Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem (Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts (Cynara cardunculus L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Forage Materials and Ensiling
2.2. Silage Fermentation Characteristics
2.3. In Vitro Incubation
2.4. Sample Collection and Measurements
2.5. Statistical Analyses
3. Results
3.1. Silage Characteristics
3.1.1. Physical Properties
3.1.2. Lactic Acid and VFA
3.1.3. NH3-N and Chemical Composition
3.2. Ruminal Gas Production
3.3. Ruminal Fermentation Characteristics and CH4 Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, X.; Wen, A.; Desta, S.T.; Wang, J.; Shao, T. Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage. Asian-Australas. J. Anim. Sci. 2017, 30, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Barik, A.K.; Hedayetullah, M. Chapter 15-Berseem (Egyptian Clover). In Forage Crops of the World, Volume I: Major Forage Crops; Hedayetullah, M., Zaman, P., Eds.; Apple Academic Press: New York, NY, USA, 2018; pp. 213–230. [Google Scholar]
- Mustafa, A.; Seguin, P. Ensiling characteristics, ruminal nutrient degradabilities and whole tract nutrient utilization of berseem clover (Trifolium alexandrinum L.) silage. Can. J. Anim. Sci. 2003, 83, 147–152. [Google Scholar] [CrossRef]
- Masoud, S.; Hamta, A. Cytogenetic analysis of somaclonal variation in regenerated plants of berseem clover (Trifolium alexandrium L.). Caryologia 2008, 61, 392–396. [Google Scholar] [CrossRef]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Da Silva, T.C.; Ribeiro, K.G.; Mantovani, H.C.; Santos, S.A. Effects of lactic acid bacteria with bacteriocinogenic potential on the fermentation profile and chemical composition of alfalfa silage in tropical conditions. J. Dairy Sci. 2016, 99, 1895–1902. [Google Scholar] [CrossRef]
- Barros, T.; Powell, J.M.; Danes, M.A.C.; Aguerre, M.J.; Wattiaux, M.A. Relative partitioning of n from alfalfa silage, corn silage, corn grain and soybean meal into milk, urine, and feces, using stable 15n isotope. Anim. Feed Sci. Technol. 2017, 229, 91–96. [Google Scholar] [CrossRef]
- Tharangani, R.M.H.; Yakun, C.; Zhao, L.S.; Shen, Y.F.; Ma, L.; Bu, D.P. Proposal and validation of integrated alfalfa silage quality index (asqi) method for the quality assessment of alfalfa silage for lactating dairy cows. Anim. Feed Sci. Technol. 2022, 289, 115339. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.S.; Li, F.H.; Usman, S.; Zhang, Y.X.; Ding, Z.T. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel lactiplantibacillus plantarum and pediococcus acidilactici strains with high-antioxidant activity. Anim. Feed Sci. Technol. 2022, 288, 115301. [Google Scholar] [CrossRef]
- Wang, Y.; Barbieri, L.R.; Berg, B.P.; McAllister, T.A. Effects of mixing sainfoin with alfalfa on ensiling, ruminal fermentation and total tract digestion of silage. Anim. Feed Sci. Technol. 2007, 135, 296–314. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Abdullah, N.; Magaji, U.; Hussin, G.; Ramli, A.; Miah, G. Fermentation quality and additives: A case of rice straw silage. Biomed Res. Int. 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Besharati, M.; Karimi, M.; Taghİzadeh, A.; Nematİ, Z.; Kaygisiz, A. Improve quality of alfalfa silage ensiled with orange pulp and bacterial additive. Kahramanmaraş Sütçü İmam Üniv. Tarım Doğa Derg. 2020, 23, 1669–1677. [Google Scholar] [CrossRef]
- Li, X.; Tian, J.; Zhang, Q.; Jiang, Y.; Hou, J.; Wu, Z.; Yu, Z. Effects of applying lactobacillus plantarum and chinese gallnut tannin on the dynamics of protein degradation and proteases activity in alfalfa silage. Grass Forage Sci. 2018, 73, 648–659. [Google Scholar] [CrossRef]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Fermentation quality and microbial community of alfalfa and stylo silage mixed with moringa oleifera leaves. Bioresour. Technol. 2019, 284, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, L.; Xing, Y.; Zhou, W.; Yang, F.; Chen, X.; Zhang, Q. Effects of mixing neolamarckia cadamba leaves on fermentation quality, microbial community of high moisture alfalfa and stylo silage. Microb. Biotechnol. 2019, 12, 869–878. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Lv, H.; Chen, N.; Wang, C.; Zhou, W.; Chen, X.; Zhang, Q. Improving fermentation, protein preservation and antioxidant activity of moringa oleifera leaves silage with gallic acid and tannin acid. Bioresour. Technol. 2020, 297, 122390. [Google Scholar] [CrossRef]
- Pesce, G.R.; Mauromicale, G. Cynara cardunculus L.: Historical and economic importance, botanical descriptions, genetic resources and traditional uses. In The Globe Artichoke Genome, Portis, E.; Acquadro, A., Lanteri, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar]
- FAOStat, Date. Crops and Livestock Products; Statistics Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Atlasbig World Artichoke Production by Country. Available online: https://www.atlasbig.com/en-us/countries-artichoke-production (accessed on 20 March 2023).
