Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feeding Method and Sampling
2.2. Vaccination
3. Blood Sampling
4. Data Analysis
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.; Beever, D. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 2003, 86, 1201–1217. [Google Scholar] [CrossRef] [PubMed]
- Overton, T.R.; Waldron, M.R. Nutritional management of transition dairy cows: Strategies to optimize metabolic health. J. Dairy Sci. 2004, 87, E105–E119. [Google Scholar] [CrossRef]
- Mandebvu, P.; Ballard, C.S.; Sniffen, C.J. Effect of feeding an energy supplement prepartumand postpartum on milk yield and composition, and incidence of ketosis in dairy cows. Anim. Feed Sci. Tech. 2003, 105, 81–93. [Google Scholar] [CrossRef]
- Bell, A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, Ş.D. SütSığırlarınınBeslenmesi (3. baskı). In Hayvan Besleme ve Beslenme Hastalıkları; Ergün, A., Tuncer, Ş.D., Çolpan, İ., Yalçın, S., Yıldız, G., Küçükersan, M.K., Küçükersan, S., Şehu, A., Eds.; Ankara Ünİversİtesİ Veterİner Fakültesİ: Ankara, Turkey, 2006; ISBN 975-97808-2-8. [Google Scholar]
- Maksimovic, Z.A.; Dordevic, S.; Mraovic, M. Antimicrobial activity of Chenopodiumbotrys essential oils. Fitoterapia 2005, 76, 112–114. [Google Scholar] [CrossRef]
- Çelik, L. Kanatlı hayvanların beslenmesinde verim artışı sağlayıcı ve ürün kalitesini iyileştirici doğalorganik etkicil maddeler. Yem Mag. 2007, 47, 51–55. [Google Scholar]
- Ertaş, O.N.; Güler, T.; Çiftçi, M.; Dalkiliç, B.; Şimşek, G. The effect of an essential oil mix derived from oregano, clove and anise on broiler performance. Int. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar]
- Mcintosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A.; Newbold, C.J. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef]
- Hosoda, K.; Matsuyama, H.; Park, W.Y.; Nishida, T.; Ishida, M. Supplementary effect of peppermint (Mentha x Piperita) on dry matter intake, digestibility, ruminal fermentation and milk production in early lactating dairy cows. Anim. Sci. J. 2006, 77, 503–509. [Google Scholar] [CrossRef]
- Tsinas, A.C.; Giannakopoulos, C.G.; Papasteriades, A.; Alexopoulos, C.; Mavromatis, J.; Kyriakis, S.C. Use of Origanum essential oils as growth promoters in pigs. In Proceeding of the 15th IPVS Congress, Birmingham, UK, 5–9 July 1998; p. 221. [Google Scholar]
- Frankic, T.; Levart, A.; Salobir, J. The effect of vitamin E and plant extract mixture composed of carvacrol, cinnamaldehyde and capsaicin on oxidative stress induced by high PUFA load in young pigs. Animal 2010, 4, 572–578. [Google Scholar] [CrossRef]
- Sads, O.R.; Bilkei, G. The effect of oregano and vaccination against Glasser’s disease and pathogenic Escherichia coli on postweaning performance of pigs. Ir. Vet. J. 2003, 56, 611–615. [Google Scholar]
- Michiels, J.; Missotten, J.; van Hoorick, A.; Ovyn, A.; Fremaut, D.; de Smet, S.; Dierick, N. Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Arch. Ani. Nutr. 2010, 64, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.N.; Goff, J.; Horst, R.; Bradford, B.; Beitz, D. Presence of acute phase response in normal and milk fever dairy cows around parturition. Acta Vet. Scand. 2003, 44, P66. [Google Scholar] [CrossRef]
- Singh, J.; Murray, R.; Mshelia, G.; Woldehiwet, Z. The immune status of the bovine uterus during the peripartum period. Vet. J. 2008, 175, 301–309. [Google Scholar] [CrossRef]
- Van Engelen, E.; de Groot, M.; Breeveld-Dwarkasing, V.; Everts, M.; van der Weyden, G.; Taverne, M.; Rutten, V. Cervical ripening and parturition in cows are driven by a cascade of pro-inflammatory cytokines. Reprod. Domest. Anim. 2009, 44, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Pachauri, S.P. Haematological profile of crossbred dairy cattle to monitor herd health status at medium elevation in Central Himalayas. Res. Vet. Sci. 2000, 69, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Baqi, M.A.; Rahman, M.M. Study on some hematological values of different stages of pregnancy of Pabna milking cows. Indian J. Dairy Sci. 1987, 40, 368–370. [Google Scholar]
