Follow-Up Magnetic Resonance Imaging of Sagittal Groove Disease of the Equine Proximal Phalanx Using a Classification System in 29 Non-Racing Sports Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. MRI Examination Protocol
2.3. MRI Evaluation
2.4. Data Analysis
3. Results
3.1. Horses
3.2. MRI Acquisition
3.3. MRI Evaluation
3.4. Initial Period
3.4.1. SGD MRI Classification
3.4.2. Rehabilitation and Performance
3.5. Subsequent Periods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brünisholz, H.P.; Hagen, R.; Fürst, A.E.; Kuemmerle, J.M. Radiographic and Computed Tomographic Configuration of Incomplete Proximal Fractures of the Proximal Phalanx in Horses Not Used for Racing. Vet. Surg. 2015, 44, 809–815. [Google Scholar] [CrossRef]
- Gold, S.J.; Werpy, N.M.; Gutierrez-Nibeyro, S.D. Injuries of the Sagittal Groove of the Proximal Phalanx in Warmblood Horses Detected With Low-Field Magnetic Resonance Imaging: 19 Cases (2007–2016). Vet. Radiol. Ultrasound 2017, 58, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Mizobe, F.; Nomura, M.; Ueno, T.; Yamada, K. Bone Marrow Oedema-Type Signal in the Proximal Phalanx of Thoroughbred Racehorses. J. Vet. Med. Sci. 2019, 81, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Lipreri, G.; Bladon, B.M.; Giorio, M.E.; Singer, E.R. Conservative versus Surgical Treatment of 21 Sports Horses with Osseous Trauma in the Proximal Phalangeal Sagittal Groove Diagnosed by Low-Field MRI. Vet. Surg. 2018, 47, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Dyson, S.; Nagy, A.; Murray, R. Clinical and Diagnostic Imaging Findings in Horses with Subchondral Bone Trauma of the Sagittal Groove of the Proximal Phalanx. Vet. Radiol. Ultrasound 2011, 52, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.E. Low-Field Standing Magnetic Resonance Imaging Findings of the Metacarpo/Metatarsophalangeal Joint of Racing Thoroughbreds with Lameness Localised to the Region: A Retrospective Study of 131 Horses. Equine Vet. J. 2012, 44, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, P.H.L.; Powell, S.E. Clinical and Imaging Features of Suspected Prodromal Fracture of the Proximal Phalanx in Three Thoroughbred Racehorses. Equine Vet. J. 2010, 42, 164–169. [Google Scholar] [CrossRef]
- Noble, P.; Singer, E.R.; Jeffery, N.S. Does Subchondral Bone of the Equine Proximal Phalanx Adapt to Race Training? J. Anat. 2016, 229, 104–113. [Google Scholar] [CrossRef]
- Singer, E.; Garcia, T.; Stover, S. How Does Bone Strain Vary between the Third Metacarpal and the Proximal Phalangeal Bones of the Equine Distal Limb? J. Biomech. 2021, 123, 110455. [Google Scholar] [CrossRef]
- Smith, M.R.W.; Wright, I.M. Are There Radiologically Identifiable Prodromal Changes in Thoroughbred Racehorses with Parasagittal Fractures of the Proximal Phalanx? Equine Vet. J. 2014, 46, 88–91. [Google Scholar] [CrossRef]
- Lin, S.-T.; Foote, A.K.; Bolas, N.M.; Peter, V.G.; Pokora, R.; Patrick, H.; Sargan, D.R.; Murray, R.C. Three-Dimensional Imaging and Histopathological Features of Third Metacarpal/Tarsal Parasagittal Groove and Proximal Phalanx Sagittal Groove Fissures in Thoroughbred Horses. Animals 2023, 13, 2912. [Google Scholar] [CrossRef] [PubMed]
- Powell, S. Pathology: The Fetlock Region. In Equine MRI; Murray, R., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 315–359. [Google Scholar]
