Rice Fields as Important Habitats for Three Anuran Species—Significance and Implications for Conservation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Water Sample Collection and Analyses
2.3. Calling Activity
2.4. Abundance Estimates
2.5. Environmental Parameters
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albero, L.; Martínez-Solano, Í.; Hermida, M.; Vera, M.; Tarroso, P.; Becares, E. Open areas associated with traditional agriculture promote functional connectivity among amphibian demes in Mediterranean agrosystems. Landsc. Ecol. 2023. [Google Scholar] [CrossRef]
- Tan, W.C.; Herrel, A.; Rödder, D. A global analysis of habitat fragmentation research in reptiles and amphibians: What have we done so far? Biodivers. Conserv. 2023, 32, 439–468. [Google Scholar] [CrossRef]
- Concepción, E.; Aneva, I.; Jay, M.; Lukanov, S.; Marsden, K.; Moreno, G.; Oppermann, R.; Pardo, A.; Piskol, S.; Rolo, V.; et al. Optimizing biodiversity gain of European agriculture through regional targeting and adaptive management of conservation tools. Biol. Conserv. 2020, 241, 108384. [Google Scholar] [CrossRef]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The role of Agri-environment schemes in conservation and environmental management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.; Graef, F.; Pallut, B.; Hoffmann, J.; Brühl, C.A.; Wagner, N.A. How does changing pesticide usage over time affect migrating amphibians: A case study on the use of glyphosate-based herbicides in German agriculture over 20 years. Front. Environ. Sci. 2018, 6, 6. [Google Scholar] [CrossRef]
- Agostini, M.A.; Roesler, I.; Bonetto, C.; Ronco, A.E.; Bilenca, D. Pesticides in the real world: The consequences of GMO-based intensive agriculture on Native Amphibians. Biol. Conserv. 2020, 241, 108355. [Google Scholar] [CrossRef]
- Beklioglu, M.; Romo, S.; Kagalou, I.; Quintana, X.; Becares, E. State of the art in the functioning of shallow Mediterranean lakes: Workshop conclusions. Hydrobiologia 2007, 584, 317–326. [Google Scholar] [CrossRef]
- Zhelev, Z.; Tsonev, S.; Georgieva, K.; Arnaudova, D. Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in Southern Bulgaria and its importance in assessing environmental state: Haematological parameters. Environ. Sci. Pollut. Res. 2018, 25, 7884–7895. [Google Scholar] [CrossRef]
- Mann, R.M.; Hyne, R.V.; Choung, C.B.; Wilson, S.P. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environ. Pollut. 2009, 157, 2903–2927. [Google Scholar] [CrossRef]
- Moussy, C.; Burfield, I.J.; Stephenson, P.J.; Newton, A.F.E.; Butchart, A.H.M.; Sutherland, W.J.; Gregory, R.D.; McRae, L.; Bubb, P.; Roesler, I.; et al. A quantitative global review of species population monitoring. Conserv. Biol. 2022, 36, e13721. [Google Scholar] [CrossRef]
- Browning, E.; Gibb, R.; Glover-Kapfer, P.; Jones, K.E. Passive Acoustic Monitoring in Ecology and Conservation; WWF-UK: Woking, UK, 2018; p. 76. [Google Scholar] [CrossRef]
- Aide, T.M.; Corrada-Bravo, C.; Campos-Cerqueira, M.; Milan, C.; Vega, G.; Alvarez, R. Real-time bioacoustics monitoring and automated species identification. PeerJ 2013, 1, e103. [Google Scholar] [CrossRef] [PubMed]
- Sugai, L.S.M.; Silva, T.S.F.; Ribeiro, J.W.; Llusia, D. Terrestrial passive acoustic monitoring: Review and perspectives. Bioscience 2019, 69, 15–25. [Google Scholar] [CrossRef]
- Hill, A.P.; Prince, P.; Covarrubias, E.P.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [Google Scholar] [CrossRef]