- Rajora, V.S.; Pachauri, S.P. Blood profile evaluation in crossbred cows under different stages of lactation and gestation. Indian J. Anim. Sci. 1994, 64, 1351–1353. [Google Scholar]
- Shaffer, L.; Roussel, J.D.; Koonce, K.L. Effects of age, temperature-season, and breed on blood characteristics of dairy cattle. J. Dairy Sci. 1981, 64, 62–70. [Google Scholar] [CrossRef]
- Nazifi, S.; Ahmadi, M.R.; Gheisari, H.R. Hematological changes of dairy cows in postpartum period and early pregnancy. Comp. Clin. Pathol. 2008, 17, 157–163. [Google Scholar] [CrossRef]
- Knowles, T.G.; Edwards, J.E.; Bazeley, K.J.; Brown, S.N.; Butterworth, A.; Warriss, P.D. Changes in the blood biochemical and haematological profile of neonatal calves with age. Vet. Rec. 2000, 147, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Egli, C.P.; Blum, J.W. Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling simmentaler calves held in a cow-calf operation 1. J. Vet. Med. Ser. A 1998, 45, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Micronutrients and immune function in cattle. Proc. Nutr. Soc. 2000, 59, 587–594. [Google Scholar] [CrossRef]
- Burton, J.L.; Mallard, B.A.; Mowat, D.N. Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. J. Anim. Sci. 1993, 71, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Moonsie-Shageer, S.; Mowat, D.N. Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. J. Anim. Sci. 1993, 71, 232–238. [Google Scholar] [CrossRef]
- Merrill, W.G.; Smith, V.R. A comparison of some cellular and chemical constituents of blood at time of parturition and after administration of adrenocorticotrophin. J. Dairy Sci. 1954, 37, 546–551. [Google Scholar] [CrossRef]
- Paterson, J.Y.F. 17-Hydroxycorticosteroids and leucocytes in the blood of dairy cattle. J. Comp. Pathol. Ther. 1957, 67, 165–179. [Google Scholar] [CrossRef]
- Guidry, A.J.; Paape, M.J.; Pearson, R.E. Effects of parturition and lactation on blood and milk cell concentrations, corticosteroids, and neutrophil phagocytosis in the cow. Am. J. Vet. Res. 1976, 37, 1195–1200. [Google Scholar]
- Hussain, A.M.; Daniel, R.C.W. Phagocytosis by uterine fluid and blood neutrophils and hematological changes in postpartum cows following normal and abnormal parturition. Theriogenology 1992, 37, 1253–1267. [Google Scholar] [CrossRef]
- Saad, A.M.; Concha, C.; Åström, G. Alterations in neutrophil phagocytosis and lymphocyte blastogenesis in dairy cows around parturition. J. Vet. Med. Ser. B 1989, 36, 337–345. [Google Scholar] [CrossRef]
- Chang, X.; Mowat, D.N. Supplemental chromium for stressed and growing feeder calves. J. Anim. Sci. 1992, 70, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Mowat, D.N.; Chang, X.; Yang, W.Z. Chelated chromium for stressed feeder calves. Can. J. Anim. Sci. 1993, 73, 49–55. [Google Scholar] [CrossRef]
- Burton, J.L.; Mallard, B.A.; Mowat, D.N. Effects of supplemental chromium on antibody responses of newly weaned feedlot calves to immunization with infectious bovine rhinotracheitis and parainfluenza 3 virus. Can. J. Vet. Res. 1994, 58, 148–151. [Google Scholar] [PubMed]
- Chang, X.; Mallard, B.A.; Mowat, D.N. Proliferation of peripheral blood lymphocytes of feeder calves in response to chromium. Nutr. Res. 1994, 14, 851–864. [Google Scholar] [CrossRef]
- Wright, I.A.; Rhind, S.M.; Smith, A.J.; Whyte, T.K. Female-female influences on the duration of the post-partum anoestrous period in beef cows. Anim. Sci. 1994, 59, 49–53. [Google Scholar] [CrossRef]
- Wright, I.A.; Rhind, S.M.; Whyte, T.K.; Smith, A.J. Effects of body condition at calving and feeding level after calving on LH profiles and the duration of the post-partum anoestrous period in beef cows. Anim. Sci. 1992, 55, 41–46. [Google Scholar] [CrossRef]
- Bunting, L.D. Chromium and Dairy Nutrition: What Do We Know. In Proceedings of Mid-South Ruminant Nutrition Conference 1999; Available online: https://www.txanc.org/proceedings/1999/chromium.pdf (accessed on 11 December 2023).