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and fuctional properties of cynara crops (globe artichoke and cardoon) and their potencial applications: A review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70. [Google Scholar]
- Fan, Z.; Chen, K.; Ban, L.; Mao, Y.; Hou, C.; Li, J. Silage fermentation: A potential biological approach for the long-term preservation and recycling of polyphenols and terpenes in globe artichoke (Cynara scolymus L.) by-products. Molecules 2020, 25, 3302. [Google Scholar] [CrossRef]
- Rana, R.L.; Bux, C.; Lombardi, M. Carbon footprint of the globe artichoke supply chain in southern italy: From agricultural production to industrial processing. J. Clean. Prod. 2023, 391, 136240. [Google Scholar] [CrossRef]
- Gerschenson, L.N.; Fissore, E.N.; Rojas, A.M.; Bernhardt, D.C.; Domingo, C.S. Chapter 4-artichoke. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 55–69. [Google Scholar]
- Meneses, M.; Megías, M.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Oliva, J. Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Rumin. Res. 2007, 70, 292–296. [Google Scholar] [CrossRef]
- Meneses, M.; Martínez-Marín, A.L.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ. Sci. Pollut. Res. 2020, 27, 2919–2925. [Google Scholar] [CrossRef]
- Madrid, J.; Megías, M.D.; Hernández, F. Determination of short chain volatile fatty acids in silages from artichoke and orange by-products by capillary gas chromatography. J. Sci. Food Agric. 1999, 79, 580–584. [Google Scholar] [CrossRef]
- Borshchevskaya, L.N.; Gordeeva, T.L.; Kalinina, A.N.; Sineokii, S.P. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016, 71, 755–758. [Google Scholar] [CrossRef]
- Palmquist, D.; Conrad, H. Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. J. Dairy Sci. 1971, 54, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC: Arlington, VA, USA, 2006. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mutimura, M.; Myambi, C.; Gahunga, P.; Mgheni, D.; Laswai, G.; Mtenga, L.; Gahakwa, D.; Kimambo, A.; Ebong, C. Rumen liquor from slaughtered cattle as a source of inoculum for in vitro gas production technique in forage evaluation. Agric. J. 2013, 8, 173–180. [Google Scholar]
- Ahmed, M.G.; Al-Sagheer, A.A.; El-Zarkouny, S.Z.; Elwakeel, E.A. Potential of selected plant extracts to control severe subacute ruminal acidosis in vitro as compared with monensin. BMC Vet. Res. 2022, 18, 356. [Google Scholar] [CrossRef]
- Bettelheim, F.A.; Brown, W.H.; Campbell, M.K.; Farrell, S.O.; Torres, O. Introduction to General, Organic and Biochemistry, 10th ed.; Cengage Learning: Belmont, CA, USA, 2012. [Google Scholar]
- Pell, A.; Pitt, R.; Doane, P.; Schofield, P. The development, use and application of the gas production technique at cornell university, USA. BSAP Occas. Publ. 1998, 22, 45–54. [Google Scholar] [CrossRef]
