Assessment of Connective Tissue in the Equine Uterus and Cervix: Review of Clinical Impact and Staining Options
Abstract
:Simple Summary
Abstract
1. Fibrosis Formation and Its Staining Possibilities in the Equine Uterus
2. Measurement and Influence of Fibrotic Processes
2.1. Assessment of Cervical Functionality
2.2. Assessment of Vascular Changes
2.3. Assessment of Endometrial Changes
3. Comparison of Staining Methods of the Connective Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Westendorf, J.; Wobeser, B.; Epp, T. IIB or Not IIB, Part 1: Retrospective Evaluation of Kenney–Doig Categorization of Equine Endometrial Biopsies at a Veterinary Diagnostic Laboratory and Comparison with Published Reports. J. Vet. Diagn. Investig. 2022, 34, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Woodward, E.M.; Christoffersen, M.; Campos, J.; Squires, E.L.; Troedsson, M.H.T. Susceptibility to Persistent Breeding-Induced Endometritis in the Mare: Relationship to Endometrial Biopsy Score and Age, and Variations between Seasons. Theriogenology 2012, 78, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Schöniger, S.; Schoon, H.-A. The Healthy and Diseased Equine Endometrium: A Review of Morphological Features and Molecular Analyses. Animals 2020, 10, 625. [Google Scholar] [CrossRef] [PubMed]
- Hanada, M.; Maeda, Y.; Oikawa, M. Histopathological Characteristics of Endometrosis in Thoroughbred Mares in Japan: Results from 50 Necropsy Cases. J. Equine Sci. 2014, 25, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Snider, T.A.; Sepoy, C.; Holyoak, G.R. Equine Endometrial Biopsy Reviewed: Observation, Interpretation, and Application of Histopathologic Data. Theriogenology 2011, 75, 1567–1581. [Google Scholar] [CrossRef] [PubMed]
- Kilgenstein, H.J.; Schöniger, S.; Schoon, D.; Schoon, H.-A. Microscopic Examination of Endometrial Biopsies of Retired Sports Mares: An Explanation for the Clinically Observed Subfertility? Res. Vet. Sci. 2015, 99, 171–179. [Google Scholar] [CrossRef]
- Mahon, G.A.T.; Cunningham, E.P. Inbreeding and the Inheritance of Fertility in the Thoroughbred Mare. Livest. Prod. Sci. 1982, 9, 743–754. [Google Scholar] [CrossRef]
- Troedsson, M.H.T. Uterine Clearance and Resistance to Persistent Endometritis in the Mare. Theriogenology 1999, 52, 461–471. [Google Scholar] [CrossRef]
- Schoon, H.-A.; Schoon, D.; Klug, E. Die Endometriumbiopsie bei der Stute im klinisch-gynäkologischen Kontext. Pferdeheilkunde 1997, 13, 453–464. [Google Scholar] [CrossRef]
- Katila, T. Onset and duration of uterine inflammatory response of mares after insemination with fresh semen. Biol. Reprod. 1995, 1, 515–517. [Google Scholar] [CrossRef]
- Schoon, H.-A.; Schoon, D.; Klug, E. Uterusbiopsien als Hilfsmittel für Diagnose und Prognose von Fertilitätsstörungen der Stute. Pferdeheilkunde 1992, 8, 355–362. [Google Scholar] [CrossRef]
- Kenney, R.M.; Doig, P.A. Equine endometrial biopsy. In Current Therapy in Theriogenology, 2nd ed.; Morrow, D.A., Ed.; WB Saunders: Philadelphia, PA, USA, 1986; pp. 723–729. [Google Scholar]
- Kenney, R.M. Chronic Degenerative Endometritis (CDE)(Endometrosis). Equine Vet. J. 1993, 25, 184–193. [Google Scholar]
- Hoffmann, C.; Ellenberger, C.; Mattos, R.C.; Aupperle, H.; Dhein, S.; Stief, B.; Schoon, H.-A. The Equine Endometrosis: New Insights into the Pathogenesis. Anim. Reprod. Sci. 2009, 111, 261–278. [Google Scholar] [CrossRef]
- Evans, T.J.; Miller, M.A.; Ganjam, V.K.; Niswender, K.D.; Ellersieck, M.R.; Krause, W.J.; Youngquist, R.S. Morphometric Analysis of Endometrial Periglandular Fibrosis in Mares. Am. J. Vet. Res. 1998, 59, 1209–1214. [Google Scholar]
- Rojas, D.; Cabezas, J.; Ramírez, G.; Saraiva, F.; Lleretny, R.-A.; Castro, F.O. Complimentary Diagnostic Tools for Endometrosis in Biopsies of Mares with Clinical Subfertility. Acta Sci. Vet. 2020, 48. [Google Scholar] [CrossRef]
- Kenney, R.M. Cyclic and Pathologic Changes of the Mare Endometrium as Detected by Biopsy, with a Note on Early Embryonic Death. J. Am. Vet. Med. Assoc. 1978, 172, 241–262. [Google Scholar]
- Oddsdóttir, C. Development of Endometrial Fibrosis in the Mare: Factors Involved in Tissue Remodelling and Collagen Deposition. 2007. Available online: http://hdl.handle.net/1842/4218 (accessed on 30 October 2023).