- Turgut, K. Liver disease tests. Veterinary Clinical Laboratory Diagnosis, 1st ed.; Bahcivanlar Press: Konya, Turkey, 2000; pp. 202–257. [Google Scholar]
- Sevinc, M.; Basoglu, A.; Birdane, F.M.; Boydak, M. Liver function in dairy cows with fatty liver. Rev. Med. Vet. 2001, 152, 297–300. [Google Scholar]
- Grummer, R.R. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 1993, 76, 3882–3896. [Google Scholar] [CrossRef]
- Davidson, S. Supplementation of Rumen-Protected Forms of Methionine, Betaine, and Choline to Early Lactation Holstein Cows. 2006. Available online: http://www.lib.ncsu.edu/resolver/1840.16/4360 (accessed on 11 December 2023).
- Cooke, R.F.; Del Río, N.S.; Caraviello, D.; Bertics, S.; Ramos, M.; Grummer, R. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. J. Dairy Sci. 2007, 90, 2413–2418. [Google Scholar] [CrossRef]
- Block, S.S.; Butler, W.; Ehrhardt, R.; Bell, A.; Van Amburgh, M.; Boisclair, Y. Decreased concentration of plasma leptin in periparturient dairy cows is caused by negative energy balance. J. Endocrinol. 2001, 171, 339–348. [Google Scholar] [CrossRef]
- Phillips, G.J.; Citron, T.L.; Sage, J.S.; Cummins, K.A.; Cecava, M.J.; McNamara, J.P. Adaptations in body muscle and fat in transition dairy cattle fed differing amounts of protein and methionine hydroxy analog. J. Dairy Sci. 2003, 86, 3634–3647. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, Z.; Li, Y.; Niu, S.; Xu, C.; Zhang, C.; Zhang, H. Effect of hypoglycemia on performances, metabolites, and hormones in periparturient dairy cows. Agric. Sci. China 2007, 6, 505–512. [Google Scholar]
Feedstuffs (¥ DM%) | Before Parturition | Early Lactation |
---|---|---|
Corn silage | 16.7 | 19.7 |
Dry alfalfa | 5.7 | 10.3 |
Wheat straw | 34.7 | 0 |
Barley grain | 5.8 | 8.5 |
Corn grain | 11.2 | 17.2 |
Corn gluten | - | 3.6 |
Whole cottonseed | - | 7.8 |
Soybean meal (48%CP) | 2.7 | 4.9 |
Lentil | 3.6 | 2.9 |
Canola meal | 2.4 | 2.3 |
DDGS * | 6.1 | 5.7 |
Wet brewer’s grain | 3.2 | 6.2 |
Wheat bran | 5.8 | 4.3 |
SoyPass ** | 2.1 | 3.8 |
Fat, Ca soap | 0 | 1.7 |
Molasses *** | 0.3 | 2.8 |
Limestone | 0.3 | 0.7 |
Salt | 0.4 | 0.57 |
Vitamin–mineral mixture **** | 0.04 | 0.04 |
MgS04 | 0 | 0.8 |
Yeast | 0 | 0.3 |
Toxin binder ≠ | 0.02 | 0.03 |
Chemical composition of the rations (%DM) | ||
Crude protein | 12.6 | 17.7 |
RDP (% of CP) | 73.6 | 61.3 |
Bypass Protein | 26.4 | 38.7 |
NEL (Mcal/kg) | 1.51 | 1.71 |