- López, S.; Makkar, H.P.; Soliva, C.R. Screening plants and plant products for methane inhibitors. In In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 191–231. [Google Scholar]
- Ørskov, E.-R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Chen, X. Fit Curve Macros for Microsoft Excel (Neway Excel). 1995; Unpublished note pad. [Google Scholar]
- Al-Sagheer, A.A.; Elwakeel, E.A.; Ahmed, M.G.; Sallam, S.M. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability. Environ. Sci. Pollut. Res. 2018, 25, 31450–31458. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingaβ, H.; Becker, K. The relationship between in vitro gas production, in vitro microbial biomass yield and 15n incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef]
- Czerkawski, J. Degradation of Solid Feeds in the Rumen: Spatial Distribution of Microbial Activity and Its Consequences. In Proceedings of the 6th International Symposium on Ruminant Physiology, Banff, AB, Canada, 10–14 September 1984; Prentice-Hall: Hoboken, NJ, USA, 1986. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Al-Sagheer, A.A.; Salem, A.Z.M.; El-Hack, M.E.A.; Swelum, A.A.; Saeed, M.; Jamal, M.; Akhtar, M. Influence of exogenous fibrolytic enzymes on milk production efficiency and nutrient utilization in early lactating buffaloes fed diets with two proportions of oat silage to concentrate ratios. Livest. Sci. 2019, 219, 29–34. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Kung Jr, L.; Shaver, R.; Grant, R.; Schmidt, R. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Whiter, A.; Kung Jr, L. The effect of a dry or liquid application of lactobacillus plantarum mtd1 on the fermentation of alfalfa silage. J. Dairy Sci. 2001, 84, 2195–2202. [Google Scholar] [CrossRef]
- Pereyra, M.G.; Alonso, V.; Sager, R.; Morlaco, M.; Magnoli, C.; Astoreca, A.; Rosa, C.d.R.; Chiacchiera, S.; Dalcero, A.; Cavaglieri, L. Fungi and selected mycotoxins from pre-and postfermented corn silage. J. Appl. Microbiol. 2008, 104, 1034–1041. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E. The relationship of silage temperature with the microbiological status of the face of corn silage bunkers. J. Dairy Sci. 2010, 93, 2620–2629. [Google Scholar] [CrossRef]
- Alonso, V.; Cavaglieri, L.; Ramos, A.J.; Torres, A.; Marin, S. Modelling the effect of ph and water activity in the growth of aspergillus fumigatus isolated from corn silage. J. Appl. Microbiol. 2017, 122, 1048–1056. [Google Scholar] [CrossRef]
- Greenhill, W.L. Plant juices in relation to silage fermentation. Grass Forage Sci. 1964, 19, 30–37. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.; Heron, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Shedfield, UK, 1991. [Google Scholar]
- de Falco, B.; Incerti, G.; Amato, M.; Lanzotti, V. Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phytochem. Rev. 2015, 14, 993–1018. [Google Scholar] [CrossRef]
