for predicting disease risk. PLoS ONE 2019, 14, e0220215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.W.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.M.; Arnett, D.K.; Ordovas, J.M. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.X.; Xin, J.W.; Zhang, C.F.; Zhang, Q.; Li, C.; Zhu, Y.; Cao, H.W.; Wang, H.; Han, J.L.; Ji, Q.M. Whole-genome resequencing provides insights into the evolution and divergence of the native domestic yaks of the Qinghai–Tibet Plateau. BMC Evol. Biol. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, Y.; Lu, X.; Zhang, X.; Zhao, Q.; Todhunter, R.J.; Zhang, Z. Monitoring Hip and Elbow Dysplasia achieved modest genetic improvement of 74 dog breeds over 40 years in USA. PLoS ONE 2013, 8, e76390. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Wang, J.B.; Zhang, Z.W. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinf. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Sun, X.P.; Jiao, C.; Schwaninger, H.; Chao, C.T.; Ma, Y.M.; Duan, N.N.; Khan, A.; Ban, S.; Xu, K.N.; Cheng, L.L. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat. Genet. 2020, 52, 1423–1432. [Google Scholar] [CrossRef]
- Chen, J.; He, G.L.; Ren, Z.; Wang, Q.Y.; Liu, Y.B.; Zhang, H.L.; Yang, M.Q.; Zhang, H.; Ji, J.Y.; Zhao, J. Genomic insights into the admixture history of Mongolic-and Tungusic-speaking populations from Southwestern East Asia. Front. Genet. 2021, 12, 685285. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.S.; Xu, J.Y.; He, W.M.; Yang, T.L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.S.; He, W.M.; Ji, J.J.; Zhang, C.; Guo, Y.; Yang, T.L. LDBlockShow: A fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief. Bioinform. 2021, 22, 227. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Li, X.W.; Peng, W.; Zhong, J.C.; Jiang, M.F. Genome-Wide Association Study of Body Weight Trait in Yaks. Animals 2022, 12, 1855. [Google Scholar] [CrossRef] [PubMed]
- Breeze, C.E.; Haugen, E.; Reynolds, A.; Teschendorff, A.; van Dongen, J.; Lan, Q.; Rothman, N.; Bourque, G.; Dunham, I.; Beck, S. Integrative analysis of 3604 GWAS reveals multiple novel cell type-specific regulatory associations. Genome Biol. 2022, 23, 1–22. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Tian, D.M.; Wang, P.; Tang, B.X.; Teng, X.F.; Li, C.P.; Liu, X.N.; Zou, D.; Song, S.H.; Zhang, Z. GWAS Atlas: A curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. 2020, 48, 927–932. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, J.Y.; Kim, N. GMStool: GWAS-based marker selection tool for genomic prediction from genomic data. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Bouaziz, M.; Ambroise, C.; Guedj, M. Accounting for population stratification in practice: A comparison of the main strategies dedicated to genome-wide association studies. PLoS ONE 2011, 6, e28845. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.L.; Bradbury, P.; Yu, J.M.; Zhang, Y.M.; Todhunter, R.J.; Buckler, E.S.; Zhang, Z.W. Enrichment of statistical power for genome-wide association studies. BMC Biol. 2014, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Wu, Q.F.; Shi, F.Y.; Niu, J.H.; Zhang, T.; Degen, A.A.; Fang, Q.G.; Ding, L.M.; Shang, Z.H.; Zhang, Z.G. Seasonal dynamics of diet–gut microbiota interaction in adaptation of yaks to life at high altitude. npj Biofilms Microbiomes 2021, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Chen, X.F.; Duan, H.X.; Wang, Z.Q.; Feng, J.; Yang, D.L.; Song, L.N.; Zhou, N.X.; Yan, X.Y. FXYD6: A novel therapeutic target toward hepatocellular carcinoma. Protein Cells 2014, 5, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Garty, H.; Karlish, S.J.D. Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 2006, 68, 431–459. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.J.; Bijlani, S.; de Sautu, M.; Spontarelli, K.; Young, V.C.; Gatto, C.; Artigas, P. FXYD protein isoforms differentially modulate human Na/K pump function. J. Gen. Physiol. 2020, 152, e202012660. [Google Scholar] [CrossRef]
- Ballow, D.J.; Xin, Y.; Choi, Y.; Pangas, S.A.; Rajkovic, A. Sohlh2 is a germ cell-specific bHLH transcription factor. Gene Expr. Patterns 2006, 6, 1014–1018. [Google Scholar] [CrossRef]
- Sun, H.; Ghaffari, S.; Taneja, R. bHLH-Orange transcription factors in development and cancer. Transl. Oncogenomics 2007, 2, 107. [Google Scholar]