NDF | 45.5 | 37.7 |
ADF | 31.6 | 24.6 |
Ca | 0.54 | 0.89 |
p | 0.21 | 0.41 |
Blood Hemoglobin Levels of Cow | ||||||||||
Before Parturition | p | Parturition | After Parturition | p | ||||||
Groups | −60 | −45 | −30 | −15 | −7 | 0.239 | 0. Day | 1. Day | 2. Day | |
Control | 11.23 ± 0.11 | 10.86 ± 0.10 | 10.74 ± 0.11 | 10.83 ± 0.08 | 10.67 ± 0.10 | 9.48 ± 0.31 | 9.62 ± 0.08 | 9.74 ± 0.12 | 0.621 | |
Positive control | 11.20 ± 0.09 | 10.95 ± 0.11 | 10.86 ± 0.10 | 10.71 ± 0.10 | 10.73 ± 0.12 | 9.63 ± 0.28 | 9.79 ± 0.08 | 9.57 ± 0.12 | 0.389 | |
Treatment | 10.90 ± 0.12 | 10.86 ± 0.11 | 10.77 ± 0.11 | 10.79 ± 0.11 | 10.87 ± 0.13 | 9.53 ± 0.19 | 9.72 ± 0.11 | 9.74 ± 0.10 | 0.863 | |
p | 0.625 | 0.112 | 0.472 | 0.273 | ||||||
Blood Hematocrit Levels of Cow | ||||||||||
Control | 28.24 ± 0.24 | 28.51 ± 0.62 | 29.99 ± 0.35 | 29.65 ± 0.36 | 29.65 ± 0.26 | 0.421 | 28.63 ± 0.27 | 29.53 ± 0.36 | 28.99 ± 0.28 | 0.293 |
Positive control | 28.46 ± 0.42 | 29.23 ± 0.36 | 30.65 ± 0.26 | 29.46 ± 0.22 | 29.26 ± 0.28 | 27.82 ± 0.41 | 28.73 ± 0.25 | 28.67 ± 0.19 | 0.317 | |
Treatment | 29.14 ± 0.38 | 29.86 ± 0.19 | 30.72 ± 0.42 | 30.17 ± 0.30 | 29.57 ± 0.21 | 28.56 ± 0.23 | 29.93 ± 0.13 | 28.38 ± 0.16 | 0.348 | |
p | 0.537 | 0.196 | 0.326 | 0.307 | ||||||
Blood Mean Corpuscular Volume (MCV) Levels of Cow | ||||||||||
Control | 46.57 ± 0.38 | 46.72 ± 0.52 | 46.73 ± 0.52 | 47.01 ± 0.56 | 47.21 ± 0.33 | 0.473 | 47.13 ± 0.36 | 16.39 ± 0.23 | 16.53 ± 0.08 | 0.425 |
Positive control | 46.88 ± 0.56 | 46.39 ± 0.61 | 46.82 ± 0.53 | 46.79 ± 0.35 | 46.96 ± 0.58 | 47.27 ± 0.29 | 16.68 ± 0.17 | 16.58 ± 0.09 | 0.507 | |
Treatment | 46.62 ± 0.42 | 46.82 ± 0.43 | 46.48 ± 0.62 | 46.72 ± 0.33 | 47.05 ± 0.62 | 47.63 ± 0.71 | 16.57 ± 0.34 | 16.65 ± 0.10 | 0.563 | |
p | 0.342 | 0.348 | 0.449 | 0.608 | ||||||
Blood Mean Corpuscular Hemoglobin (MCH) Levels of Cow | ||||||||||
Control | 17.02 ± 0.08 | 16.92 ± 0.13 | 17.98 ± 0.18 | 17.04 ± 0.10 | 16.91 ± 0.37 | 0.327 | 16.32 ± 0.18 | 16.39 ± 0.23 | 16.53 ± 0.08 | 0.425 |
Positive control | 17.11 ± 0.04 | 17.08 ± 0.12 | 17.06 ± 0.11 | 17.06 ± 0.13 | 16.83 ± 0.21 | 16.42 ± 0.21 | 16.68 ± 0.17 | 16.58 ± 0.09 | 0.507 | |
Treatment | 17.08 ± 0.12 | 17.11 ± 0.16 | 17.19 ± 0.12 | 17.08 ± 0.11 | 17.06 ± 0.18 | 16.73 ± 0.28 | 16.57 ± 0.34 | 16.65 ± 0.10 | 0.563 | |
p | 0.273 | 0.481 | 0.449 | 0.608 | ||||||
Blood Mean Corpuscular Hemoglobin Concentration (MCHC) Levels of Cow | ||||||||||