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling process in commercial bales of horticultural by-products from artichoke and broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-P.; Chou, C.-C.; Yu, R.-C. Antioxidant activity of lactic-fermented chinese cabbage. Food Chem. 2009, 115, 912–917. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect on the ensilage performance and microbial community of adding neolamarckia cadamba leaves to corn stalks. Microb. Biotechnol. 2020, 13, 1502–1514. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; He, H.; Zhang, S.; Kong, J. Effects of inoculants lactobacillus brevis and lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 2017, 7, 13614. [Google Scholar] [CrossRef] [PubMed]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Martínez, J.D.H.; Fuentes, M.R.; Barroso, F.G.; Guerrero, J.G. Efecto de distintos tratamientos sobre los principios nutritivos, características fermentativas y digestibilidad in vitro de ensilados de subproducto de pimiento. Arch. Zootec. 2001, 50, 323–333. [Google Scholar]
- McKersie, B.D. Proteinases and peptidases of alfalfa herbage. Can. J. Plant Sci. 1981, 61, 53–59. [Google Scholar] [CrossRef]
- Muck, R.; Moser, L.; Pitt, R. Postharvest factors affecting ensiling. Silage Sci. Technol. 2003, 42, 251–304. [Google Scholar]
- Dolores, M.; Martínez-Teruel, A.; Gallego, J.; Núñez, J. Chemical changes during the ensiling of orange peel. Anim. Feed Sci. Technol. 1993, 43, 269–274. [Google Scholar] [CrossRef]
- Desta, S.T.; Yuan, X.; Li, J.; Shao, T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of napier grass ensiled with additives. Bioresour. Technol. 2016, 221, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Nsahlai, I.; Siaw, D.; Osuji, P. The relationships between gas production and chemical composition of 23 browses of the genus sesbania. J. Sci. Food Agric. 1994, 65, 13–20. [Google Scholar] [CrossRef]
- Medjekal, S.; Bodas, R.; Bousseboua, H.; López, S. Evaluation of three medicinal plants for methane production potential, fiber digestion and rumen fermentation in vitro. Energy Procedia 2017, 119, 632–641. [Google Scholar] [CrossRef]
- Firkins, J.L. Invited review: Advances in rumen efficiency presented as part of the arpas symposium: New advances in dairy efficiency at the american dairy science association virtual annual meeting, June 2020. Appl. Anim. Sci. 2021, 37, 388–403. [Google Scholar] [CrossRef]
- García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Chemical composition, in vitro digestibility and rumen fermentation kinetics of agro-industrial by-products. Animals 2019, 9, 861. [Google Scholar] [CrossRef]
- Belanche, A.; Doreau, M.; Edwards, J.E.; Moorby, J.M.; Pinloche, E.; Newbold, C.J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 2012, 142, 1684–1692. [Google Scholar] [CrossRef]