- Darras, K.; Batáry, P.; Furnas, B.J.; Grass, I.; Mulyani, Y.A.; Tscharntke, T. Autonomous sound recording outperforms human observation for sampling birds: A systematic map and user guide. Ecol. Appl. 2019, 29, e01954. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J. Anuran Communication; Smithsonian: Washington, DC, USA, 2001; p. 252. [Google Scholar]
- Donchev, D.; Karakashev, H. Topics on Physical and Social-Economic Geography of Bulgaria; Ciela: Sofia, Bulgaria, 2004; p. 596. (In Bulgarian) [Google Scholar]
- Tzankov, N.; Popgeorgiev, G. Conservation and declines of amphibians in Bulgaria. In Amphibian Biology; Heatwole, H., Wilkinson, J.W., Eds.; Pelagic Publishing: Exeter, UK, 2014; Volume 11 Part 4: Status of Conservation and Decline of Amphibians: Eastern Hemisphere: Southern Europe & Turkey; pp. 131–139. [Google Scholar]
- Speybroeck, J.; Beukema, W.; Dufresnes, C.; Fritz, U.; Jablonski, D.; Lymberakis, P.; Martínez-Solano, I.; Razzetti, E.; Vamberger, M.; Vences, M.; et al. Species list of the European herpetofauna—2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphib-Reptil. 2020, 41, 139–189. [Google Scholar] [CrossRef]
- Melo, T.N.d.; Cerqueira, M.C.; D’Horta, F.M.; Tuomisto, H.; Doninck, J.V.; Ribas, C.C. Impacts of a large hydroelectric dam 900 on the Madeira River (Brazil) on floodplain avifauna. Acta Amaz. 2021, 51, 298–310. [Google Scholar] [CrossRef]
- Ribeiro, J.W.; Harmon, K.; Leite, G.A.; de Melo, T.N.; LeBien, J.; Campos-Cerqueira, M. Passive Acoustic Monitoring as a Tool to Investigate the Spatial Distribution of Invasive Alien Species. Remote Sens. 2022, 14, 4565. [Google Scholar] [CrossRef]
- Corrada-Bravo, C.J.; Berríos, R.Á.; Aide, T.M. Species-specific audio detection: A comparison of three template-based detection 841 algorithms using random forests. PeerJ Comput. Sci. 2017, 3, e113. [Google Scholar] [CrossRef]
- Crovetto, F.; Salvidio, S.; Costa, A. Estimating abundance of the Stripeless tree-frog Hyla meridionalis by means of replicated call counts. Acta Herpetol. 2019, 14, 147–151. [Google Scholar] [CrossRef]
- Kellner, K.F.; Fowler, N.L.; Petroelje, T.R.; Kautz, T.M.; Beyer, D.E.; Belant, J.L. ubms: An R package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian framework. Methods Ecol. Evol. 2021, 13, 577–584. [Google Scholar] [CrossRef]
- Royle, J.A. N-mixture models for estimating population size from spatially replicated counts. Biometrics 2004, 60, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017, 27, 1413–1432. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing 2021. Available online: https://www.R-project.org (accessed on 21 April 2023).
- Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Daam, M.A.; Ilha, P.; Schiesari, L. Acute toxicity of inorganic nitrogen (ammonium, nitrate and nitrite) to tadpoles of five tropical amphibian species. Ecotoxicology 2020, 29, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 2003, 50, 251–264. [Google Scholar] [CrossRef]
- European Chemicals Agency, Registration Dossier 15878, Last Modified 2023. Available online: https://echa.europa.eu/bg/registration-dossier/-/registered-dossier/15878 (accessed on 2 December 2023).
- Van Dam, R.A.; Hogan, A.C.; McCullough, C.D.; Houston, M.A.; Humphrey, C.L.; Harford, A.J. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environ. Toxicol. Chem. 2010, 29, 410–421. [Google Scholar] [CrossRef]
- Collins, S.J.; Russel, R.W. Toxicity of road salt to Nova Scotia amphibians. Environ. Pollut. 2009, 157, 320–324. [Google Scholar] [CrossRef]
- European Chemicals Agency, Registration Dossier 18438, Last Modified 2020. Available online: https://echa.europa.eu/bg/registration-dossier/-/registered-dossier/18438 (accessed on 1 December 2023).