Control | 36.28 ± 0.21 | 36.08 ± 0.13 | 36.15 ± 0.14 | 36.19 ± 0.19 | 36.02 ± 0.10 | 0.412 | 36.18 ± 0.09 | 36.18 ± 0.14 | 36.33 ± 0.12 | 0.642 |
Positive control | 36.62 ± 0.18 | 36.14 ± 0.12 | 36.12 ± 0.15 | 36.08 ± 0.12 | 36.15 ± 0.11 | 35.99 ± 0.11 | 35.97 ± 0.09 | 36.28 ± 0.17 | 0.536 | |
Treatment | 36.29 ± 0.34 | 36.03 ± 0.13 | 36.07 ± 0.11 | 36.12 ± 0.06 | 36.02 ± 0.08 | 36.21 ± 0.28 | 36.21 ± 0.12 | 36.14 ± 0.11 | 0.484 | |
p | 0.328 | 0.268 | 0.298 | 0.300 | ||||||
Blood Platelet (PLT) Levels of Cow | ||||||||||
−60 b | −45 a | −30 a | −15 a | −7 a | 0.009 | 243.21 ± 7.63 | 249.34 ± 8.67 | 248.76 ± 6.23 | 0.569 | |
Control | 190.21 ± 6.28 | 198.76 ± 6.42 | 201.27 ± 7.38 | 207.68 ± 6.51 | 208.56 ± 5.67 | |||||
Positive control | 191.18 ± 5.26 | 195.16 ± 5.67 | 199.37 ± 6.12 | 211.63 ± 7.16 | 211.76 ± 8.36 | |||||
Treatment | 193.32 ± 8.34 | 194.53 ± 7.78 | 204.41 ± 8.57 | 206.11 ± 8.72 | 206.62 ± 7.63 | 246.72 ± 7.23 | 248.58 ± 7.43 | 248.42 ± 8.03 | 0.771 | |
p | 0.289 | 0.342 | 0.402 | 0.458 | ||||||
Blood Mean Platelet Volume (MPV) Levels of Cow | ||||||||||
Control | 5.36 ± 0.12 | 5.51 ± 0.10 | 5.41 ± 0.12 | 5.39 ± 0.07 | 5.43 ± 0.09 | 0.227 | 5.46 ± 0.06 | 5.42 ± 0.11 | 5.43 ± 0.09 | 0.691 |
Positive control | 5.42 ± 0.10 | 5.47 ± 0.08 | 5.48 ± 0.11 | 5.41 ± 0.12 | 5.47 ± 0.08 | 5.61 ± 0.13 | 5.39 ± 0.13 | 5.41 ± 0.10 | 0.451 | |
Treatment | 5.59 ± 0.11 | 5.53 ± 0.09 | 5.43 ± 0.09 | 5.50 ± 0.09 | 5.51 ± 0.06 | 5.59 ± 0.12 | 5.46 ± 0.09 | 5.45 ± 0.08 | 0.598 | |
p | 0.172 | 0.423 | 0.275 | 0.307 | ||||||
Red Blood Cell (RBC) Levels of Cow | ||||||||||
Control | 6.67 ± 0.07 | 6.59 ± 0.13 | 6.62 ± 0.11 | 6.61 ± 0.06 | 6.63 ± 0.09 | 0.563 | 5.89 ± 0.21 | 5.90 ± 0.19 | 5.96 ± 0.20 | 0.295 |
Positive control | 6.63 ± 0.10 | 6.61 ± 0.11 | 6.70 ± 0.14 | 6.67 ± 0.08 | 6.58 ± 0.08 | 5.98 ± 0.17 | 5.86 ± 0.17 | 5.93 ± 0.19 | 0.176 | |
Treatment | 6.58 ± 0.12 | 6.63 ± 0.08 | 6.65 ± 0.13 | 6.58 ± 0.10 | 6.60 ± 0.06 | 5.81 ± 0.09 | 5.93 ± 0.22 | 5.89 ± 0.21 | 0.152 | |
p | 0.192 | 0.502 | 0.573 | 0.624 |
Total Immunoglobulin G (IgG) Levels of Cow | |||||||
Before Parturition | One Day after Parturition | ||||||
Groups | −60 b | −45 ab | −30 bc | −15 c | −7 ac | p | |
Control | 25.19 ± 1.27 | 27.31 ± 1.53 | 30.24 ± 0.96 | 32.73 ± 1.58 | 32.16 ± 1.21 A | 0.001 | 28.36 ± 1.13 |
Positive control | 25.28 ± 1.42 | 27.46 ± 1.28 | 32.28 ± 0.99 | 33.42 ± 0.98 | 32.97 ± 0.93 A | 28.42 ± 1.16 | |
