Dose-Dependent Effects of Supplementing a Two-Strain Bacillus subtilis Probiotic on Growth Performance, Blood Parameters, Fecal Metabolites, and Microbiome in Nursery Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Animals, Housing, and Treatments
2.3. Experimental Diets
2.4. Growth Performance Measurement and Sample Collection
2.5. Fecal Metabolites Analysis
2.6. DNA Extraction, Library Preparation and Sequencing
2.7. Statistical Analysis and Amplicon Sequencing Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, R.; Oh, J.K.; Song, J.H.; Kang, D.-K. Gut microbiome-produced metabolites in pigs: A review on their biological functions and the influence of probiotics. J. Anim. Sci. Technol. 2022, 64, 671–695. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.M.; Sessin, A.P.; Soratto, T.A.T.; Pires, P.G.D.S.; Cardinal, K.M.; Wagner, G.; Hauptli, L.; Lima, A.L.F.; Dahlke, F.; Netto, D.P.; et al. Effect of functional oils or probiotics on performance and microbiota profile of newly weaned piglets. Sci. Rep. 2021, 11, 19457. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.D.; Oh, H.K.; Piao, L.G.; Choi, H.B.; Yun, J.H.; Kim, Y.Y. Evaluation of probiotics as an alternative to antibiotic on growth performance, nutrient digestibility, occurrence of diarrhea and immune response in weaning pigs. J. Anim. Sci. Technol. 2009, 51, 25–32. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, M.; Zhao, L.; Ge, K.; Wang, Z.; Jun, L.; Ren, F. Growth performance and post-weaning diarrhea in piglets fed a diet supplemented with probiotic complexes. J. Microbiol. Biotechnol. 2018, 28, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Jiang, X.R.; Qiao, J.Y. Effect of dietary Bacillus subtilis on growth performance and serum biochemical and immune indexes in weaned piglets. J. Appl. Anim. Res. 2021, 1, 83–88. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Martín-Orúe, S.M.; Castillejos, L. Review: Are we using probiotics correctly in post-weaning piglets? Animal 2018, 12, 2489–2498. [Google Scholar] [CrossRef]
- Kampf, D. Mode of action of Bacillus subtilis and efficiency in piglet feeding. Feed. Compounder 2012, 2, 36–37. [Google Scholar]
- Deng, B.; Wu, J.; Li, X.; Zhang, C.; Men, X.; Xu, Z. Effects of Bacillus subtilis on growth performance, serum parameters, digestive enzyme, intestinal morphology, and colonic microbiota in piglets. AMB Express 2020, 10, 212. [Google Scholar] [CrossRef]
- Kim, K.; He, Y.; Xiong, X.; Ehrlich, A.; Li, X.; Raybould, H.; Atwill, E.R.; Maga, E.; Jørgensen, J.; Liu, Y. Dietary supplementation of Bacillus subtilis influenced intestinal health and metabolomic profiles of weaned pigs experimentally infected with a pathogenic E. coli. J. Anim. Sci. 2020, 98, 76–77. [Google Scholar] [CrossRef]
- He, Y.; Jinno, C.; Kim, K.; Wu, Z.; Tan, B.; Li, X.; Whelan, R.; Liu, Y. Dietary Bacillus spp. enhanced growth and disease resistance of weaned pigs by modulating intestinal microbiota and systemic immunity. J. Anim. Sci. Biotechnol. 2020, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dun, Y.; Li, S.; Zhao, S.; Peng, N.; Liang, Y. Effects of Bacillus subtilis KN-42 on growth performance, diarrhea and faecal bacterial flora of weaned piglets. Asian Australas. J. Anim. Sci. 2014, 27, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Bertocchi, M.; Motta, V.; Salvarani, C.; Bosi, P.; Luppi, A.; Fanelli, F.; Mazzoni, M.; Archetti, I.; Maiorano, G.; et al. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota, and blood metabolomics. J. Anim. Sci. Biotechnol. 2019, 10, 74–89. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington DC, USA, 2012. [Google Scholar]
- United Stated-Food and Drug Administration (US-FDA). Bacteriological Analytical Manual, 8th ed.; Revision, A., Ed.; US-FDA: Washington, DC, USA, 1998.