- Hoffmann, C.; Bazer, F.W.; Klug, J.; Aupperle, H.; Ellenberger, C.; Schoon, H.-A. Immunohistochemical and Histochemical Identification of Proteins and Carbohydrates in the Equine Endometrium: Expression Patterns for Mares Suffering from Endometrosis. Theriogenology 2009, 71, 264–274. [Google Scholar] [CrossRef]
- Jasiński, T.; Zdrojkowski, Ł.; Kautz, E.; Juszczuk-Kubiak, E.; Ferreira-Dias, G.; Domino, M. Equine Endometrosis Pathological Features: Are They Dependent on NF-κB Signaling Pathway? Animals 2021, 11, 3151. [Google Scholar] [CrossRef]
- Muderspach, N.D.; Troedsson, M.H.; Ferreira-Dias, G.; Agerholm, J.S.; Christoffersen, M. Distribution of Degenerative Changes in the Equine Endometrium as Observed in a Single versus Two Biopsies. Theriogenology 2024, 213, 52–58. [Google Scholar] [CrossRef]
- Flores, J.; Rodríguez, A.; Sánchez, J.; Gómez-Cuétara, C.; Ramiro, F. Endometrosis in Mares: Incidence of Histopathological Alterations. Reprod. Domest. Anim. 1995, 30, 61–65. [Google Scholar] [CrossRef]
- Alpoim-Moreira, J.; Fernandes, C.; Rebordão, M.R.; Costa, A.L.; Bliebernicht, M.; Nunes, T.; Szóstek-Mioduchowska, A.; Skarzynski, D.J.; Ferreira-Dias, G. Collagen Type III as a Possible Blood Biomarker of Fibrosis in Equine Endometrium. Animals 2022, 12, 1854. [Google Scholar] [CrossRef]
- Gerstenberg, C.; Allen, W.R.; Stewart, F. Cell Proliferation Patterns during Development of the Equine Placenta. Reproduction 1999, 117, 143–152. [Google Scholar] [CrossRef]
- Amaral, A.; Fernandes, C.; Lukasik, K.; Szóstek-Mioduchowska, A.; Baclawska, A.; Rebordão, M.R.; Aguiar-Silva, J.; Pinto-Bravo, P.; Skarzynski, D.J.; Ferreira-Dias, G. Elastase inhibition affects collagen transcription and prostaglandin secretion in mare endometrium during the estrous cycle. Reprod. Domest. Anim. 2018, 53, 66–69. [Google Scholar] [CrossRef]
- Reilas, T.; Rivera del Alamo, M.M.; Liepina, E.; Yeste, M.; Katila, T. Effects on the Equine Endometrium of Cervical Occlusion after Insemination. Theriogenology 2016, 85, 617–624. [Google Scholar] [CrossRef]
- Kabisch, J.; Klose, K.; Schoon, H.-A. Endometrial Biopsies of Old Mares—What to Expect?! Pferdeheilkunde 2019, 35, 211–218. [Google Scholar] [CrossRef]
- Katila, T.; Ferreira-Dias, G. Evolution of the Concepts of Endometrosis, Post Breeding Endometritis, and Susceptibility of Mares. Animals 2022, 12, 779. [Google Scholar] [CrossRef]
- Szóstek-Mioduchowska, A.Z.; Lukasik, K.; Skarzynski, D.J.; Okuda, K. Effect of Transforming Growth Factor -Β1 on α-Smooth Muscle Actin and Collagen Expression in Equine Endometrial Fibroblasts. Theriogenology 2019, 124, 9–17. [Google Scholar] [CrossRef]
- Bischofberger, L.; Szewczyk, K.; Schoon, H.-A. Unequal Glandular Differentiation of the Equine Endometrium—A Separate Endometrial Alteration. Pferdeheilkunde 2019, 35, 304–315. [Google Scholar] [CrossRef]
- Schoon, H.-A.; Schoon, D.; Wiegandt, I.; Bartmann, C.-P.; Aupperle, H. “Endometrial maldifferentiation”—A clinically significant diagnosis in equine reproduction? Pferdeheilkunde 1999, 15, 555–559. [Google Scholar] [CrossRef]
- Schoon, H.-A.; Wiegandt, I.; Schoon, D.; Aupperle, H.; Bartmann, C.-P. Functional disturbances in the endometrium of barren mares: A histological and immunohistological study. J. Reprod. Fertil. Suppl. 2000, 56, 381–391. [Google Scholar]
- Re, G.; Badino, P.; Novelli, A.; Di Renzo, G.F.; Severino, L.; De Liguoro, M.; Ferone, M.R. Distribution of Cytosolic Oestrogen and Progesterone Receptors in the Genital Tract of the Mare. Res. Vet. Sci. 1995, 59, 214–218. [Google Scholar] [CrossRef]
- Ellenberger, C.; Bartmann, C.-P.; Klug, E.; Hoppen, H.-O.; Hoffmann, C.; Bazer, F.W.; Klug, J.; Allen, W.R.; Schoon, D.; Schoon, H.-A. Immunohistochemical characterization of equine endometrial maldifferentiation with special emphasis on uterine secretory proteins. In Havemeyer Foundation Monograph Series No. 14, Proceedings of the 6th International Symposium on Equine Embryo Transfer, Rio de Janeiro, Brazil, 4–6 August 2004; Alvarenga, M., Wade, J.F., Eds.; R & W Communications: Newmarket, UK, 2005; pp. 13–15. [Google Scholar]
- Grüninger, B.; Schoon, H.-A.; Schoon, D.; Menger, S.; Klug, E. Incidence and Morphology of Endometrial Angiopathies in Mares in Relationship to Age and Parity. J. Comp. Pathol. 1998, 119, 293–309. [Google Scholar] [CrossRef]
- Schoon, D.; Schoon, H.A.; Klug, E. Angioses in the Equine Endometrium-Pathogenesis and Clinical Correlations. Pferdeheilkunde 1999, 15, 541–546. [Google Scholar] [CrossRef]
- Schoon, H.A.; Schoon, D. The Category I Mare (Kenney and Doig)-Expected Foaling Rate 80–90%-Fact or Fiction? Pferdeheilkunde 2003, 19, 698–701. [Google Scholar] [CrossRef]
- Lehmann, J.; Ellenberger, C.; Hoffmann, C.; Bazer, F.W.; Klug, J.; Allen, W.R.; Sieme, H.; Schoon, H.-A. Morpho-Functional Studies Regarding the Fertility Prognosis of Mares Suffering from Equine Endometrosis. Theriogenology 2011, 76, 1326–1336. [Google Scholar] [CrossRef]
- Schlafer, D.H. Equine Endometrial Biopsy: Enhancement of Clinical Value by More Extensive Histopathology and Application of New Diagnostic Techniques? Theriogenology 2007, 68, 413–422. [Google Scholar] [CrossRef]
- Ebert, A.; Schoon, D.; Schoon, H.A. Age-related endometrial alterations in mares-biopsy findings of the last 20 years. In Leipziger Blaue Hefte, 7th Leipzig Veterinary Congress, 8th International Conference on Equine Reproductive Medicine; Rackwitz, R., Pees, M., Aschenbach, J.R., Gäbel, G., Eds.; Lehmanns Media GmbH: Berlin, Germany, 2014; Volume 2, pp. 230–232. [Google Scholar]
- Christoffersen, M.; Woodward, E.M.; Bojesen, A.M.; Petersen, M.R.; Squires, E.L.; Lehn-Jensen, H.; Troedsson, M.H.T. Effect of Immunomodulatory Therapy on the Endometrial Inflammatory Response to Induced Infectious Endometritis in Susceptible Mares. Theriogenology 2012, 78, 991–1004. [Google Scholar] [CrossRef]
