Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Feeding and Sample Collection
2.3. Volatile Fatty Acid Analyses
2.4. Phenol and Indole Analyses
2.5. Chemical Analyses
2.6. Calculations
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tabase, R.K.; Naess, G.; Larring, Y. Ammonia and methane emissions from small herd cattle buildings in a cold climate. Sci. Total Environ. 2023, 903, 166046. [Google Scholar] [CrossRef] [PubMed]
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef] [PubMed]
- Hwang, O.H.; Cho, S.B.; Han, D.W.; Lee, S.R.; Kwag, J.H.; Park, S.K. Effect of storage period on the changes of odorous compound concentrations and bacterial ecology for identifying the cause of odor production from pig slurry. PLoS ONE 2016, 11, e0162714. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.; Todd, L.; Wing, S. Concentrated swine feeding operations and public health: A review of occupational and community health effects. Environ. Health Perspect. 2000, 108, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Philippe, F.X.; Cabaraux, J.F.; Nicks, B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecosyst. Environ. 2011, 141, 245–260. [Google Scholar] [CrossRef]
- Sutton, A.L.; Kephart, K.B.; Verstegen, M.W.A.; Canh, T.T.; Hobbs, P.J. Potential for reduction of odorous compounds in swine manure through diet modification. J. Anim. Sci. 1999, 77, 430–439. [Google Scholar] [CrossRef]
- Kim, J.H.; Ko, G.P.; Son, K.H.; Ku, B.H.; Bang, M.A.; Kang, M.J.; Park, H.Y. Arazyme in combination with dietary carbohydrolases influences odor emission and gut microbiome in growing-finishing pigs. Sci. Total Environ. 2022, 848, 157735. [Google Scholar] [CrossRef]
- Melse, R.W. Air Treatment Techniques for Abatement of Emissions from Intensive Livestock Production; Wageningen University and Research: Wageningen, The Netherlands, 2009. [Google Scholar]
- Kim, J.; Hong, B.; Lee, M.J.; Kim, B.G. Demonstration of constant nitrogen and energy amounts in pig urine under acidic conditions at room temperature and determination of the minimum amount of hydrochloric acid required for nitrogen preservation in pig urine. Anim. Biosci. 2023, 36, 492–497. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Xu, Y.; Wu, Y.; Wang, R.; Zhang, X.; Hou, Y.; Qu, H.; Wang, L.; He, M.; et al. Highly efficient reduction of ammonia emissions from livestock waste by the synergy of novel manure acidification and inhibition of ureolytic bacteria. Environ. Int. 2023, 172, 107768. [Google Scholar] [CrossRef]
- Partanen, K.H.; Mroz, Z. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 1999, 12, 117–145. [Google Scholar] [CrossRef]
- Gräber, T.; Kluge, H.; Hirche, F.; Brož, J.; Stangl, G.I. Effects of dietary benzoic acid and sodium-benzoate on performance, nitrogen and mineral balance and hippuric acid excretion of piglets. Arch. Anim. Nutr. 2012, 66, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, T.H.; Song, M.H.; An, J.S.; Yun, W.; Lee, J.H.; Oh, H.J.; Lee, J.S.; Kim, G.M.; Kim, H.B.; et al. Effects of different levels of crude protein and protease on nitrogen utilization, nutrient digestibility, and growth performance in growing pigs. J. Anim. Sci. Technol. 2020, 62, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; McGlone, J.J.; Kim, S.W. Effects of dietary humic substances on pig growth performance, carcass characteristics, and ammonia emission. J. Anim. Sci. 2006, 84, 2482–2490. [Google Scholar] [CrossRef] [PubMed]
- Loyola Andrade, N.A. Effects of Humic Acids Supplementation on Pig Growth Performance, Nitrogen Digestibility, Odor and Ammonia Emission. Bachelor’s Thesis, Universidad San Francisco de Quito, Colegio de Ciencias de la Salud, Quito, Ecuador, 2019. [Google Scholar]