- Weir, S.M.; Yu, S.; Scott, D.E.; Lance, S.L. Acute toxicity of copper to the larval stage of three species of ambystomatid salamanders. Ecotoxicology 2019, 28, 1023–1031. [Google Scholar] [CrossRef]
- Hong, N.T.; Chiang, K.Y.; Bhattarai, S.K.; Thu, N.T.H.; Tho, H.T.; Tuyet, N.T.A. Determination of the acute toxicity of Nickel (Ni) in water environment to zebrafish at different pH levels. J. Sci. Technol. Food 2020, 20, 80–92. [Google Scholar]
- Rao, J.; Madhyastha, M.N. Toxicities of some heavy metals to the tadpoles of frog, Microhyla ornata (dumeril & bibron). Toxicol. Lett. 1987, 36, 205–208. [Google Scholar]
- Shuhaimi-Othman, M.; Nadzifah, Y.; Umirah, N.S.; Ahmad, A.K. Toxicity of metals to tadpoles of the common Sunda toad, Duttaphrynus melanostictus. Toxicol. Environ. Chem. 2012, 94, 364–376. [Google Scholar] [CrossRef]
- Nam, S.H.; Yang, C.Y.; An, Y.J. Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa, Simocephalus mixtus, and Pseudokirchneriella subcapitata). Chemosphere 2009, 75, 889–893. [Google Scholar] [CrossRef]
- Gardner, S.; Cline, G.; Mwebi, N.; Rayburn, J. Developmental and interactive effects of arsenic and chromium to developing Ambystoma maculatum embryos: Toxicity, teratogenicity, and whole-body concentrations. J. Toxicol. Environ. Health A 2017, 80, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Droege, S.; Eagle, P. Evaluating calling surveys. In Declining Amphibians: A United States Response to the Global Phenomenon; Lannoo, M.J., Ed.; University of California Press: Berkeley, CA, USA, 2009; pp. 314–325. [Google Scholar]
- Zhelev, Z.; Popgeorgiev, G.; Ivanov, I.; Boyadzhiev, P. Changes of erythrocyte-metric parameters in Pelophylax ridibundus (Amphibia: Anura: Ranidae) inhabiting water bodies with different types of anthropogenic pollution in Southern Bulgaria. Environ. Sci. Pollut. Res. 2017, 24, 17920–17934. [Google Scholar] [CrossRef] [PubMed]
- Zhelev, Z.; Tsonev, C.V.; Arnaudova, D.N. Health status of Pelophylax ridibundus (Pallas, 1771) (Amphibia: Ranidae) in a rice paddy ecosystem in southern Bulgaria: Body condition factor and fluctuating asymmetry. Acta Zool. Bulg. 2017, 69 (Suppl. S8), 169–177. [Google Scholar]
- Adlassnig, W.; Schmidt, B.; Jirsa, F.; Gradwohl, A.; Ivesic, C.; Koller-Peroutka, M. The Arsenic–Antimony Creek at Sauerbrunn/Burgenland, Austria: A Toxic Habitat for Amphibians. Int. J. Environ. Res. Public Health 2022, 19, 6010. [Google Scholar] [CrossRef] [PubMed]
- Propper, C.R.; Singleton, G.R.; Sedlock, J.L.; Smedley, R.E.; Frith, O.B.; Shuman-Goodier, M.E.; Lorica, R.P.; Grajal-Puche, A.; Horgan, F.H.; Prescott, C.V.; et al. Faunal Biodiversity in Rice-Dominated Wetlands—An Essential Component of Sustainable Rice Production. In Closing Rice Yield Gaps in Asia; Connor, M., Gummert, M., Singleton, G.R., Eds.; Springer: Cham, Switzerland, 2023; pp. 93–120. [Google Scholar] [CrossRef]
- Flynn, R.W.; Scott, D.E.; Kuhne, W.; Soteropoulos, D.; Lance, S.L. Lethal and sublethal measures of chronic copper toxicity in the eastern narrowmouth toad, Gastrophryne carolinensis, reveal within and among population variation. Environ. Toxicol. Chem. 2015, 34, 575–582. [Google Scholar] [CrossRef]