- Rua, M.A.S.; Quirino, C.R.; Ribeiro, R.B.; Carvalho, E.C.Q.; Bernadino, M.d.L.A.; Bartholazzi Junior, A.; Cipagalta, L.F.; Barreto, M.A.P. Diagnostic Methods to Detect Uterus Illnesses in Mares. Theriogenology 2018, 114, 285–292. [Google Scholar] [CrossRef]
- Blanchard, T.L.; Garcia, M.C.; Kintner, L.D.; Kenney, R.M. Investigation of the Representativeness of a Single Endometrial Sample and the Use of Trichrome Staining to Aid in the Detection of Endometrial Fibrosis in the Mare. Theriogenology 1987, 28, 445–450. [Google Scholar] [CrossRef]
- Overbeck, W.; Jäger, K.; Schoon, H.-A.; Witte, T.S. Comparison of Cytological and Histological Examinations in Different Locations of the Equine Uterus—An in Vitro Study. Theriogenology 2013, 79, 1262–1268. [Google Scholar] [CrossRef]
- Musumeci, G. Past, Present and Future: Overview on Histology and Histopathology. Histol. Histopathol. 2014, 1, 5. [Google Scholar] [CrossRef]
- Rich, L.; Whittaker, P. Collagen and Picrosirius Red Staining: A Polarized Light Assessment of Fibrillar Hue and Spatial Distribution. J. Morphol. Sci. 2017, 22, 97–104. [Google Scholar]
- Tretheway, D.; Jain, A.; LaPoint, R.; Sharma, R.; Orloff, M.; Milot, P.; Bozorgzadeh, A.; Ryan, C. Should Trichrome Stain Be Used on All Post–Liver Transplant Biopsies with Hepatitis c Virus Infection to Estimate the Fibrosis Score? Liver Transplant. 2008, 14, 695–700. [Google Scholar] [CrossRef]
- Hirsbrunner, G.; Reist, M.; Couto, S.S.; Steiner, A.; Snyder, J.; van Leeuwen, E.; Liu, I. An in Vitro Study on Spontaneous Myometrial Contractility in the Mare during Estrus and Diestrus. Theriogenology 2006, 65, 517–527. [Google Scholar] [CrossRef]
- Aresu, L.; Benali, S.; Giannuzzi, D.; Mantovani, R.; Castagnaro, M.; Falomo, M.E. The Role of Inflammation and Matrix Metalloproteinases in Equine Endometrosis. J. Vet. Sci. 2012, 13, 171–177. [Google Scholar] [CrossRef]
- Skierbiszewska, K.; Domino, M.; Olszewski, J.; Masko, M.; Zabielski, R.; Matyba, P.; Wehrend, A.; Gajewski, Z. The content of collagen in the equine cervix during estrus cycle. In Proceedings of the 21st Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Bern, Switzerland, 24 August 2017; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 135–136. [Google Scholar]
- Campbell, M.L.H.; Peachey, L.E.; Callan, L.; Wathes, D.C.; De Mestre, A.M. Expression of Oestrogen Receptor α Is Negatively Correlated With Collagen Density in the Mare’s Cervix. J. Equine Vet. Sci. 2018, 66, 100. [Google Scholar] [CrossRef]
- Crociati, M.; Capomaccio, S.; Mandara, M.T.; Stradaioli, G.; Sylla, L.; Monaci, M.; Cappelli, K. Different Expression of Defensin-B Gene in the Endometrium of Mares of Different Age during the Breeding Season. BMC Vet. Res. 2019, 15, 465. [Google Scholar] [CrossRef]
- Zdrojkowski, L.; Domino, M.; Piecuch, A.; Wojcicka, A.; Olszewski, J.; Masko, M.; Gajewski, Z. Histometry of vascular changes in endometrosis and endometritis using Masson’s trichrome staining. In Proceedings of the 24th Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Virtual Congress, 11–16 October 2021; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 59–60. [Google Scholar]
- Zdrojkowski, Ł.; Olszewski, J.; Domino, M.; Masko, M.; Trela, M.; Pawlinski, B.; Matyba, P.; Gajewski, Z. Vascular changes evaluation in equine endometrosis using novel measurement methods in the Masson’s Trichrome (MT) staining. In Proceedings of the 23rd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), St. Petersburg, Russia, 19–22 September 2019; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; p. 94. [Google Scholar]
- Domino, M.; Jasiński, T.; Masko, M.; Domańska, D.; Zdrojkowski, Ł. Activation of hyaluronan synthases in equine endometrium affected by perivascular and degenerative endometrial fibrosis. In Proceedings of the 25th Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), Thessaloniki, Greece, 28 September–2 October 2022; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; p. 50. [Google Scholar]
- Domino, M.; Krajewska, A.; Zdrojkowski, Ł.; Olszewski, J.; Masko, M.; Gajewski, Z. The quantification of the histological features in equine endometrosis based on the Masson’s Trichrome staining. In Proceedings of the 23rd Annual Conference of the European Society for Domestic Animal Reproduction (ESDAR), St. Petersburg, Russia, 19–22 September 2019; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; p. 92. [Google Scholar]
- Domino, M.; Krajewska, A.; Zdrojkowski, Ł.; Sady, M.; Gajewski, Z. The evidence of heterochromatic of endometrial glandular epithelium in a case of equine endometrosis. In Proceedings of the Society for the Study of Reproduction (SSR) 52nd Annual Conference, San Jose, CA, USA, 18–21 July 2019; p. 376. [Google Scholar]
- Schöniger, S.; Gräfe, H.; Schoon, H.-A. Beta-Defensin Is a Component of the Endometrial Immune Defence in the Mare. Pferdeheilkunde 2013, 29, 335–346. [Google Scholar] [CrossRef]
- Esteller-Vico, A.; Liu, I.K.M.; Vaughan, B.; Steffey, E.P.; Brosnan, R.J. Effects of Vascular Elastosis on Uterine Blood Flow and Perfusion in Anesthetized Mares. Theriogenology 2015, 83, 988–994. [Google Scholar] [CrossRef]
- Podico, G.; Canisso, I.F.; Roady, P.J.; Austin, S.M.; Carossino, M.; Balasuriya, U.; Ellerbrock, R.E.; Lima, F.S.; Ferreira-Dias, G.; Douglas, R.H. Uterine Responses and Equine Chorionic Gonadotropin Concentrations after Two Intrauterine Infusions with Kerosene Post Early Fetal Loss in Mares. Theriogenology 2020, 147, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.S.; Han, S.; Nielsen, S.; Pearson, L.K.; Gay, J.M.; Tibary, A. Consequences of Intrauterine Enrofloxacin Infusion on Mare Endometrium. J. Equine Vet. Sci. 2012, 32, 106–111. [Google Scholar] [CrossRef]