- Kanjanapruthipong, J.; Leng, R. The effects of dietary urea on microbial populations in the rumen of sheep. Asian-Australas. J. Anim. Sci. 1998, 11, 661–672. [Google Scholar] [CrossRef]
- Russell, J.B.; Wilson, D.B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low ph? J. Dairy Sci. 1996, 79, 1503–1509. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingass, H.; Becker, K. The partitioning of in vitro fermentation products and its bearing for voluntary feed intake. In Proceedings of the Society of Nutrition Physiology, DLG, Frankfurt, Germany, 25–30 September 1994. [Google Scholar]
- Rymer, C.; Givens, D. The use of the in vitro gas production technique to investigate the effect of substrate on the partitioning between microbial biomass production and the yield of fermentation products. In Proceedings of the British Society of Animal Science; Cambridge University Press: Cambridge, UK, 1999; p. 36. [Google Scholar]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Evans, B. The role ensiled forage has on methane production in the rumen. Anim. Husb. Dairy Vet. Sci. 2018, 2, 1–4. [Google Scholar]
Item | Days of Ensiling 1 | Forage Type 2 | SEM 3 | p-Value 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A0 | A25 | A50 | A75 | A100 | L | Q | C | |||
Temperature (°C) | ||||||||||
0 | 22.5 | 22.5 | 22.4 | 22.5 | 22.3 | 0.10 | 0.44 | 0.21 | 0.60 | |
30 | 25.6 | 26.2 | 25.6 | 26 | 25.8 | 0.53 | 0.71 | 0.50 | ||
60 | 29.4 | 29.6 | 29.6 | 29.5 | 29.5 | 0.60 | 0.64 | 0.94 | ||
120 | 29.8 | 29.4 | 29.7 | 29.4 | 29.6 | 0.30 | 0.80 | 0.40 | ||
Water activity (aw) | ||||||||||
0 | 0.977 | 0.973 | 0.968 | 0.964 | 0.959 | 0.04 | 0.13 | 0.46 | 0.02 | |
30 | 0.955 | 0.967 | 0.989 | 0.974 | 0.973 | 0.11 | 0.32 | 0.62 | ||
60 | 0.973 | 0.979 | 0.975 | 0.983 | 0.972 | 0.30 | 0.80 | 0.80 | ||
120 | 0.978 | 0.986 | 0.972 | 0.979 | 0.984 | 0.50 | 0.50 | 0.20 | ||
pH | ||||||||||
0 | 6.0 aA | 5.9 abA | 5.9b cA | 5.8 cA | 5.4 dA | 0.04 | 0.64 | 0.01 | <0.01 | |
30 | 4.5 aC | 4.0 bB | 3.9 bB | 4.0 bB | 4.1 bB | <0.01 | 0.02 | 0.53 | ||
60 | 4.9 aB | 4.3 bB | 4.0 cB | 3.8 cB | 3.8 cC | <0.01 | 0.03 | <0.01 | ||
120 | 4.9 aB | 4.3 bB | 4.3 bB | 3.9 bB | 3.8 bC | 0.02 | 0.20 | <0.01 |
Item 1 | Days of Ensiling 1 | Forage Type 2 | SEM 3 | p-Value 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A0 | A25 | A50 | A75 | A100 | L | Q | C | |||
Lactic acid | ||||||||||
0 | 8.8 bD | 8.4 bC | 6.0 cB | 11.1 aD | 12.0 aD | 0.13 | 0.49 | 0.06 | <0.01 | |
30 | 57.5 cA | 131.6 aA | 133.5 aA | 125.2 aB | 107.7 bB | <0.01 | <0.01 | 0.27 | ||
60 | 19.1 bC | 18.0 bBC | 119.4 aA | 128.5 aB | 126.0 aA | <0.01 | 0.20 | <0.01 | ||
120 | 25.6 bB | 20.9 cB | 17.4 dB | 67.2 aC | 68.4 aC | <0.01 | <0.01 | <0.01 | ||
Acetic acid | ||||||||||
0 | 0 aC | 0 aB | 0 aB | 0 aC | 0 aB | 0.1 | - | - | - | |
30 | 26.6 aA | 26.7 aA | 9.8 bA | 8.5 bB | 5.9 bAB | 0.02 | 0.90 | 0.05 | ||
60 | 19.4 aB | 19.3 aA | 13.8 bA | 11.4 bAB | 9.8 bA | 0.04 | 0.90 | 0.01 | ||