- Kuemmerle, J.M.; Auer, J.A.; Rademacher, N.; Lischer, C.J.; Bettschart-Wolfensberger, R.; Fürst, A.E. Short Incomplete Sagittal Fractures of the Proximal Phalanx in Ten Horses Not Used for Racing. Vet. Surg. 2008, 37, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, A.L.; Ortved, K.F.; Dallap-Schaer, B.; Gouzeev, S.; Stefanovski, D.; Richardson, D.W.; Wulster, K.B. Validation of Standing Cone Beam Computed Tomography for Diagnosing Subchondral Fetlock Pathology in the Thoroughbred Racehorse. Equine Vet. J. 2021, 53, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.W.; Wright, I.M. Radiographic Configuration and Healing of 121 Fractures of the Proximal Phalanx in 120 Thoroughbred Racehorses (2007–2011). Equine Vet. J. 2014, 46, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Markel, M.D.; Richardson, D.W. Noncomminuted Fractures of the Proximal Phalanx in 69 Horses. J. Am. Vet. Med. Assoc. 1985, 186, 573–579. [Google Scholar] [PubMed]
- Holcombe, S.; Schneider, R.; Bramlage, L.; Gabel, A.; Bertone, A.; Beard, W. Lag Screw Fixation of Noncomminuted Sagittal Fractures of the Proximal Phalanx in Racehorses: 59 Cases (1973–1991). J. Am. Vet. Med. Assoc. 1995, 206, 1195–1199. [Google Scholar] [PubMed]
- Olive, J.; D’anjou, M.A.; Alexander, K.; Laverty, S.; Theoret, C. Comparison of Magnetic Resonance Imaging, Computed Tomography, and Radiography for Assessment of Noncartilaginous Changes in Equine Metacarpophalangeal Osteoarthritis. Vet. Radiol. Ultrasound 2010, 51, 267–279. [Google Scholar] [CrossRef]
- Bryner, M.F.; Hoey, S.E.; Montavon, S.; Fürst, A.E.; Kümmerle, J.M. Long-Term Clinical and Radiographic Results after Lag Screw Ostheosynthesis of Short Incomplete Proximal Sagittal Fractures of the Proximal Phalanx in Horses Not Used for Racing. Vet. Surg. 2020, 49, 88–95. [Google Scholar] [CrossRef]
- Findley, J.A.; O’Neill, H.D.; Bladon, B.M. Outcome Following Repair of 63 Sagittal Fractures of the Proximal Phalanx in UK Thoroughbreds Using Either a Triangular or Linear Screw Configuration. Equine Vet. J. 2021, 53, 524–529. [Google Scholar] [CrossRef]
- Tetens, J.; Ross, M.; Lloyd, J. Comparison of Racing Performance before and after Treatment of Incomplete, Midsagittal Fractures of the Proximal Phalanx in Standardbreds: 49 Cases (1986–1992). J. Am. Vet. Med. Assoc. 1997, 210, 82–86. [Google Scholar]
- Ellis, D.R.; Simpson, D.J.; Greenwood, R.E.S.; Crowhurst, J.S. Observations and Management of Fractures of the Proximal Phalanx in Young Thoroughbreds. Equine Vet. J. 1987, 19, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Fredericson, M.; Bergman, A.G.; Hoffman, K.L.; Dillingham, M.S. Tibial Stress Reaction in Runners Correlation of Clinical Symptoms and Scintigraphy with a New Magnetic Resonance Imaging Grading System. Am. J. Sports Med. 1995, 23, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, R.; Choi, J.; Shinki, K.; Del Rio, A.M.; De Smet, A. Validation of MRI Classification System for Tibial Stress Injuries. Am. J. Roentgenol. 2012, 198, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Olive, J.; Serraud, N.; Vila, T.; Germain, J.P. Metacarpophalangeal Joint Injury Patterns on Magnetic Resonance Imaging: A Comparison in Racing Standardbreds and Thoroughbreds. Vet. Radiol. Ultrasound 2017, 58, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Audigie, F.; Moiroud, C.; Bertoni, L.; Jacquet-Guibon, S.; Beaumont, A.; Tallaj, A.; Denoix, J.-M.; Crevier-Denoix, N. Bone Marrow Edema like Changes Due to a Rest Period in the Fore Fetlocks of Steeplechasers. In Proceedings of the IVRA 19th Meeting—Oral Presentations Abstracts, Dublin, Ireland, 18–23 June 2023; p. 59. [Google Scholar]
- Murray, R.C.; Blunden, T.S.; Schramme, M.C.; Dyson, S.J. How Does Magnetic Resonance Imaging Represent Histologic Findings in the Equine Digit? Vet. Radiol. Ultrasound 2006, 47, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Sha, D.; Stick, J.; Elvin, N. 3D Kinematics of the Equine Metacarpophalangeal Joint at Walk and Trot. Vet. Comp. Orthop. Traumatol. 2007, 20, 86–91. [Google Scholar] [CrossRef]