- Lüttgenau, J.; Imboden, I.; Wellnitz, O.; Romer, R.; Scaravaggi, I.; Neves, A.P.; Borel, N.; Bruckmaier, R.M.; Janett, F.; Bollwein, H. Intrauterine Infusion of Killed Semen Adversely Affects Uterine Blood Flow and Endometrial Gene Expression of Inflammatory Cytokines in Mares Susceptible to Persistent Breeding-Induced Endometritis. Theriogenology 2021, 163, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Ito, K.; Terada, T.; Nishimura, N.; Hatazoe, T.; Sato, K. Degenerative Changes in the Endometrial Vasculature of the Mare Detected by Videoendoscopic Examination. Proc. Am. Assoc. Equine Pract. 2000, 46, 325–329. [Google Scholar]
- Bracher, V.; Mathias, S.; Allen, W.R. Influence of Chronic Degenerative Endometritis (Endometrosis) on Placental Development in the Mare. Equine Vet. J. 1996, 28, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Huchzermeyer, S.; Wehrend, A.; Bostedt, H. Histomorphology of the Equine Cervix. Anat. Histol. Embryol. 2005, 34, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Camozzato, G.C.; Martinez, M.N.; Bastos, H.B.A.; Fiala-Rechsteiner, S.; Meikle, A.; Jobim, M.I.M.; Gregory, R.M.; Mattos, R.C. Ultrastructural and Histological Characteristics of the Endometrium during Early Embryo Development in Mares. Theriogenology 2019, 123, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Walter, I.; Handler, J.; Reifinger, M.; Aurich, C. Association of Endometriosis in Horses with Differentiation of Periglandular Myofibroblasts and Changes of Extracellular Matrix Proteins. Reproduction 2001, 121, 581–586. [Google Scholar] [CrossRef]
- Ovalle, W.K.; Nahirney, P.C. Chapter I.3 Connective Tissue. In Netter’s Essential Histology, 3rd Edition with Correlated Histopathology, 3rd ed.; Ovalle, W.K., Nahirney, P.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 55–77. [Google Scholar]
- Suvik, A.; Effendy, A.W.M. The Use of Modified Masson’s Trichrome Staining in Collagen Evaluation in Wound Healing Study. Mal. J. Vet. Res. 2012, 3, 39–47. [Google Scholar]
- Marcos-Garcés, V.; Harvat, M.; Molina Aguilar, P.; Ferrández Izquierdo, A.; Ruiz-Saurí, A. Comparative Measurement of Collagen Bundle Orientation by Fourier Analysis and Semiquantitative Evaluation: Reliability and Agreement in Masson’s Trichrome, Picrosirius Red and Confocal Microscopy Techniques. J. Microsc. 2017, 267, 130–142. [Google Scholar] [CrossRef]
- Lidbury, J.A.; Rodrigues Hoffmann, A.; Ivanek, R.; Cullen, J.M.; Porter, B.F.; Oliveira, F.; Van Winkle, T.J.; Grinwis, G.C.; Sucholdolski, J.S.; Steiner, J.M. Interobserver Agreement Using Histological Scoring of the Canine Liver. Vet. Intern. Med. 2017, 31, 778–783. [Google Scholar] [CrossRef]
- Schilling, A. Die Endometriumbiopsie Bei Der Stute-Eine Analyse Der Histologischen Befunde Zwischen 1992–2012 Am Leipziger Institut Für Veterinär-Pathologie. 2017. Available online: https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa-224653 (accessed on 30 October 2023).
- Fernandes, C.B.; Ball, B.A.; Loux, S.C.; Boakari, Y.L.; Scoggin, K.E.; El-Sheikh Ali, H.; Cogliati, B.; Esteller-Vico, A. Uterine Cervix as a Fundamental Part of the Pathogenesis of Pregnancy Loss Associated with Ascending Placentitis in Mares. Theriogenology 2020, 145, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Katila, T. The Equine Cervix. Pferdeheilkunde Equine Med. 2012, 28, 35–38. [Google Scholar] [CrossRef]
- Lefranc, A.-C.; Allen, W.R. Influence of Breed and Oestrous Cycle on Endometrial Gland Surface Density in the Mare. Equine Vet. J. 2007, 39, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Ginther, O.J.; Pierson, R.A. Ultrasonic anatomy and pathology of the equine uterus. Theriogenology 1984, 21, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.C.; Canesin, H.S.; Ignácio, F.S.; Rocha, N.S.; Pinto, C.R.; Meira, C. Effect of Age and Endometrial Degenerative Changes on Uterine Blood Flow during Early Gestation in Mares. Theriogenology 2015, 84, 1123–1130. [Google Scholar] [CrossRef]
- Nikolakopoulos, E.; Watson, E.D. Does artificial insemination with chilled, extended semen reduce the antigenic challenge to the mare’s uterus compared with natural service? Theriogenology 1997, 47, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Bucca, S.; Carli, A.; Buckley, T.; Dolci, G.; Fogarty, U. The use of dexamethasone administered to mares at breeding time in the modulation of persistent mating induced endometritis. Theriogenology 2008, 70, 1093–1100. [Google Scholar] [CrossRef]
- Wilsher, S.; Allen, W.R. Factors influencing placental development and function in the mare. Equine Vet. J. 2012, 41, 113–119. [Google Scholar] [CrossRef]
- Abdelnaby, E.A.; Emam, I.A.; Salem, N.Y.; Ramadan, E.S.; Khattab, M.S.; Farghali, H.A.; Abd El Kader, N.A. Uterine Hemodynamic Patterns, Oxidative Stress, and Chromoendoscopy in Mares with Endometritis. Theriogenology 2020, 158, 112–120. [Google Scholar] [CrossRef]
- Da Silva-Álvarez, E.; Gómez-Arrones, V.; Martín-Cano, F.E.; Gaitskell-Phillips, G.; Ortiz-Rodríguez, J.M.; Carrasco, J.J.; Gil, M.C.; Peña Vega, F.J.; Ortega Ferrusola, C. Endometrial Area of the Blood Flow as a Marker of Endometritis in Equine. Reprod. Domest. Anim. 2022, 57, 98–102. [Google Scholar] [CrossRef]
- Uitto, J. Connective Tissue Biochemistry of the Aging Dermis. Dermatol. Clin. 1986, 4, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Sobel, H. Aging of Connective Tissue and Molecular Transport. Gerontologia 2009, 14, 235–254. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.; Layton, C. Connective and Other Mesenchymal Tissues with Their Stains. In Bancroft’s Theory and Practice Histological Techniques E-Book; Churchill Livingstone; Elsevier: Philadelphia, PA, USA, 2018; Volume 153. [Google Scholar]