- Lance, S.L.; Flynn, R.W.; Erickson, M.R.; Scott, D.E. Within- and among-population differences in response to chronic copper exposure in southern toads. Anaxyrus terrestris. Environ. Pollut. 2013, 177, 135–142. [Google Scholar] [CrossRef]
- Albero, L.; Martínez-Solano, Í.; Arias, A.; Lizana, M.; Bécares, E. Amphibian Metacommunity Responses to Agricultural Intensification in a Mediterranean Landscape. Land 2021, 10, 924. [Google Scholar] [CrossRef]
- Wells, K.D. The Ecology and Behaviour of Amphibians; The University of Chicago Press: Chicago, IL, USA, 2007; p. 1400. [Google Scholar]
- Camargo, U.M.d.; Somervuo, P.; Ovaskainen, O. PROTAX-Sound: A probabilistic framework for automated animal sound identification. PLoS ONE 2017, 12, e0184048. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Camargo, U.M.d.; Somervuo, P. Animal Sound Identifier (ASI): Software for automated identification of vocal animals. Ecol. Lett. 2018, 21, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhu, M.; Hu, K.; Zhang, J.; Hines, H.; Guo, Y. Frog calling activity detection using lightweight CNN with multi-view spectrogram: A case study on Kroombit tinker frog. Mach. Learn. Appl. 2022, 7, 100202. [Google Scholar] [CrossRef]
- Stowell, D. Computational bioacoustics with deep learning: A review and roadmap. PeerJ 2022, 10, e13152. [Google Scholar] [CrossRef] [PubMed]
Null | Site | Samples | |
---|---|---|---|
June 2022 | |||
B. viridis | −143.84, −12.83, 7.171 | −131.00, 0.00, 0.00 | −133.92, −2.95, 0.86 |
H. orientalis | −85.74, −5.34, 3.51 | −80.40, 0.00, 0.00 | −81.19, −0.79, 0.21 |
P. ridibundus | −59.87, 0.00, 0.00 | −60.55, −0.68, 0.65 | −60.82, −0.95, 1.26 |
September 2022 | |||
B. viridis | −39.97, −16.53, 1.96 | −23.81, −0.36, 0.03 | −23.45, 0.00, 0.00 |
H. orientalis | −42.18, −18.73, 16.12 | −23.15, 0.00, 0.00 | −24.51, −0.42, 0.04 |
P. ridibundus | −52.19, −21.55, 1.94 | −30.64, 0.00, 0.00 | −31.12, −0.47, 0.49 |
June 2023 | |||
B. viridis | −75.90, −032, 0.78 | −75.58, 0.00, 0.00 | −76.18, −0.59, 0.43 |
H. orientalis | −59.53, −4.09, 3.53 | −55.44, 0.00, 0.00 | −56.24, −0.80, 0.84 |
P. ridibundus | −55.27, −071, 0.61 | −54.68, −0.11, 0.11 | −54.57, 0.00, 0.00 |
September 2023 | |||
B. viridis | −41.76, −17.42, 1.53 | −24.34, 0.00, 0.00 | −25.20, −0.86, 0.13 |
H. orientalis | −52.47, −19.76, 3.18 | −32.71, 0.00, 0.00 | −32.91, −0.20, 0.46 |
P. ridibundus | −26.05, −4.10, 0.77 | −21.95, 0.00, 0.00 | −22.42, −0.47, 0.023 |
2022 | 2023 | LC50 | Source | |||||
---|---|---|---|---|---|---|---|---|
C | R1 | R2 | C | R1 | R2 | |||
Nitrates | 0 | 0 | 0.48 | 0 | 0 | 0.98 | 13.6–1750 | [28,29] |
Nitrites | 0 | 0 | 0.016 | 0 | 0.020 | 0.044 | 33–192 | [29] |
Fluoride | 0.81 | 0.23 | 0.28 | 0.95 | 0.34 | 0.28 | 51 | [30] |
Calcium/Sulfates | 77 | 34 | 40 | 70 | 28 | 52 | >2980 | [31] |
Magnesium | 18 | 10.2 | 8.6 | 19 | 7 | 11.5 | 40 | [32] |
Chlorides | 65 | 13 | 9.8 | 71 | 10.5 | 14 | 1178–3109 | [33] |
Boron | 0.04 | 0.02 | 0.02 | 0.032 | 0.014 | 0.032 | 8.4 | [34] |
Copper | 0.023 | 0.004 | 0.006 | 0.017 | 0.004 | 0.007 | 0.035–0.048 | [35] |
Nickel | 0.002 | 0.003 | 0.001 | 0.002 | 0.001 | 0.003 | 0.397–0.695 | [36] |
Manganese | 15.23 | 0.18 | 0.25 | 13.12 | 0.02 | 0.017 | 17–222 | [37,38] |