- Kim, B.G.; Stein, H.H. A spreadsheet program for making a balanced Latin square design. Rev. Colomb. Cienc. Pec. 2009, 22, 591–596. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Lee, S.A.; Kong, C.; Adeola, O.; Kim, B.G. Different coefficients and exponents for metabolic body weight in a model to estimate individual feed intake for growing-finishing pigs. Asian-Australas. J. Anim. Sci. 2016, 29, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, B.G. A low-fiber diet requires a longer adaptation period before collecting feces of pigs compared with a high-fiber diet in digestibility experiments using the inert marker method. Anim. Feed Sci. Technol. 2019, 256, 114254. [Google Scholar] [CrossRef]
- Ahn, J.Y.; Kil, D.Y.; Kong, C.; Kim, B.G. Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australas. J. Anim. Sci. 2014, 27, 1615–1622. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Warner, A.J.; DeRouchey, J.M.; Tokach, M.D.; Woodworth, J.C.; Goodband, R.D.; Gebhardt, J.T. Effect of added calcium carbonate without and with benzoic acid on weanling pig growth performance, fecal dry matter, and blood Ca and P concentrations. Transl. Anim. Sci. 2023, 7, txad055. [Google Scholar] [CrossRef]
- Goh, T.W.; Hong, J.; You, D.H.; Han, Y.G.; Nam, S.O.; Kim, Y.Y. Effects of medium chain triglycerides with organic acids on growth performance, fecal score, blood profiles, intestinal morphology, and nutrient digestibility in weaning pigs. Anim. Biosci. 2022, 35, 916–926. [Google Scholar] [CrossRef]
- Patráš, P.; Nitrayová, S.; BreSteNSký, M.; Heger, J. The effects of benzoic acid and protein level on urine ph and ammonia emission of pigs. Slovak J. Anim. Sci. 2014, 47, 100–104. [Google Scholar]
- Murphy, D.P.; O’Doherty, J.V.; Boland, T.M.; O’Shea, C.J.; Callan, J.J.; Pierce, K.M.; Lynch, M.B. The effect of benzoic acid concentration on nitrogen metabolism, manure ammonia and odour emissions in finishing pigs. Anim. Feed Sci. Technol. 2011, 163, 194–199. [Google Scholar] [CrossRef]
- Zhong, Y.; Zuo, B.; Li, J.Z.; Zhai, Y.; Mudarra, R. Effects of paraformic acid supplementation, as an antibiotic replacement, on growth performance, intestinal morphology and gut microbiota of nursery pigs. J. Anim. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Suiryanrayna, M.V.; Ramana, J.V. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef] [PubMed]
- Roth, F.X.; Kirchgessner, M. Organic acids as feed additives for young pigs: Nutritional and gastrointestinal effects. J. Anim. Feed Sci. 1998, 7, 25–33. [Google Scholar] [CrossRef]
- Lawlor, P.G.; Lynch, P.B.; Caffrey, P.J.; O’Reilly, J.J.; O’Connell, M.K. Measurements of the acid-binding capacity of ingredients used in pig diets. Ir. Vet. J. 2005, 58, 447–452. [Google Scholar] [CrossRef]
- Bühler, K.; Wenk, C.; Broz, J.; Gebert, S. Influence of benzoic acid and dietary protein level on performance, nitrogen metabolism and urinary pH in growing-finishing pigs. Arch. Anim. Nutr. 2006, 60, 382–389. [Google Scholar] [CrossRef]
- Kennedy, G.L., Jr. Toxicity of adipic acid. Drug Chem. Toxicol. 2002, 25, 191–202. [Google Scholar] [CrossRef]
- van Kempen, T.A.; van Heugten, E.; Trottier, N.L. Adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization in swine. J. Anim. Sci. 2001, 79, 2406–2411. [Google Scholar] [CrossRef]
- Hossain, M.M.; Lee, S.I.; Kim, I.H. Effects of bromelain supplementation on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and faecal noxious gas emission in weanling pigs. Vet. Med. 2015, 60, 544–552. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Lee, S.I.; Cheong, J.Y.; Kim, I.H. Influence of low-protein diets and protease and bromelain supplementation on growth performance, nutrient digestibility, blood urine nitrogen, creatinine, and faecal noxious gas in growing-finishing pigs. Can. J. Anim. Sci. 2018, 98, 488–497. [Google Scholar] [CrossRef]