Treatment | 25.13 ± 1.36 | 28.29 ± 1.62 | 32.19 ± 1.07 | 34.57 ± 1.19 | 35.73 ± 1.17 B | 31.09 ± 1.45 | |
p | 0.001 | 0.112 | |||||
Total Leukocyte Count (TLC) Levels of Cow | |||||||
Control | 6.13 ± 0.11 | 6.09 ± 0.13 | 6.11 ± 0.12 | 6.17 ± 0.21 | 6.72 ± 0.32 | 0.028 | 7.72 ± 0.21 A |
Positive control | 6.01 ± 0.06 | 6.08 ± 0.09 | 6.18 ± 0.13 | 6.24 ± 0.12 | 6.84 ± 0.26 | 7.62 ± 0.27 A | |
Treatment | 6.05 ± 0.08 | 6.11 ± 0.10 | 6.16 ± 0.17 | 6.18 ± 0.19 | 6.93 ± 0.39 | 6.40 ± 0.22 B | |
p | 0.417 | 0.001 | |||||
Lymphocyte Count (LC) Levels of Cow | |||||||
Control | 2.51 ± 0.14 | 2.58 ± 0.11 | 2.57 ± 0.12 | 2.69 ± 0.16 | 2.99 ± 0.16 | 0.041 | 3.47 ± 0.19 A |
Positive control | 2.56 ± 0.19 | 2.53 ± 0.09 | 2.59 ± 0.08 | 2.71 ± 0.11 | 2.91 ± 0.09 | 3.40 ± 0.13 A | |
Treatment | 2.49 ± 0.16 | 2.56 ± 0.07 | 2.63 ± 0.14 | 2.59 ± 0.12 | 2.96 ± 0.10 | 3.09 ± 0.16 B | |
p | 0.377 | 0.019 | |||||
Neutrophil Count (NC) Levels of Cow | |||||||
Control | 2.81 ± 0.10 | 2.82 ± 0.08 | 2.80 ± 0.06 | 2.77 ± 0.16 | 2.91 ± 0.16 | 0.045 | 4.06 ± 0.12 A |
Positive control | 2.76 ± 0.06 | 2.79 ± 0.07 | 2.73 ± 0.09 | 2.80 ± 0.13 | 3.03 ± 0.27 | 3.89 ± 0.26 A | |
Treatment | 2.67 ± 0.11 | 2.69 ± 0.09 | 2.75 ± 0.12 | 2.71 ± 0.11 | 3.06 ± 0.19 | 3.21 ± 0.19 B | |
p | 0.656 | 0.001 | |||||
Monocyte Count (MC) Levels of Cow | |||||||
Control | 0.316 ± 0.022 | 0.338 ± 0.021 | 0.341 ± 0.027 | 0.347 ± 0.029 | 0.386 ± 0.021 | 0.001 | 0.459 ± 0.025 A |
Positive control | 0.319 ± 0.019 | 0.341 ± 0.026 | 0.346 ± 0.019 | 0.348 ± 0.016 | 0.376 ± 0.019 | 0.465 ± 0.031 A | |
Treatment | 0.308 ± 0.018 | 0.357 ± 0.024 | 0.351 ± 0.023 | 0.354 ± 0.011 | 0.379 ± 0.023 | 0.402 ± 0.017 B | |
p | 0.173 | 0.042 |
Parameters | One Day before Parturition | One Day after Parturition | ||||||
---|---|---|---|---|---|---|---|---|
Control | Positive Control | Treatment | p | Control | Positive Control | Treatment | p | |
Aspartate Aminotransferase (AST) | 79.46 ± 1.21 | 79.21 ± 1.42 | 80.62 ± 1.36 | 0.267 | 87.63 ± 0.81 | 86.81 ± 0.76 | 86.98 ± 1.12 | 0.357 |
Alanine Aminotransferase (ALT) | 21.71 ± 0.36 | 21.63 ± 0.39 | 21.47 ± 0.31 | 0.228 | 23.52 ± 0.36 | 23.28 ± 0.21 | 23.12 ± 0.32 | 0.463 |
Alkaline Phosphatase (ALP) | 102.31 ± 4.51 | 100.29 ± 5.19 | 103.23 ± 3.76 | 0.496 | 99.59 ± 4.23 | 97.27 ± 5.12 | 96.62 ± 3.85 | 0.216 |
Gamma Glutamyl Transferase (GGT) | 23.79 ± 1.24 | 22.89 ± 1.64 | 23.59 ± 1.71 | 0.259 | 24.32 ± 0.72 | 23.95 ± 0.59 | 24.47 ± 0.61 | 0.189 |