- Kiernan, J. Histological and Histochemical Methods, 5th ed.; Scion Publishing: Wickford, UK, 2015. [Google Scholar]
- Zhou, J. Histochemistry; Walter de Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Costa, G.M.; Araujo, S.L.; Xavier Júnior, F.A.F.; de Morais, G.B.; de Moraes Silveira, J.A.; de Araújo Viana, D.; Evangelista, J.S.A.M. Picrosirius red and masson’s trichrome staining techniques as tools for detection of collagen fibers in the skin of dogs with endocrine dermatopathologies. Ciência Anim. Bras. 2019, 20. [Google Scholar] [CrossRef]
- López De Padilla, C.M.; Coenen, M.J.; Tovar, A.; De La Vega, R.E.; Evans, C.H.; Müller, S.A. Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon. J. Histochem. Cytochem. 2021, 69, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Courtoy, G.E.; Leclercq, I.; Froidure, A.; Schiano, G.; Morelle, J.; Devuyst, O.; Huaux, F.; Bouzin, C. Digital Image Analysis of Picrosirius Red Staining: A Robust Method for Multi-Organ Fibrosis Quantification and Characterization. Biomolecules 2020, 10, 1585. [Google Scholar] [CrossRef] [PubMed]
- Mudasir, Z.; Adil, S.; Edriss, A.I. Comparison between Giemsa and Van Gieson Stains in Demonstration of Collagen Fibers (Kosti-2016). Afr. J. Biotechnol. 2016, 15, 2063–2067. [Google Scholar]
- Carson, F.L.; Hladik, C. Histotechnology A Self-Instructional Text, 4th ed.; American Society for Clinical Pathology Press: Chicago, IL, USA, 2009. [Google Scholar]
- Kazlouskaya, V.; Malhotra, S.; Lambe, J.; Idriss, M.H.; Elston, D.; Andres, C. The Utility of Elastic Verhoeff-Van Gieson Staining in Dermatopathology. J. Cutan. Pathol. 2013, 40, 211–225. [Google Scholar] [CrossRef]
- Exbrayat, J.-M. Histochemical and Cytochemical Methods of Visualization; Taylor & Francis Group: Abingdon-on-Thames, UK, 2013. [Google Scholar]
- Dey, P. Connective Tissue Stain: Principle and Procedure. In Basic and Advanced Laboratory Techniques in Histopathology and Cytology; Dey, P., Ed.; Springer Nature: Singapore, 2018; pp. 99–108. [Google Scholar]
- Hong, J.H.; Kim, D.H.; Rhyu, I.J.; Kye, Y.C.; Ahn, H.H. A Simple Morphometric Analysis Method for Dermal Microstructure Using Color Thresholding and Moments. Skin Res. Technol. 2020, 26, 132–136. [Google Scholar] [CrossRef]
- Van De Vlekkert, D.; Machado, E.; d’Azzo, A. Analysis of Generalized Fibrosis in Mouse Tissue Sections with Masson’s Trichrome Staining. Bio. Protoc. 2020, 10, e3629. [Google Scholar] [CrossRef]
- McGavin, M.D. Factors Affecting Visibility of a Target Tissue in Histologic Sections. Vet. Pathol. 2014, 51, 9–27. [Google Scholar] [CrossRef]
- Conrad, C.H.; Brooks, W.W.; Hayes, J.A.; Sen, S.; Robinson, K.G.; Bing, O.H.L. Myocardial Fibrosis and Stiffness with Hypertrophy and Heart Failure in the Spontaneously Hypertensive Rat. Circulation 1995, 91, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, C.D.; Pittman, F.E. A Simple Methylene Blue-Azure Ii-Basic Fuchsin Stain for Epoxy-Embedded Tissue Sections. Stain Technol. 1974, 49, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Cima, F. Enzyme Histochemistry for Functional Histology in Invertebrates. In Histochemistry of Single Molecules: Methods and Protocols; Pellicciari, C., Biggiogera, M., Eds.; Springer Nature: New York, NY, USA, 2017; Volume 1560, pp. 69–90. [Google Scholar]
- Nakakoshi, M.; Nishioka, H.; Katayama, E. New Versatile Staining Reagents for Biological Transmission Electron Microscopy That Substitute for Uranyl Acetate. J. Electron. Microsc. Tech. 2011, 60, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.A.; Mitchell, J.C. Removing Gold Coating from Sem Samples. Palaeontology 2007, 50, 1459–1461. [Google Scholar] [CrossRef]
- Bråten, T. High Resolution Scanning Electron Microscopy in Biology: Artefacts Caused by the Nature and Mode of Application of the Coating Material. J. Microsc. 1978, 113, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Lunelli, D.; Cirio, S.M.; Leite, S.C.; Camargo, C.E.; Kozicki, L.E. Collagen Types in Relation to Expression of Estradiol and Progesterone Receptors in Equine Endometrial Fibrosis. Adv. Biosci. Biotechnol. 2013, 4, 599–605. [Google Scholar] [CrossRef]
- Krenacs, T.; Krenacs, L.; Raffeld, M. Multiple Antigen Immunostaining Procedures. Methods Mol. Biol. 2010, 588, 281–300. [Google Scholar] [CrossRef] [PubMed]
- Cordell, J. Developing Monoclonal Antibodies for Immunohistochemistry. Cells 2022, 11, 243. [Google Scholar] [CrossRef]
- Wick, M.R. Histochemistry as a Tool in Morphological Analysis: A Historical Review. Ann. Diagn. Pathol. 2012, 16, 71–78. [Google Scholar] [CrossRef]
- Hinkelman, L.M.; Metlay, L.A.; Churukian, C.J.; Waag, R.C. Modified Gomori Trichrome Stain for Macroscopic Tissue Slices. J. Histotechnol. 1996, 19, 321–323. [Google Scholar] [CrossRef]
- Horobin, R.W. Chapter: 4 Staining Methods Involving Dyeing. In An Explanatory Outline of Histochemistry and Biophysical Staining; Horobin, R.W., Ed.; Butterworth-Heinemann: Oxford, UK, 1982; pp. 56–110. [Google Scholar]
- Akita, M.; Yasuno, K.; Kaneko, K. Properties of Various Staining Solutions for Elastic Fibers-Comparison of Conventional Methods and the Alum Hematoxylin Methods for Staining Elastic Fibers. Okajimas Folia Anat. Jpn. 1982, 58, 555–565. [Google Scholar] [CrossRef]
- Pujar, A.; Pereira, T.; Tamgadge, A.; Bhalerao, S.; Tamgadge, S. Comparing the Efficacy of Hematoxylin and Eosin, Periodic Acid Schiff and Fluorescent Periodic Acid Schiff-Acriflavine Techniques for Demonstration of Basement Membrane in Oral Lichen Planus: A Histochemical Study. Indian J. Dermatol. 2015, 60, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.; Orenstein, J.M. Processing Tissue and Cells for Transmission Electron Microscopy in Diagnostic Pathology and Research. Nat. Protoc. 2007, 2, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Tzaphlidou, M.; Chapman, J.A.; Al-Samman, M.H. A Study of Positive Staining for Electron Microscopy Using Collagen as a Model System—II. Staining by Uranyl Ions. Micron 1982, 13, 133–145. [Google Scholar] [CrossRef]