120 | 22.9 aAB | 22.7 aA | 15.8 abA | 14.9 abA | 7.7 bAB | 0.30 | 0.50 | 002 | ||
Propionic acid | ||||||||||
0 | 0.00 aC | 0.00 aC | 0.00 aC | 0.00 aC | 0.00 aC | 0.02 | - | - | - | |
30 | 0.29 aC | 0.00 bC | 0.09 bB | 0.004 bB | 0.001 bB | - | - | - | ||
60 | 1.9 aB | 2.19 aB | 0.092 bB | 0.002 bB | 0.04 bB | - | - | - | ||
120 | 7.43 aA | 3.02 bA | 0.4 cA | 0.04 cA | 0.11 cA | <0.01 | <0.01 | <0.01 | ||
Butyric acid | ||||||||||
0 | 0.00 C | 0.00 C | 0.00 D | 0.00 B | 0.00 C | 0.08 | - | - | - | |
30 | 4.7 aC | 0.00 cC | 1.3 bC | 0.00 cB | 0.00 cC | <0.01 | <0.01 | <0.01 | ||
60 | 28.8 aA | 25.0 aA | 4.6 bB | 0.00 bB | 1. 0 bD | <0.01 | <0.01 | <0.01 | ||
120 | 17.5 aB | 13.1 aB | 14.4 aA | 4.3 bA | 4.00 bA | 0.06 | 0.90 | <0.01 | ||
Ethanol | ||||||||||
0 | 0.00 aC | 0.00 aC | 0.00 aB | 0.00 aC | 0.00 aB | 0.09 | - | - | - | |
30 | 18.6 aAB | 19.4 aA | 15.9 aA | 12.8 aB | 14.3 aA | 0.24 | 0.51 | 0.28 | ||
60 | 25.7 aA | 17.7 abAB | 21.0 abA | 20.0 abA | 15.8 bA | 0.40 | 0.70 | 0.70 | ||
120 | 11.2 cB | 14.8 abcB | 16.5 abA | 18.6 aA | 12.4 bcA | <0.01 | 0.80 | 0.80 |
Item 1 | Days of Ensiling 1 | Forage Type 2 | SEM 3 | p-Value 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A0 | A25 | A50 | A75 | A100 | L | Q | C | |||
Dry matter | ||||||||||
0 | 252.9 aA | 252.4 aA | 251.9 aA | 251.3 aA | 250.8 aA | 0.14 | 0.87 | 0.93 | 0.76 | |
30 | 168.0 cB | 179.6 cB | 201.1 bB | 217.4 aB | 225.3 aB | <0.01 | 0.14 | <0.01 | ||
60 | 176.8 cB | 174.2 cB | 190.1 bC | 194.9 bC | 208.4 aB | 0.03 | 0.65 | <0.01 | ||
120 | 152.8 cC | 174.6 cB | 178.8 bcD | 193.9 abC | 202.8 aB | <0.01 | 0.02 | <0.01 | ||
Organic matter | ||||||||||
0 | 884.7 cA | 898.5 bcA | 912.4 abcA | 926.2 abA | 940.0 aA | 0.18 | 0.03 | 0.26 | <0.01 | |
30 | 880.3 dA | 895.5 cdAB | 904.4 bcA | 917.7 abA | 928.3 aA | <0.01 | 0.05 | <0.01 | ||
60 | 882.5 cA | 887.1 cC | 907.1 bA | 922.4 aA | 935.3 aA | <0.01 | 0.47 | <0.01 | ||
120 | 855.4 eB | 890.1 dBC | 902.2 cA | 922.7 bA | 938.2 aA | <0.01 | <0.01 | <0.01 | ||
Crude protein | ||||||||||
0 | 164.5 aAB | 156.5 bA | 148.5 cA | 140.5 dC | 132.5 eA | 0.11 | <0.01 | <0.01 | <0.01 | |
30 | 176.1 aA | 155.6 bA | 138.8 cB | 143.6 bcB | 141.4 bcA | <0.01 | <0.01 | 0.02 | ||
60 | 158.9 aAB | 147.1 abA | 151.2 abA | 140.2 bC | 140.1 bA | 0.09 | 0.22 | <0.01 | ||
120 | 145.5 abB | 143.6 abA | 134.9 bB | 150.4 aA | 139.0 abA | 0.49 | 0.02 | 0.15 | ||
Neutral detergent fiber | ||||||||||
0 | 519.6 eB | 539.8 dC | 560.1 cB | 580.3 bB | 600.5 aC | 0.16 | <0.01 | <0.01 | <0.01 | |
30 | 493.9 dC | 565.4 cB | 568.4 cB | 609.6 bA | 639.6 aA | <0.01 | <0.01 | <0.01 | ||
60 | 535.0 cAB | 610.4 bA | 564.2 bB | 579.1 aB | 622.9 aB | 0.04 | <0.01 | <0.01 | ||
120 | 539.3 bA | 555.0 bBC | 589.8 aA | 604.8 aA | 598.4 aC | <0.01 | 0.48 | <0.01 | ||
Acid detergent fiber | ||||||||||