- Lu, Y.; Yao, D.; Chen, C. 2-Hydrazinoquinoline as a Derivatization Agent for LC-MS-Based Metabolomic Investigation of Diabetic Ketoacidosis. Metabolites 2013, 3, 993–1010. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.T.; Song, Y.; Hu, Q.; Faris, R.J.; Guo, J.; Ma, Y.; Saqui-Salces, M.; Urriola, P.E.; Shurson, G.C.; Chen, C. Identification of Independent and Shared Metabolic Responses to High-Fiber and Antibiotic Treatments in Fecal Metabolome of Grow-Finish Pigs. Metabolites 2022, 12, 686. [Google Scholar] [CrossRef]
- Lindemann, M.D.; Kim, B.G. Technical note: A model to estimate individual feed intake of swine in group feeding. J. Anim. Sci. 2007, 85, 972–975. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumine amplicon data. Nat. Met. 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, X.; Duan, Y.; Zhao, Y.; Zhang, W.; Azad, M.A.K.; Wang, Z.; Blachier, F.; Kong, X. Dietary supplementation with Bacillus subtilis promotes growth and gut health of weaned piglets. Front. Vet. Sci. 2021, 7, 600772. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, X.; Ma, C.; Gao, Q.; Yin, Y.; Kong, X.; He, J. Dietary supplementation with Bacillus subtilis DSM 32315 alters the intestinal microbiota and metabolites in weaned piglets. J. Appl. Microbiol. 2021, 130, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Umar, S.; Rust, B.; Lazarova, D.; Bordonaro, M. Secondary bile acids and short chain fatty acids in the colon: A focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int. J. Mol. Sci. 2019, 20, 1214. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, B.; Perez Palencia, J.Y.; Samuel, R.S. Impact of early weaning on development of the swine gut microbiome. Microorganisms 2023, 11, 1753. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Zhu, Y.H.; Zhang, H.F.; Yue, Y.; Cai, Z.X.; Lu, Q.P.; Zhang, L.; Weng, X.G.; Zhang, F.J.; Zhou, D.; et al. Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: Intestinal microbiota and immune imbalances. PLoS ONE 2012, 7, e40666. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, P.; Casini, L.; Coloretti, F.; Mazzoni, M.; Merialdi, G.; Bosi, P. Dietary addition of Lactobacillus rhamnosus GG impairs the health of Escherichia coli F4-challenged piglets. Animal 2011, 5, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Musa, H.H.; Wu, S.L.; Zhu, C.H.; Seri, H.I.; Zhu, G.Q. The potential benefits of probiotics in animal production and health. J. Anim. Vet. Adv. 2009, 8, 313–321. [Google Scholar]
- Boyle, R.J.; Robins-Browne, R.M.; Tang, M.L. Probiotic use in clinical practice: What are the risks? Am. J. Clin. Nutr. 2006, 83, 1256–1264. [Google Scholar] [CrossRef]
- Wang, H.; Kim, K.P.; Kim, I.H. Influence of Bacillus subtilis GCB-13-001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1919–1925. [Google Scholar] [CrossRef]