- Pawley, J. The development of field-emission scanning electron microscopy for imaging biological surfaces. Scanning 1997, 19, 324–336. [Google Scholar]
- Carnevale, E.M.; Ginther, O.J. Relationships of Age to Uterine Function and Reproductive Efficiency in Mares. Theriogenology 1992, 37, 1101–1115. [Google Scholar] [CrossRef]
- Westendorf, J.; Wobeser, B.; Epp, T. IIB or Not IIB, Part 2: Assessing Inter-Rater and Intra-Rater Repeatability of the Kenney–Doig Scale in Equine Endometrial Biopsy Evaluation. J. Vet. Diagn. Investig. 2022, 34, 215–225. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Molcan, T.; Lukasik, K.; Żebrowska, E.; Pawlina-Tyszko, K.; Gurgul, A.; Szmatoła, T.; Bugno-Poniewierska, M.; Ferreira-Dias, G.; Skarzynski, D.J.; et al. The Potential Role of miRNAs and Regulation of Their Expression in the Development of Mare Endometrial Fibrosis. Sci. Rep. 2023, 13, 15938. [Google Scholar] [CrossRef]
- Alpoim-Moreira, J. Mare Endometrium Fibrosis: Epigenetics and Novel Fibrosis Markers. 2023. Available online: http://hdl.handle.net/10400.5/27949 (accessed on 30 October 2023).
Assessments | Demographics | Specimen | Staining | Results | Ref. |
---|---|---|---|---|---|
1. Cervical collagen content concerning the phase of the ovarian cycle. | 29 non-pregnant mares; Age not reported | Full-thickness post-mortem cervical sections a,b | HE; MT | 1. The collagen in the equine cervix undergoes hormonal regulation; 2. The collagen content was higher in tunica mucosa in estrus than diestrus. | [50] |
1. Cervical proportion of collagen content and estrogen receptor concerning the phase of the ovarian cycle. | 12 non-pregnant mares; Age not reported | Full-thickness post-mortem cervical sections a | MT; IHC | 1. Expression of estrogen receptor α in cervical wall was higher in estrus than diestrus; 2. Expression of estrogen receptor α was negatively correlated with collagen content. | [51] |
1. Cervical function based on the histological findings. | 10 non-pregnant mares; 7–25 years | Full-thickness post-mortem cervical sections a | HE; PAS; Azan; RF | 1. Ciliated cells form luminal epithelium; 2. The deep lamina propria of mucosae show high vascularization. | [65] |
1. Inflammatory and endocrine factors (mRNA expression) in relation to the histological findings. | 9 pregnant mares; 4–9 years | Full-thickness post-mortem cervical sections a | HE | 1. Cervicitis is characterized by epithelial erosion and loss of tissue architecture; 2. Cervicitis is characterized by epithelial cell necrosis and desquamation | [73] |
Assessments | Demographics | Specimen | Staining | Results | Ref. |
---|---|---|---|---|---|
1. Distribution pattern of the characteristic lesions of endometrosis. | 50 non-pregnant mares; 1–30 years | Full-thickness post-mortem uterine sections a,b | HE; EVG; PAS; UALC | 1. Vascular lesions first appeared in 6-year-old mares, then increases in both severity and incidence with age; 2. Angiosclerosis incidence and degree increase with age, not parity. | [4] |
1. Detailed histomorphological characterization of endometrial biopsies of old mares. | 819 non-pregnant mares; Age > 20 years | Endometrial biopsies a | HE PSR | 1. Only in 8% of samples angiosclerosis was not found in HE, however, PSR showed alterations in most of them. | [27] |
1. Endometrial angiopathies and elastic fibers; 2. Effect of ageing and parturition on angiopathies. | 117 non-pregnant mares; Age not reported | Endometrial biopsies a,b | HE; PSR; MBABF; UALC | 1. Mild intimal and perivascular sclerosis was age-related; 2. Angiosis increased in frequency with the number of foalings; 3. Ageing and degeneration of elastic fibers facilitates elastase activity. | [35] |
1. Occurrence of endometrial alterations in age groups. | 9121 non-pregnant mares; 1–30 years | Endometrial biopsies a | HE * | 1. Incidence and degree of angiosis increase with mare age. | [40] |
1. Angiopathies in the course of endometritis and endometrosis. | 14 non-pregnant mares; Age not reported | Full-thickness post-mortem uterine sections a,c | HE; MT | 1. Wall thinning vasodilation was found in endometritis and endometrosis; 2. Vasodilation was lower in endometritis than endometrosis. | [53] |
1. Angiopathies of different endometrosis severity. | 24 non-pregnant mares; Age not reported | Full-thickness post-mortem uterine sections a,c | HE; MT | 1. Incidence and degree of angiopathies increase with endometrosis severity; 2. Perivascular fibrosis, wall thinning, and vasodilation occurs in severe endometrosis. | [54] |
1. Angiopathies and hyaluronan synthases expression of different endometrosis severity. | 24 non-pregnant mares; Age not reported | Full-thickness post-mortem uterine sections a,c | HE; MT | 1. Perivascular fibrosis in endometrium affected by severe endometrosis may be mediated by hyaluronan synthases 1 and 3. | [55] |
1. Detection of β-defensin the healthy and diseased endometrium; 2. Characterization of the cell population(s) expressing β-defensin. | 11 non-pregnant mares (post-mortem sections); 18 non-pregnant mares, (endometrial biopsies) | Full-thickness post-mortem uterine sections; Endometrial biopsies a | HE PSR | 1. β-defensin was found in luminal and glandular epithelium, tunica media of endometrial vessels, vascular smooth muscle cells. | [58] |