- Hodson, E.; Clayton, H.M.; Lanovaz, J.L. The Forelimb in Walking Horses: 1. Kinematics and Ground Reaction Forces. Equine Vet. J. 2000, 32, 287–294. [Google Scholar] [CrossRef]
- O’Hare, L.M.S.; Cox, P.G.; Jeffery, N.; Singer, E.R. Finite Element Analysis of Stress in the Equine Proximal Phalanx. Equine Vet. J. 2013, 45, 273–277. [Google Scholar] [CrossRef]
- Brama, P.A.J.; Karssenberg, D.; Barneveld, A.; Van Weeren, P.R. Contact Areas and Pressure Distribution on the Proximal Articular Surface of the Proximal Phalanx under Sagittal Plane Loading. Equine Vet. J. 2001, 33, 26–32. [Google Scholar] [CrossRef]
- Singer, E.; Garcia, T.; Stover, S. Hoof Position during Limb Loading Affects Dorsoproximal Bone Strains on the Equine Proximal Phalanx. J. Biomech. 2015, 48, 1930–1936. [Google Scholar] [CrossRef]
- Singer, E.; Garcia, T.; Stover, S. How Do Metacarpophalangeal Joint Extension, Collateromotion and Axial Rotation Influence Dorsal Surface Strains of the Equine Proximal Phalanx at Different Loads in Vitro? J. Biomech. 2013, 46, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Olive, J.; Mair, T.S.; Charles, B. Use of Standing Low-Field Magnetic Resonance Imaging to Diagnose Middle Phalanx Bone Marrow Lesions in Horses. Equine Vet. Educ. 2009, 21, 116–123. [Google Scholar] [CrossRef]
- Pownder, S.L.; Koff, M.F.; Shah, P.H.; Fortier, L.A.; Potter, H.G. Magnetic Resonance Imaging of an Equine Fracture Model Containing Stainless Steel Metal Implants. Equine Vet. J. 2016, 48, 321–325. [Google Scholar] [CrossRef] [PubMed]
SGD MRI Classification | Sub-Classifications and Description of Key Osseous Changes in the Sagittal Groove of the Proximal Phalanx | Absent Concurrent Features | Potential Concurrent Features | |
---|---|---|---|---|
0 | Normal | No abnormalities | N/A | N/A |
1 | Small subchondral defect | (a) Minor, shallow defect in the chondro-osseous junction (typically ≤1 mm depth ± visible in only one slice) | Demineralisation, osseous densification, bone oedema-like signal | N/A |
(b) Microfissure (proximodistally oriented, narrow, linear defect in the chondro-osseous junction that is contained within the subchondral bone plate, ≤3 mm length) | ||||
2 | Osseous densification | (a) Mild osseous densification of the subchondral ± trabecular bone, not extending to the proximal physis/physeal scar (proximodistal extent less than the equivalent depth of the SG) | Microfissure, demineralisation, bone oedema-like signal | Minor subchondral defect |
(b) Moderate to severe osseous densification of the subchondral ± trabecular bone, extending to or beyond the proximal physis/physeal scar (proximodistal distance greater than one times the depth of the SG) | ||||
3 | Subchondral microfissure with osseous densification | (a) Subchondral microfissure (≤3 mm length) with mild osseous densification (does not reach the proximal physis/physeal scar) | Subchondral demineralisation or bone oedema-like signal | |
(b) Subchondral microfissure (≤3 mm length) with moderate to severe osseous densification (extending to or beyond the proximal physis/physeal scar) | ||||
4 | Bone oedema-like signal within the subchondral ± trabecular bone | (a) Bone oedema-like signal within the subchondral ± trabecular bone | Microfissure, demineralisation | Minor subchondral defect, osseous densification of any extent |
(b) Bone oedema-like signal within the subchondral ± trabecular bone with microfissure (short proximodistally oriented, narrow, linear defect contained within the subchondral bone plate (≤3 mm)) | Demineralisation | Osseous densification of any extent | ||