- Mangian, H.F.; Tappenden, K.A. Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells. J. Parenter. Enteral Nutr. 2009, 33, 607–617. [Google Scholar] [CrossRef]
- Sehayek, E.; Ono, J.G.; Duncan, E.M.; Batta, A.K.; Salen, G.; Shefer, S.; Neguyen, L.B.; Yang, K.; Lipkin, M.; Breslow, J.L. Hyodeoxycholic acid efficiently suppresses atherosclerosis formation and plasma cholesterol levels in mice. J. Lipid Res. 2001, 42, 1250–1256. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, T.; Jiang, R.; Zhao, A.; Wu, Q.; Kuang, J.; Sun, D.; Ren, Z.; Li, M.; Zhao, M.; et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 2021, 33, 791–803.e7. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, M.Y.; Zhou, H.; Chong, J.; Zhang, J.W.; Yu, B.; Chen, D.W.; Ge, L.P. Importance of gut microbiota for bile acid composition and concentration in pigs. Front. Anim. Sci. 2022, 3, 951840. [Google Scholar] [CrossRef]
- Wise, J.L.; Cummings, B.P. The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front. Microbiol. 2023, 13, 1093420. [Google Scholar] [CrossRef] [PubMed]
- Trudeau, M.P.; Zhou, Y.; Leite, F.L.; Gomez, A.; Urriola, P.E.; Shurson, G.C.; Chen, C.; Isaacson, R.E. Fecal hyodeoxycholic acid is correlated with tylosin-induced microbiome changes in growing pigs. Front. Vet. Sci. 2018, 5, 196. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Wang, P.; Yan, Z.; Sun, W.; Zhao, S.; Gun, S. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. MicrobiologyOpen 2019, 8, e923. [Google Scholar] [CrossRef]
- Wang, X.; Tsai, T.; Wei, X.; Zuo, B.; Davis, E.; Rehberger, T.; Hernandez, S.; Jochems, E.J.M.; Maxwell, C.V.; Zhao, J. Effect of lactylate and Bacillus subtilis on growth performance, peripheral blood cell profile, and gut microbiota of nursery pigs. Microorganisms 2021, 9, 803. [Google Scholar] [CrossRef]
Ingredients, % | Phase 1 d 0–14 Postweaning | Phase 2 d 15–28 Postweaning |
---|---|---|
Corn | 49.25 | 56.75 |
Soybean meal (48% CP) | 20.00 | 25.00 |
Fish meal | 2.25 | 1.25 |
Blood meal | 2.50 | 0.00 |
Whey, dried | 15.00 | 6.25 |
Oats | 2.50 | 2.50 |
Soy oil | 1.85 | 1.50 |
Molasses | 1.50 | 1.75 |
L-Lysine·HCl | 0.15 | 0.00 |
Trace mineral and vitamin premix 2 | 5.00 | 5.00 |
Calculated chemical composition | ||
Metabolizable energy (kcal/kg) | 3350 | 3310 |
Crude protein (%) | 20.32 | 19.27 |
SID 3 lysine (%) | 1.42 | 1.24 |
SID methionine + cysteine (%) | 0.78 | 0.76 |
Total Ca (%) | 1.01 | 0.90 |
Total P (%) | 0.68 | 0.64 |
Treatment 1 | |||
---|---|---|---|
Control | Pro1x | Pro10x | |
Phase 1, CFU/g diet | |||
Target | - | 1.875 × 105 | 1.875 × 106 |
Actual | 1.20 × 104 | 1.80 × 105 | 2.20 × 106 |
Phase 2, CFU/g diet | |||
Target | - | 1.875 × 105 | 1.875 × 106 |
Actual | 2.80 × 104 | 1.70 × 105 | 6.70 × 106 |
Treatment 2 | |||||
---|---|---|---|---|---|
Control | Pro1x | Pro10x | SEM 3 | p-Value | |
Hematocrit, % | |||||
d 14 postweaning | 31.2 | 31.2 | 31.7 | 1.13 | 0.94 |