0 | 294.1 eD | 308.7 dC | 323.2 cC | 337.8 bC | 352.3 aC | 0.12 | <0.01 | <0.01 | <0.01 | |
30 | 330.8 dC | 367.8 cB | 361.0 cB | 388.9 bA | 408.5 aA | <0.01 | <0.01 | <0.01 | ||
60 | 366.0 bB | 401.5 aA | 368.7 bB | 367.7 bB | 390.1 aB | 0.14 | <0.01 | <0.01 | ||
120 | 384.8 aA | 267.8 bD | 388.2 aA | 381.8 aAB | 390.1 aB | 0.30 | <0.01 | <0.01 | ||
Acid detergent lignin | ||||||||||
0 | 58.4 aC | 56.3 abC | 54.2 bcD | 52.1 bcA | 56.0 cA | 0.12 | 0.04 | 0.30 | <0.01 | |
30 | 81.6 aB | 75.1 abAB | 64.7 abB | 59.3 bA | 65.3 abA | <0.01 | 0.89 | 0.09 | ||
60 | 93.6 aA | 89.3 aA | 61.1 bC | 57.5 bA | 56.1 bA | <0.01 | 0.58 | <0.01 | ||
120 | 91.6 aA | 70 bB | 70.2 bA | 56.3 cA | 62.9 bcA | <0.01 | 0.04 | <0.01 | ||
Cellulose | ||||||||||
0 | 235.7 cD | 252.4 dC | 269.0 cB | 285.7 bA | 302.3 aC | 0.14 | <0.01 | <0.01 | <0.01 | |
30 | 249.2 cC | 292.6 bB | 296.3 bA | 329.6 aB | 343.2 aA | <0.01 | <0.01 | <0.01 | ||
60 | 272.5 cB | 312.2 bA | 307.5 bA | 310.2 bC | 334.0 aAB | <0.01 | <0.01 | <0.01 | ||
120 | 293.3 bA | 197.8 cD | 316.0 abA | 325.5 aB | 327.2 aB | <0.01 | <0.01 | <0.01 | ||
Hemicelluloses | ||||||||||
0 | 225.5 eA | 231.2 dB | 236.9 cA | 242.5 bC | 248.2 aA | 0.12 | <0.01 | <0.01 | <0.01 | |
30 | 163.1 dB | 197.7 cC | 207.4 bcB | 220.7 abA | 231.1 aB | <0.01 | <0.01 | <0.01 | ||
60 | 168.9 dB | 208.9 bcC | 195.5 cB | 211.5 bB | 232.8 aB | <0.01 | <0.01 | <0.01 | ||
120 | 154.3 dC | 287.2 aA | 203.7 cB | 223.0 bAB | 208.2 bcC | <0.01 | <0.01 | <0.01 |
Incubation Time (h) | Forage Type 1 | ||||
---|---|---|---|---|---|
A0 | A25 | A50 | A75 | A100 | |
3 | 26.25 | 25.29 | 25.00 | 24.44 | 22.32 |
6 | 50.32 | 44.34 | 62.23 | 45.04 | 50.69 |
9 | 70.70 | 66.67 | 89.07 | 63.35 | 68.94 |
12 | 93.63 | 86.77 | 107.36 | 83.29 | 92.95 |
24 | 143.06 | 133.07 | 163.32 | 152.03 | 163.63 |
48 | 174.94 | 163.19 | 207.99 | 192.77 | 201.63 |
72 | 187.06 | 176.61 | 226.51 | 214.15 | 222.41 |
Overall mean | 92.40c | 99.42 bc | 114.14 a | 98.55 bc | 101.76 b |
SEM | 6.06 | 9.25 | 7.17 | 7.16 | 8.01 |
Forage 1 | Parameters of Gas Production 2 | ||||
---|---|---|---|---|---|
a (mL) | b (mL) | c (mL/h) | GPSF | GPNSF | |
A0 | −0.379 | 39.43 | 0.057 | 24.18 | 127.25 |
A25 | −0.394 | 36.32 | 0.054 | 22.04 | 111.93 |
A50 | −0.634 | 47.52 | 0.072 | 26.59 | 157.89 |
A75 | −0.318 | 42.30 | 0.041 | 20.90 | 114.53 |
A100 | −0.585 | 48.71 | 0.056 | 23.82 | 154.98 |
S.E.M | −0.207 | 1.78 | 0.003 | 0.77 | 7.69 |
p-value | 0.99 | 0.06 | 0.06 | 0.16 | 0.12 |
Trend analysis | |||||
Linear | 0.84 | 0.03 | 0.42 | 0.69 | 0.22 |
Quadratic | 0.98 | 0.81 | 0.52 | 0.98 | 0.68 |
Cubic | 0.83 | 0.76 | 0.15 | 0.67 | 0.60 |
Forage 1 | Feed Degradability (g/g DM) 2 | PF (mg/mL Gas) | CH4 (mL/g DM Incubated) | NH3-N (mg/100 mL) | MP (g/kg DOM) | |||
---|---|---|---|---|---|---|---|---|
Dry Matter | TDOM | NDFD | ||||||
Apparent | True | |||||||
A0 | 0.5596 | 0.6571 b | 0.6223 b | 03369 | 3.44 | 50.75 | 23.52 b | 118.24 |