Non-Esterified Fatty Acid (NEFA) | 0.169 ± 0.024 | 0.154 ± 0.032 | 0.163 ± 0.042 | 0.359 | 0.572 ± 0.325 A | 0.516 ± 0.196 A | 0.469 ± 0.214 B | 0.001 |
Beta Hydroxy Butyric Acid (BHBA) | 0.089 ± 0.023 | 0.101 ± 0.019 | 0.92 ± 0.016 | 0.298 | 0.879 ± 0.063 A | 0.846 ± 0.039 A | 0.776 ± 0.025 B | 0.001 |
GLUCOSE | 60.12 ± 2.39 | 58.87 ± 1.63 | 61.42 ± 3.14 | 0.472 | 49.98 ± 1.12 | 50.52 ± 1.36 | 52.01 ± 1.51 | 0.564 |
Groups | Haemoglobin | Haematocrit | Blood MCV | Blood MCH | MCHC | Platelet Count | MPV | RBC | IgG | TLC | Lymphocyte | Neutrophil | Monocyte | AST | ALT | ALP | GGT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 9.72 ± 0.43 | 31.13 ± 0.23 | 32.25 ± 1.05 | 11.64 ± 0.34 | 11.64 ± 0.34 | 249.42 ± 2.17 | 5.41 ± 0.08 | 6.39 ± 0.21 | 0.42 ± 0.04 | 7.41 ± 0.36 | 3.66 ± 0.24 | 3.46 ± 0.13 | 0.419 ± 0.021 | 49.56 ± 0.96 | 12.21 ± 0.43 | 124.42 ± 6.23 | 73.65 ± 3.66 |
Positive Control | 9.68 ± 0.21 | 30.81 ± 0.17 | 32.16 ± 1.12 | 11.79 ± 0.27 | 11.79 ± 0.27 | 247.71 ± 1.91 | 5.45 ± 0.05 | 6.28 ± 0.36 | 0.39 ± 0.03 | 7.49 ± 0.32 | 3.52 ± 0.28 | 3.62 ± 0.17 | 0.403 ± 0.016 | 49.45 ± 1.03 | 13.63 ± 0.28 | 120.19 ± 7.53 | 68.67 ± 4.39 |
Treatment | 9.76 ± 0.27 | 30.96 ± 0.19 | 32.41 ± 0.96 | 11.92 ± 0.32 | 11.92 ± 0.32 | 250.16 ± 2.10 | 5.41 ± 0.05 | 6.21 ± 0.32 | 0.41 ± 0.02 | 7.19 ± 0.26 | 3.43 ± 0.27 | 3.58 ± 0.26 | 0.395 ± 0.027 | 47.61 ± 1.12 | 12.52 ± 0.32 | 119.58 ± 6.42 | 74.25 ± 3.92 |
p | 0.746 | 0.853 | 0.837 | 0.694 | 0.694 | 0.392 | 0.876 | 0.718 | 0.252 | 0.176 | 0.203 | 0.314 | 0.197 | 0.319 | 0.256 | 0.148 | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyarlar, C.; Rahman, A.; Gultepe, E.E.; Cetingul, I.S.; Bayram, I. Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves. Animals 2024, 14, 150. https://doi.org/10.3390/ani14010150
Uyarlar C, Rahman A, Gultepe EE, Cetingul IS, Bayram I. Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves. Animals. 2024; 14(1):150. https://doi.org/10.3390/ani14010150
Chicago/Turabian StyleUyarlar, Cangir, Abdur Rahman, Eyup Eren Gultepe, Ibrahim Sadi Cetingul, and Ismail Bayram. 2024. "Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves" Animals 14, no. 1: 150. https://doi.org/10.3390/ani14010150
APA StyleUyarlar, C., Rahman, A., Gultepe, E. E., Cetingul, I. S., & Bayram, I. (2024). Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves. Animals, 14(1), 150. https://doi.org/10.3390/ani14010150