1. Evaluation of relationship between the appearance of small arteries under endometrium (SAUE) in histology and endoscopy. | 7 mares (post-mortem sections); 423 non-pregnant mares, aged 4–20 years (endometrial biopsies) | Full-thickness post-mortem uterine sections; Endometrial biopsies a | HE EVG | 1. Endoscopic appearance of SAUE reflects the sclerotic change in the intima and adventitia; 2. Small arteries in the endometrium show age-related sclerotic changes: elastosis in the intima and adventitia, resulting in luminal narrowing. | [63] |
1. Uterine blood flow of different ages and endometrosis severity in the first 20 days of gestation. | 21 pregnant mares; 4–18 years | Endometrial biopsies a | HE | 1. Uterine blood flow increase with gestational age regardless of age end endometrial changes; 2. Uterine blood flow differed according to the embryo position which is less pronounced in older mares and mares with endometrosis. | [77] |
Assessments | Demographics | Specimen | Staining | Results | Ref. |
---|---|---|---|---|---|
1. Distribution pattern of the characteristic lesions of endometrosis. | 50 non-pregnant mares; 1–30 years | Full-thickness post-mortem uterine sections a,b | HE; EVG; PAS; UALC | 1. Occurrence of endometrosis increase with mare age. | [4] |
1. Subfertility of retired sports mares. | 189 non-pregnant sports mares; 3–23 years | Endometrial biopsies a | HE; IHC | 1. Higher glandular differentiation disorders in retired sport mares than non-performance mares; | [6] |
1. Periglandular fibrosis (quantification) in the course of endometrosis. | 70 non-pregnant mares; 3–27 years | Endometrial biopsies a | HE; PSR | 1. Periglandular fibrosis (collagen volume fraction) correlates with endometrosis severity. | [15] |
1. Precise detection of fibrotic changes in the course of endometrosis. | 40 non-pregnant; 5–18 years | Endometrial biopsies a | HE; MT; AB; IHC | 1. Combination of different staining methods is useful for endometrosis assessment. | [16] |
1. Collagen deposits and metalloproteinases activity in the course of endometrosis. | 44 non-pregnant mares; 5–27 years | Endometrial biopsies a | HE; PSR | 1. No correlation between infertility, endometrosis severity, amount of collagen and metalloproteinases activity. | [18] |
1. Fibrosis and glandular nests in the course of endometrosis. | 377 non-pregnant mares; 16.41 ± 0.41 years | Endometrial biopsies a | HE; MT | 1. Fibrosis intensity and glandular nests occurrence increase with endometrosis severity. | [22] |
1. Detailed histomorphological characterization of endometrial biopsies of old mares. | 819 non-pregnant mares; Age > 20 years | Endometrial biopsies a | HE | 1. Endometrosis was found in 97% of samples, mostly with periglandular inflammatory cells (58%). | [27] |
1. Occurrence of endometrial alterations in age groups. | 9121 non-pregnant mares; 1–30 years | Endometrial biopsies a | HE * | 1. Incidence of endometrosis increase with mare age. | [40] |
1. Fibrosis in endometrial samples. | 5 non-pregnant mares; Age not reported | Full-thickness post-mortem uterine sections a | HE; MT | 1. No differences in HE and MT assessment of periglandular fibrosis. | [43] |
1. Evaluation of endometrosis features; 2. Evaluation of mucopolysaccharides in ECM. | 25 multiparous mares; 7–19 years | Endometrial biopsies a | HE; MT; PAS; AB | 1. Defensin-β 4B may be involved in regulation of immune response and indirectly influence ECM formation. | [52] |
1. Color of cytoplasm and fibrosis in the course of endometrosis. | 20 non-pregnant mares; Age not reported | Full-thickness post-mortem uterine sections a,c | HE; MT | 1. Light cytoplasm area in glands increase with endometrosis severity; 2. Fibrotic area was larger around light than dark cytoplasm glands. | [56] |
1. Differences in cytoplasm staining between normal and degenerated glands in the course of endometrosis. | 20 non-pregnant mares; Age not reported | Full-thickness post-mortem uterine sections a,c | HE; MT | 1. Percentage of light cytoplasm glands is higher in severe endometrosis than in healthy endometrium; 2. No differences in dark cytoplasm glands concerning endometrosis severity. | [57] |
1. Determination of the effects of kerosene on endometrium; 2. Assessment of hysteroscopy and transrectal ultrasound to detect the presence of active endometrial cups. | 9 mares (pregnant, terminated during study | Endometrial biopsies a | HE; PSR; IHC | 1. Intrauterine kerosene infusions do not hasten regression of retained endometrial cups following an abortion; 2. Intrauterine kerosene infusions in mares did not appear to affect mare health or endometrium. | [60] |
1. Evaluation of endometritis and chronic fibrosis after enrofloxacin infusion administration | 9 non-pregnant mares 5–13 years | Endometrial biopsies a | HE GT | 1. Infusion of enrofloxacin for treatment of endometritis induced severe acute endometrial mucosal necrosis and significant chronic endometrial fibrosis and inflammation | [61] |
1. Evaluation of endometrosis features; 2. Evaluation of placental surface. | 9 pregnant mares; Healthy group: 4–12 years; Endometrosis group: 10–22 years | Samples from allantochorion and endometrium a,b; Endometrial biopsies a; Both post-mortem | HE; EVG; UALC; GS coating | 1. The poorest development of placenta and microcotyledons was found in association with glandular atrophy; 2. Pregnancy-induced increase in the density of endometrial glands. | [64] |
1. Evaluation of the ultrastructural and histological changes in the endometrium in days 7, 10, and 13 post-ovulation in pregnant and cyclic mares | 30 mares; 5–10 years | Endometrial biopsies a,b | HE PAS GS coating | 1. In the stroma and lumen, modifications occurred to provide nutrition necessary for the embryo and to promote changes that will interact in the embryonic signaling and future fixation, implantation, and placentation. | [66] |