d 28 postweaning | 35.4 | 37.2 | 36.4 | 1.20 | 0.48 |
Glucose, mg/dL | |||||
d 14 postweaning | 95.2 b | 111.7 a | 114.3 a | 5.15 | 0.05 |
d 28 postweaning | 114.2 | 112.7 | 115.3 | 4.07 | 0.90 |
Creatinine, mg/dL | |||||
d 14 postweaning | 0.87 | 0.80 | 0.85 | 0.06 | 0.56 |
d 28 postweaning | 0.90 | 0.93 | 0.82 | 0.04 | 0.12 |
Treatment 2 | |||||
---|---|---|---|---|---|
Control | Pro1x | Pro10x | SEM 3 | p-Value | |
D 14 postweaning, µmol/g feces | |||||
Acetate | 121.08 | 139.18 | 130.10 | 9.59 | 0.44 |
Propionate | 63.80 | 69.10 | 76.48 | 8.12 | 0.56 |
Butyrate | 30.87 | 42.10 | 44.08 | 6.40 | 0.28 |
Isovalerate | 2.58 | 3.70 | 2.68 | 0.65 | 0.38 |
Valerate | 13.40 | 16.47 | 18.10 | 3.35 | 0.62 |
Total | 231.77 | 270.52 | 271.50 | 26.72 | 0.51 |
D 28 postweaning, µmol/g feces | |||||
Acetate | 120.02 ab | 141.87 a | 101.17 b | 10.71 | 0.02 |
Propionate | 62.95 ab | 71.42 a | 55.27 b | 7.70 | 0.03 |
Butyrate | 36.17b | 47.57 a | 33.23 b | 5.30 | 0.04 |
Isovalerate | 2.67 b | 3.93 a | 2.10 b | 0.40 | 0.01 |
Valerate | 14.95 | 17.42 | 14.02 | 2.87 | 0.40 |
Total | 236.72 ab | 282.23 a | 205.80 b | 25.62 | 0.02 |
Treatment 2 | p-Value | ||||
---|---|---|---|---|---|
Control | Pro1x | Pro10x | SEM 3 | ||
Bile acid concentrations, µg/g feces | |||||
Cholic acid | 0.39 | 0.40 | 0.35 | 0.11 | 0.93 |
Chenodeoxycholic acid | 6.91 | 9.05 | 8.94 | 3.73 | 0.87 |
Deoxycholic acid | 1.15 | 2.68 | 1.45 | 0.94 | 0.38 |
Lithocholic acid | 143.80 | 247.50 | 227.43 | 43.68 | 0.25 |
Hyodeoxycholic acid | 493.74 | 598.93 | 759.31 | 141.03 | 0.44 |
Hyocholic acid | 264.65 | 120.11 | 129.35 | 97.78 | 0.53 |
Glycohyodeoxycholic acid | 5.48 | 6.54 | 5.89 | 2.49 | 0.96 |
Glycohyocholic acid | 3.63 | 1.90 | 0.93 | 0.93 | 0.17 |
Glycochenodeoxycholic acid | 0.93 | 1.01 | 0.91 | 0.34 | 0.97 |
Total | 920.68 | 988.11 | 1134.53 | 218.48 | 0.76 |
Bile acid composition, % of total bile acid | |||||
Cholic acid | 0.05 | 0.05 | 0.03 | 0.01 | 0.64 |
Chenodeoxycholic acid | 0.72 | 0.67 | 0.91 | 0.26 | 0.77 |
Deoxycholic acid | 0.13 | 0.20 | 0.12 | 0.04 | 0.20 |
Lithocholic acid | 17.95 | 31.11 | 20.20 | 5.76 | 0.27 |
Hyodeoxycholic acid | 51.03 | 58.99 | 68.54 | 7.54 | 0.30 |
Hyocholic acid | 28.62 | 7.83 | 9.40 | 7.47 | 0.14 |
Glycohyodeoxycholic acid | 0.81 | 0.86 | 0.62 | 0.29 | 0.83 |
Glycohyocholic acid | 0.55 a | 0.15 b | 0.10 b | 0.15 | 0.09 |
Glycochenodeoxycholic acid | 0.13 | 0.14 | 0.08 | 0.04 | 0.46 |
Ratio of secondary bile acid/primary bile acid | |||||
Hyodeoxycholic acid/hyocholic acid | 14.64 b | 59.58 a | 31.67 ab | 15.32 | 0.08 |
Lithocholic acid/chenodeoxycholic acid | 35.10 | 80.32 | 48.14 | 22.76 | 0.37 |
Treatment 2 | p-Value | ||||
---|---|---|---|---|---|
Control | Pro1x | Pro10x | SEM 3 | ||
Bile acid concentrations, µg/g feces | |||||
Cholic acid | 0.43 | 0.57 | 0.49 | 0.10 | 0.65 |
Chenodeoxycholic acid | 18.82 | 6.23 | 8.94 | 5.68 | 0.29 |