(c) Bone oedema-like signal within the subchondral ± trabecular bone with subchondral demineralisation (unipartite or tripartite regions of demineralisation/resorption within the subchondral bone plate) | Microfissure, osseous densification of any extent | |||
5 | Incomplete macrofissure/fracture | Proximodistally oriented linear signal abnormality (>3 mm length; unipartite or tripartite configuration) extending through the subchondral bone and terminating within the trabecular bone | N/A | Demineralisation, osseous densification or bone oedema-like signal of any extent |
6 | Complete fracture | Proximodistally oriented linear signal abnormality extending through the subchondral and trabecular bone and exiting at the diaphyseal cortex or distal subchondral bone plate with the creation of two or more fragments | N/A | Demineralisation, osseous densification or bone oedema-like signal of any extent |
Time Since Initial MRI Examination (Months) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 0–3 | 3–6 | 6–9 | 9–12 | 12–18 | 15–18 | ||
Total number of limbs examined (n) | 32 | 11 | 22 | 3 | 1 | 0 | 1 | |
Lameness | Lame (n) | 31 | 2 | 2 | 0 | 0 | 0 | 0 |
Sound (n) | 1 | 6 | 16 | 3 | 0 | 0 | 0 | |
N/R (n) | 0 | 3 | 4 | 0 | 1 | 0 | 1 | |
Recent performance/rehabilitation phase | Rest (n) | 2 | 11 | 15 | 0 | 1 | 0 | 1 |
Base rehab (n) | 0 | 0 | 6 | 3 | 0 | 0 | 0 | |
Advanced rehab (n) | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
Full (n) | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
Initial Period | Subsequent Period/s | |||||||
---|---|---|---|---|---|---|---|---|
Horse | SGD MRI Classification/s | Time to Resume Full Training/Competition (Months) | Level of Performance Compared with Previously | Time in Full Work (Months) | Time since Initial MRI of the Initial/Previous Period | SGD MRI Classification/s ¶ | Time to Resume Full Training/Competition (Months) | Level of Performance Compared with Previously |
1 | 4a (RF) | 9 | Same | 11 | 20 | 4a (RF) 4a (LF) † | 14 | Lower |
2 | 4b (RF) | 6 | Same | 15 | 21 | 5/4b (RF) | 11 | Unknown |
3 | 5 (RH) | >9 | Same | Unknown | 24 | 4c/4a (RH) | Ongoing rehabilitation ‡ | - |
4 (A) | 4b/5 (LF) 2a/4a (RF) | 8 | Unknown | 8 | 16 | 4c/5 (LF) | 8 § | Unknown |
5 (C) | 4a (LF) 4b (RF) | Unknown | Unknown | Unknown | 39 | 4c (LF) 5 (RF) | Unknown | Unknown |
6 (D) ^ | 4a (RF) | 15 | Higher | 3 | 18 | 4a/5 (RF) | 6 | Lower |
- | - | - | 2 | 8 | 4a (RF) 4a/4a (LF) | 12 | Lower |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faulkner, J.E.; Joostens, Z.; Broeckx, B.J.G.; Hauspie, S.; Mariën, T.; Vanderperren, K. Follow-Up Magnetic Resonance Imaging of Sagittal Groove Disease of the Equine Proximal Phalanx Using a Classification System in 29 Non-Racing Sports Horses. Animals 2024, 14, 34. https://doi.org/10.3390/ani14010034
Faulkner JE, Joostens Z, Broeckx BJG, Hauspie S, Mariën T, Vanderperren K. Follow-Up Magnetic Resonance Imaging of Sagittal Groove Disease of the Equine Proximal Phalanx Using a Classification System in 29 Non-Racing Sports Horses. Animals. 2024; 14(1):34. https://doi.org/10.3390/ani14010034
Chicago/Turabian StyleFaulkner, Josephine E., Zoë Joostens, Bart J. G. Broeckx, Stijn Hauspie, Tom Mariën, and Katrien Vanderperren. 2024. "Follow-Up Magnetic Resonance Imaging of Sagittal Groove Disease of the Equine Proximal Phalanx Using a Classification System in 29 Non-Racing Sports Horses" Animals 14, no. 1: 34. https://doi.org/10.3390/ani14010034
APA StyleFaulkner, J. E., Joostens, Z., Broeckx, B. J. G., Hauspie, S., Mariën, T., & Vanderperren, K. (2024). Follow-Up Magnetic Resonance Imaging of Sagittal Groove Disease of the Equine Proximal Phalanx Using a Classification System in 29 Non-Racing Sports Horses. Animals, 14(1), 34. https://doi.org/10.3390/ani14010034