- Zhu, P.; Chen, J.C.; Chen, F.; Su, J.; Li, H.Y.; Wei, Y.M.; Yang, S.F.; Shi, D.S. Cloning and expression pattern of buffalo Sohlh2 gene. Jiangsu J. Agric. Sci. 2016, 32, 399–407. [Google Scholar]
- Liu, K.; Liu, G.Q.; Cao, Y.G.; Wei, H.X.; Li, L.; Zhang, S.Q. Analysis of pig germ-cell special gene Sohlh1 and its promoter. J. South China Agric. Univ. 2016, 37, 52–58. [Google Scholar]
- Park, M.; Lee, Y.; Jang, H.; Lee, O.H.; Park, S.W.; Kim, J.H.; Hong, K.; Song, H.; Park, S.P.; Park, Y.Y. SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.P.; Liu, C.Y.; Zhao, Y.G.; Dean, J. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation. Nucleic Acids Res. 2020, 48, 3525–3541. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; You, X.X.; Li, J.; Zhang, X.H.; Zhang, S.; Jiang, S.J.; Lin, X.Q.; Lin, H.R.; Meng, Z.N.; Shi, Q. A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. Sci. China Life Sci. 2018, 61, 934–946. [Google Scholar] [CrossRef]
- Herold, C.; Hooli, B.V.; Mullin, K.; Liu, T.; Roehr, J.T.; Mattheisen, M.; Parrado, A.R.; Bertram, L.; Lange, C.; Tanzi, R.E. Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3. Mol. Psychiatry 2016, 21, 1608–1612. [Google Scholar] [CrossRef] [PubMed]
- Ouimet, M.; Koster, S.; Sakowski, E.; Ramkhelawon, B.; Van Solingen, C.; Oldebeken, S.; Karunakaran, D.; Portal-Celhay, C.; Sheedy, F.J.; Ray, T.D. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 2016, 17, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Fang, J.; Liu, C.X.; Cao, J.W.; Xing, Y.P.; Zhou, H.M.; Zhang, Y.R. Height-related Genes Screening in Hypophysis of Debao Pony (Equus caballus) by Differential Alternative Splicing. J. Agric. Biotechnol. 2019, 27, 1410–1422. [Google Scholar]
- Alatzoglou, K.S.; Kular, D.; Dattani, M.T. Autosomal Dominant Growth Hormone Deficiency (Type II). Pediatr. Endocr. Rev. P. 2015, 12, 347–355. [Google Scholar]
- Jeong, C.; Lee, J.Y.; Kim, J.; Chae, H.; Park, H.-I.; Kim, M.; Kim, O.-H.; Kim, P.; Lee, Y.K.; Jung, J. Novel COL9A3 mutation in a family diagnosed with multiple epiphyseal dysplasia: A case report. BMC Musculoskelet. Dis. 2014, 15, 1–6. [Google Scholar] [CrossRef]
Location 1 | Breeds or Genetic Resources 2 | Count 3 |
---|---|---|
Tibet, China | Zhongba, Senza, Cuona, Sangsang, Sangri, Sibu, Riduo, Pali, Nierong, Longzi, Leiwuqi, Kangbu, Lijia, Jiangda, Gongbujiangda, Baqing, Dingqing | 51 |
Qinghai, China | Qilian, Huanhu, Gaoyuan, Datong | 12 |
Sichuan, China | Maiwa, Jiulong, Jinchuan, Changtai | 12 |
Gansu, China | Tianzhu, Gannan | 6 |
Xinjiang, China | Xinjiang, Bazhou | 6 |
Yunnan, China | Zhongdian | 3 |
Qinghai–Tibet Plateau | Wild yak | 4 |
Total | 94 |
Taxa * | Max | Min | Mean | SD | SE | CV (%) |
---|---|---|---|---|---|---|
BH | 205 | 100.7 | 118.2 | 16.7559 | 1.72823 | 14.1805 |
BL | 240 | 105.4 | 138.6 | 27.3521 | 2.82116 | 19.7283 |
BW | 821 | 156.1 | 284.9 | 103.982 | 10.7249 | 36.4992 |
CC | 270 | 140.1 | 168.8 | 23.2648 | 2.39958 | 13.7847 |
CCB | 22.9 | 10.05 | 17.24 | 2.90050 | 2.39958 | 16.8203 |
SNP No. * | Chr | Position (bp) | Alleles | Gene ID | Blast Gene Name |
---|---|---|---|---|---|
rs769892 | 4 | 4,883,046 | G/C | - | - |
rs2659279 | 13 | 59,118,279 | A/G | ENSBGRP00000037978 ENSBGRP00000037933 | FXYD |
rs310769 | 2 | 16,165,590 | C/T | ENSBGRP00000016273 ENSBGRP00000016168 ENSBGRP00000016219 | ADGRB2 |
rs2910497 | 15 | 57,505,237 | G/A | ENSBGRP00000032309 ENSBGRP00000032370 | SOHLH2 |
rs477265 | 2 | 129,838,648 | T/C | ENSBGRP00000000742 | OSBPL6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, M.; Qin, J.; Liu, Y.; Chai, Z.; Peng, W.; Kangzhu, Y.; Zhong, J.; Wang, J. Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information. Animals 2023, 13, 1470. https://doi.org/10.3390/ani13091470
Liu X, Wang M, Qin J, Liu Y, Chai Z, Peng W, Kangzhu Y, Zhong J, Wang J. Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information. Animals. 2023; 13(9):1470. https://doi.org/10.3390/ani13091470
Chicago/Turabian StyleLiu, Xinrui, Mingxiu Wang, Jie Qin, Yaxin Liu, Zhixin Chai, Wei Peng, Yixi Kangzhu, Jincheng Zhong, and Jiabo Wang. 2023. "Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information" Animals 13, no. 9: 1470. https://doi.org/10.3390/ani13091470
APA StyleLiu, X., Wang, M., Qin, J., Liu, Y., Chai, Z., Peng, W., Kangzhu, Y., Zhong, J., & Wang, J. (2023). Identification of Candidate Genes Associated with Yak Body Size Using a Genome-Wide Association Study and Multiple Populations of Information. Animals, 13(9), 1470. https://doi.org/10.3390/ani13091470