Deoxycholic acid | 1.08 | 0.84 | 0.68 | 0.16 | 0.26 |
Lithocholic acid | 214.70 | 213.40 | 183.17 | 25.30 | 0.57 |
Hyodeoxycholic acid | 890.00 | 717.23 | 954.85 | 109.64 | 0.30 |
Hyocholic acid | 35.73 | 6.30 | 25.88 | 12.42 | 0.17 |
Glycohyodeoxycholic acid | 7.03 | 7.70 | 5.62 | 2.04 | 0.73 |
Glycohyocholic acid | 1.38 | 1.16 | 0.82 | 0.55 | 0.77 |
Glycochenodeoxycholic acid | 1.06 | 1.05 | 0.75 | 0.18 | 0.41 |
Total | 1170.20 | 954.51 | 1181.17 | 126.06 | 0.37 |
Bile acid composition, % of total bile acid | |||||
Cholic acid | 0.05 | 0.06 | 0.04 | 0.01 | 0.55 |
Chenodeoxycholic acid | 1.35 | 0.67 | 0.81 | 0.33 | 0.34 |
Deoxycholic acid | 0.09 | 0.09 | 0.06 | 0.01 | 0.25 |
Lithocholic acid | 19.45 | 22.68 | 16.41 | 2.46 | 0.22 |
Hyodeoxycholic acid | 75.52 | 74.74 | 79.89 | 2.04 | 0.13 |
Hyocholic acid | 2.65 | 0.65 | 2.13 | 0.92 | 0.18 |
Glycohyodeoxycholic acid | 0.67 | 0.86 | 0.52 | 0.25 | 0.39 |
Glycohyocholic acid | 0.12 | 0.13 | 0.08 | 0.06 | 0.72 |
Glycochenodeoxycholic acid | 0.10 | 0.11 | 0.07 | 0.02 | 0.27 |
Ratio of secondary bile acid/primary bile acid | |||||
Hyodeoxycholic acid/hyocholic acid | 89.34 | 297.23 | 79.51 | 101.49 | 0.28 |
Lithocholic acid/chenodeoxycholic acid | 25.55 | 73.42 | 22.79 | 22.24 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duddeck, K.A.; Petersen, T.E.; Adkins, H.J.; Smith, A.H.; Hernandez, S.; Wenner, S.J.; Yao, D.; Chen, C.; Li, W.; Fregulia, P.; et al. Dose-Dependent Effects of Supplementing a Two-Strain Bacillus subtilis Probiotic on Growth Performance, Blood Parameters, Fecal Metabolites, and Microbiome in Nursery Pigs. Animals 2024, 14, 109. https://doi.org/10.3390/ani14010109
Duddeck KA, Petersen TE, Adkins HJ, Smith AH, Hernandez S, Wenner SJ, Yao D, Chen C, Li W, Fregulia P, et al. Dose-Dependent Effects of Supplementing a Two-Strain Bacillus subtilis Probiotic on Growth Performance, Blood Parameters, Fecal Metabolites, and Microbiome in Nursery Pigs. Animals. 2024; 14(1):109. https://doi.org/10.3390/ani14010109
Chicago/Turabian StyleDuddeck, Karyn A., Tiffany E. Petersen, Haley J. Adkins, Alexandra H. Smith, Samantha Hernandez, Seth J. Wenner, Dan Yao, Chi Chen, Wenli Li, Priscila Fregulia, and et al. 2024. "Dose-Dependent Effects of Supplementing a Two-Strain Bacillus subtilis Probiotic on Growth Performance, Blood Parameters, Fecal Metabolites, and Microbiome in Nursery Pigs" Animals 14, no. 1: 109. https://doi.org/10.3390/ani14010109
APA StyleDuddeck, K. A., Petersen, T. E., Adkins, H. J., Smith, A. H., Hernandez, S., Wenner, S. J., Yao, D., Chen, C., Li, W., Fregulia, P., Larsen, A., & Jang, Y. D. (2024). Dose-Dependent Effects of Supplementing a Two-Strain Bacillus subtilis Probiotic on Growth Performance, Blood Parameters, Fecal Metabolites, and Microbiome in Nursery Pigs. Animals, 14(1), 109. https://doi.org/10.3390/ani14010109