A25 | 0.5416 | 0.6347 b | 0.5983 b | 0.3714 | 3.64 | 46.86 | 23.89 b | 113.68 |
A50 | 0.6384 | 0.7045 a | 0.6729 a | 0.4849 | 3.41 | 63.01 | 27.00 a | 127.85 |
A75 | 0.5717 | 0.6559 b | 0.6305 ab | 0.4486 | 3.45 | 36.74 | 25.01 ab | 119.80 |
A100 | 0.6253 | 0.6641 b | 0.6361 ab | 0.4171 | 3.06 | 69.47 | 25.36 ab | 113.09 |
S.E.M | 1.36 | 0.79 | 0.85 | 2.03 | 0.07 | 4.33 | 0.39 | 2.08 |
p-value | 0.06 | 0.046 | 0.050 | 0.066 | 0.091 | 0.177 | 0.017 | 0.185 |
Trend analysis | ||||||||
Linear | 0.039 | 0.350 | 0.167 | 0.046 | 0.031 | 0.314 | 0.037 | 0.735 |
Quadratic | 0.792 | 0.221 | 0.255 | 0.049 | 0.071 | 0.351 | 0.061 | 0.113 |
Cubic | 0.936 | 0.371 | 0.255 | 0.486 | 0.996 | 0.199 | 0.860 | 0.213 |
Forage 1 | pH | VFA Molar Proportions 2 | C2/C3 3 | Total VFA (mM) | |||||
---|---|---|---|---|---|---|---|---|---|
C2 | C3 | C4 | C4i | C5i | C5 | ||||
A0 | 6.88 a | 63.10 | 17.19 | 11.80 | 3.07 | 2.59 | 1.32 | 3.67 | 99.07 |
A25 | 6.66 b | 63.95 | 17.82 | 12.20 | 3.34 | 2.59 | 1.45 | 3.60 | 101.36 |
A50 | 6.69 b | 66.81 | 18.04 | 12.24 | 3.12 | 2.53 | 1.35 | 3.71 | 104.08 |
A75 | 6.63 b | 65.03 | 17.32 | 11.96 | 2.89 | 2.32 | 1.27 | 3.76 | 100.79 |
A100 | 6.64 b | 62.04 | 16.26 | 11.40 | 2.69 | 2.22 | 1.24 | 3.81 | 95.85 |
S.E.M | 0.04 | 0.86 | 0.33 | 0.18 | 0.09 | 0.16 | 0.05 | 0.04 | 1.48 |
p-value | 0.01 | 0.59 | 0.65 | 0.72 | 0.244 | 0.118 | 0.520 | 0.677 | 0.59 |
Trend analysis | |||||||||
Linear | 0.007 | 0.873 | 0.366 | 0.462 | 0.055 | 0.0143 | 0.207 | 0.196 | 0.429 |
Quadratic | 0.060 | 0.150 | 0.194 | 0.222 | 0.187 | 0.390 | 0.330 | 0.591 | 0.152 |
Cubic | 0.288 | 0.651 | 0.977 | 0.949 | 0.398 | 0.696 | 0.356 | 0.606 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.G.; Al-Sagheer, A.A.; El-Waziry, A.M.; El-Zarkouny, S.Z.; Elwakeel, E.A. Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem (Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts (Cynara cardunculus L.). Animals 2023, 13, 1543. https://doi.org/10.3390/ani13091543
Ahmed MG, Al-Sagheer AA, El-Waziry AM, El-Zarkouny SZ, Elwakeel EA. Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem (Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts (Cynara cardunculus L.). Animals. 2023; 13(9):1543. https://doi.org/10.3390/ani13091543
Chicago/Turabian StyleAhmed, Mariam G., Adham A. Al-Sagheer, Ahmed M. El-Waziry, Samir Z. El-Zarkouny, and Eman A. Elwakeel. 2023. "Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem (Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts (Cynara cardunculus L.)" Animals 13, no. 9: 1543. https://doi.org/10.3390/ani13091543
APA StyleAhmed, M. G., Al-Sagheer, A. A., El-Waziry, A. M., El-Zarkouny, S. Z., & Elwakeel, E. A. (2023). Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem (Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts (Cynara cardunculus L.). Animals, 13(9), 1543. https://doi.org/10.3390/ani13091543