Antimony | 0.001 | 0.003 | 0.001 | 0.002 | 0.002 | 0.001 | 238 | [39] |
Arsenic | 0.019 | 0.003 | 0.002 | 0.014 | 0.003 | 0.002 | 261 | [40] |
Rainfall | Air Temperature | |||||
---|---|---|---|---|---|---|
C | R1 | R2 | C | R1 | R2 | |
B. viridis | 0.152, 0.001 | 0.044, 0.005 | 0.005, 0.661 | −0.189, 0.001 | −0.262, 0.001 | −0.176, 0.000 |
H. orientalis | 0.235, 0.001 | 0.050, 0.001 | 0.079, 0.001 | −0.204, 0.001 | −0.287, 0.001 | −0.136, 0.002 |
P. ridibundus | 0.297, 0.001 | 0.055, 0.001 | 0.057, 0.001 | −0.278, 0.001 | −0.257, 0.001 | −0.413, 0.001 |
B. viridis | C | R1 | R2 |
---|---|---|---|
C | H(2) = 4.94, p < 0.001 | H(2) = 15.04, p < 0.001 | |
R1 | H(2) = 4.94, p < 0.001 | H(2) = 18.97, p < 0.001 | |
R2 | H(2) = 15.04, p < 0.001 | H(2) = 18.97, p < 0.001 | |
H. orientalis | |||
C | H(2) = 3.01, p = 0.007 | H(2) = 15.55, p < 0.001 | |
R1 | H(2) = 3.01, p = 0.007 | H(2) = 17.39, p < 0.001 | |
R2 | H(2) = 15.55, p < 0.001 | H(2) = 17.39, p < 0.001 | |
P. ridibundus | |||
C | H(2) = 11.36, p < 0.001 | H(2) = 17.56, p < 0.001 | |
R1 | H(2) = 11.36, p < 0.001 | H(2) = 28.07, p < 0.001 | |
R2 | H(2) = 17.56, p < 0.001 | H(2) = 28.07, p < 0.001 |
Month | C | R1 | R2 | |
---|---|---|---|---|
B. viridis | ||||
2022 | June/July | 16.93% (10.30 ± 3.31) | 36.57% (31.68 ± 5.90) | 22.64% (39.77 ± 6.39) |
August/September | - | 2.63% (3.54 ± 2.02) | 45.75% (32.09 ± 7.15) | |
2023 | June/July | 30.73% (25.80 ± 5.80) | 18.98% (37.09 ± 6.48) | 29.49% (39.05 ± 6.68) |
August/September | - | 5.00% (3.25 ± 1.98) | 54.36% (30.27 ± 6.93) | |
H. orientalis | ||||
2022 | June/July | 18.95% (20.79 ± 4.72) | 36.10% (39.20 ± 6.33) | 30.18% (39.19 ± 6.51) |
August/September | - | 8.51% (30.57 ± 7.69) | 41.14% (33.14 ± 7.61) | |
2023 | June/July | 21.56% (20.25 ± 4.68) | 34.86% (37.55 ± 6.30) | 91.46% (39.17 ± 6.35) |
August/September | - | 3.79% (4.22 ± 2.05) | 53.40% (36.87 ± 6.42) | |
P. ridibundus | ||||
2022 | June/July | 21.66% (30.62 ± 6.41) | 25.81% (26.63 ± 5.88) | 16.00% (37.78 ± 6.22) |
August/September | - | 2.48% (6.22 ± 2.49) | 72.92% (38.66 ± 6.23) | |
2023 | June/July | 28.30% (24.55 ± 5.21) | 27.71% (35.03 ± 6.13) | 77.10% (38.94 ± 6.43) |
August/September | - | 0.86% (4.63 ± 3.02) | 13.94% (21.82 ± 9.65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukanov, S.; Kolev, A.; Dimitrova, B.; Popgeorgiev, G. Rice Fields as Important Habitats for Three Anuran Species—Significance and Implications for Conservation. Animals 2024, 14, 106. https://doi.org/10.3390/ani14010106
Lukanov S, Kolev A, Dimitrova B, Popgeorgiev G. Rice Fields as Important Habitats for Three Anuran Species—Significance and Implications for Conservation. Animals. 2024; 14(1):106. https://doi.org/10.3390/ani14010106
Chicago/Turabian StyleLukanov, Simeon, Andrey Kolev, Blagovesta Dimitrova, and Georgi Popgeorgiev. 2024. "Rice Fields as Important Habitats for Three Anuran Species—Significance and Implications for Conservation" Animals 14, no. 1: 106. https://doi.org/10.3390/ani14010106
APA StyleLukanov, S., Kolev, A., Dimitrova, B., & Popgeorgiev, G. (2024). Rice Fields as Important Habitats for Three Anuran Species—Significance and Implications for Conservation. Animals, 14(1), 106. https://doi.org/10.3390/ani14010106