1. Evaluation of presence and distribution of ECM proteins; 2. Histochemical characteristics of fibroblasts. | 50 non-pregnant mares; 5–23 years | Endometrial biopsies a | HE; IHC | 1. Endometrotic tissue is characterized by periglandularly arranged fibroblasts producing collagen IV, laminin, and fibronectin; 2. Fibroblasts express α-smooth muscle actin, tropomyosin, and occasionally desmin. | [67] |
Staining | Purpose of Staining | Specimen | Advantages | Disadvantages |
---|---|---|---|---|
HE | Visualization of cellular morphology and tissue architecture [45,85] | Full-thickness cervical sections [50,51,65,73]; Endometrial biopsies [6,15,16,18,35,40,52,55,58,60,61,63,64,66,77]; Full-thickness uterine sections [4,53,54,55,56,57,58,63] | Quick, easy, cheap Versatile [85,86]. | Is not selective to connective tissue fibers; Only for visual analysis [69,87,88]. |
MT | Visualization of collagen, elastic fibers, muscle, and epithelium [108] | Full-thickness cervical sections [50,51]; Endometrial biopsies [52]; Full-thickness uterine sections [43,53,54,55,56,57] | High contrast between stained structures; Stains all types of collagen fibers and elastic fibers [85,86]; Allows for microdensitometry [96]. | Some thin fibers may not be stained; Lack of differentiation between types of fibers; Corrosive reagents used [86,87]. |
PSR | Visualization of collagen [85,86] | Endometrial biopsies [15,18,35,58,59,60]; Full-thickness uterine sections [58] | Stable, fast, consistent, inexpensive; Highest contrast among other stains [89]; Stains basal lamina; Allows for microdensitometry [86,88]. | Polarized microscope recommended; Rotation of the slide; Poorer staining of nuclei [88]; Requires understanding of polarization effects [86,89]. |
GT | Visualization of muscles and connective tissue [108,109] | Endometrial biopsies [61,62] | Stable reagents; Simple, one-step staining; Highly reliable [47]. | Overstaining when ethanol-fixed samples are used [92]. |
EVG | Visualization of elastic tissue; Visualization of collagen and enhancing nuclear detail [95,108] | Endometrial biopsies [63,64]; Full-thickness uterine sections [4,63] | Large numbers of sections can be easily stained by van Gieson’s method and its modifications; Good visualization of all types of fibers [86]; Highest contrast of elastic fibers among other stains [93]. | Non-detailed cytoplasm; Fading depending on the mounting medium; Variability in acid fuchsin quality [86]; Poor collagen staining [91]; High variability in differentiation, slides should be evaluated separately [93]. |
Azan | Visualization of collagen, reticulin fibers, basal membrane [86] | Full-thickness cervical sections [65] | High control of the HE intensity [86]. | Time consuming and troublesome; Variable differentiation [86,94]. |
RF | Elastic fibers staining [110] | Full-thickness cervical sections [65] | Reliable, good contrast of elastic fibers [93]. | Not fully specific [111]; Variable differentiation [110]; Staining and reagent preparation is time-consuming [93]. |
PAS | Identification of glycogen, neutral mucins, basement membrane, collagen fibers [94,108] | Full-thickness cervical sections [65]; Endometrial biopsies [52,66]; Full-thickness uterine sections [4] | Good for basal membrane staining [94,112]; Visualizes reticulin fibers [112]; Combined with alcian blue stains mucopolysaccharides [86]. | Weak staining of collagen; Cannot be used singlehandedly to evaluate connective tissue [112]. |
MBABF | Visualization of connective tissue and muscles [100]; Selection of sites for electron microscopy [113] | Endometrial biopsies [35] | High contrast; Enables morphometry [99]. | Variable staining intensity; Semi-thin slices only [113] |
UALC (electron microscopy) | Contrast for cellular structures evaluation in transmission electron microscopy [87,94,101] | Endometrial biopsies [35,64]; Full-thickness uterine sections [4] | Versatile; High contrast [114]. | Unpredictable; Sensitive to light; Highly toxic; Restricted use [87,94,101,102]. |
GS coating (electron microscopy) | Providing a homogeneous surface for analysis and imaging in scanning electron microscope; Preventing charging of the surface [103] | Samples from allantochorion and endometrium [64]; Endometrial biopsies [66] | Non-oxidizing, excellent conductor; Reduces beam-penetration artifacts [115]. | Granular and cracked appearance of the surface (reduced by palladium addition) [104]. |
IHC | Expression and localization of selected marker [86,87] | Full-thickness cervical sections [51]; Endometrial biopsies [6,16,60,67] | High specificity Direct localization of an antigen [86]; Wide range of applications [87]. | Requires optimization and controls. Requires tissue processing; Expensive availability of specific antibodies [87]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdrojkowski, Ł.; Pawliński, B.; Skierbiszewska, K.; Jasiński, T.; Domino, M. Assessment of Connective Tissue in the Equine Uterus and Cervix: Review of Clinical Impact and Staining Options. Animals 2024, 14, 156. https://doi.org/10.3390/ani14010156
Zdrojkowski Ł, Pawliński B, Skierbiszewska K, Jasiński T, Domino M. Assessment of Connective Tissue in the Equine Uterus and Cervix: Review of Clinical Impact and Staining Options. Animals. 2024; 14(1):156. https://doi.org/10.3390/ani14010156
Chicago/Turabian StyleZdrojkowski, Łukasz, Bartosz Pawliński, Katarzyna Skierbiszewska, Tomasz Jasiński, and Małgorzata Domino. 2024. "Assessment of Connective Tissue in the Equine Uterus and Cervix: Review of Clinical Impact and Staining Options" Animals 14, no. 1: 156. https://doi.org/10.3390/ani14010156
APA StyleZdrojkowski, Ł., Pawliński, B., Skierbiszewska, K., Jasiński, T., & Domino, M. (2024). Assessment of Connective Tissue in the Equine Uterus and Cervix: Review of Clinical Impact and Staining Options. Animals, 14(1), 156. https://doi.org/10.3390/ani14010156