- Mc Alpine, P.O.; O’Shea, C.J.; Varley, P.F.; O’Doherty, J.V. The effect of protease and xylanase enzymes on growth performance and nutrient digestibility in finisher pigs. J. Anim. Sci. 2012, 90 (Suppl. S4), 375–377. [Google Scholar] [CrossRef] [PubMed]
- Mavromichalis, I.; Hancock, J.D.; Senne, B.W.; Gugle, T.L.; Kennedy, G.A.; Hines, R.H.; Wyatt, C.L. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. J. Anim. Sci. 2000, 78, 3086–3095. [Google Scholar] [CrossRef] [PubMed]
- Urbaityte, R.; Mosenthin, R.; Eklund, M.; Piepho, H.P.; Sauer, N.; Rademacher, M. Standardised ileal crude protein and amino acid digestibilities in protein supplements for piglets. Arch. Anim. Nutr. 2009, 63, 356–378. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.; John Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Peng, X.X.; Gai, S.; Cheng, K.; Yang, F. Roles of humic substances redox activity on environmental remediation. J. Hazard. Mater. 2022, 435, 129070. [Google Scholar] [CrossRef] [PubMed]
- Písaříková, B.; Zralý, Z.; Herzig, I. The effect of dietary sodium humate supplementation on nutrient digestibility in growing pigs. Acta Vet. Brno 2010, 79, 349–353. [Google Scholar] [CrossRef]
- Choi, H.; Chen, Y.; Longo, F.; Kim, S.W. Comparative effects of benzoic acid and sodium benzoate in diets for nursery pigs on growth performance and acidification of digesta and urine. J. Anim. Sci. 2023, 101, skad116. [Google Scholar] [CrossRef] [PubMed]
- Sauer, W.; Cervantes, M.; Yanez, J.; Araiza, B.; Murdoch, G.; Morales, A.; Zijlstra, R.T. Effect of dietary inclusion of benzoic acid on mineral balance in growing pigs. Livest. Sci. 2009, 122, 162–168. [Google Scholar] [CrossRef]
- Kristensen, N.B.; Norgaard, J.V.; Wamberg, S.; Engbaek, M.; Fernandez, J.A.; Zacho, H.D.; Poulsen, H.D. Absorption and metabolism of benzoic acid in growing pigs. J. Anim. Sci. 2009, 87, 2815–2822. [Google Scholar] [CrossRef]
- Kluge, H.; Broz, J.; Eder, K. Effect of benzoic acid on growth performance, nutrient digestibility, nitrogen balance, gastrointestinal microflora and parameters of microbial metabolism in piglets. J. Anim. Physiol. Anim. Nutr. 2006, 90, 316–324. [Google Scholar] [CrossRef]
- Eriksen, J.; Adamsen, A.P.; Norgaard, J.V.; Poulsen, H.D.; Jensen, B.B.; Petersen, S.O. Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry: Effects of dietary methionine and benzoic acid. J. Environ. Qual. 2010, 39, 1097–1107. [Google Scholar] [CrossRef]
- Passi, S.; Nazzaro-Porro, M.; Picardo, M.; Mingrone, G.; Fasella, P. Metabolism of straight saturated medium chain length (C9 to C12) dicarboxylic acids. J. Lipid Res. 1983, 24, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, T.A. Dietary adipic acid reduces ammonia emission from swine excreta. J. Anim. Sci. 2001, 79, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jacobson, L.D. Correlating microbes to major odorous compounds in swine manure. J. Environ. Qual. 1999, 28, 737–744. [Google Scholar] [CrossRef]
- Jensen, M.T.; Cox, R.P.; Jensen, B.B. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl. Environ. Microbiol. 1995, 61, 3180–3184. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.H.; Chen, C.Y.; Wang, H.T. Three-step in vitro digestion model for evaluating and predicting fecal odor emission from growing pigs with different dietary protein intakes. Anim. Biosci. 2022, 35, 1592–1605. [Google Scholar] [CrossRef] [PubMed]
- Niyonsaba, A.; Jin, X.H.; Kim, Y.Y. Effect of reducing dietary crude protein level on growth performance, blood profiles, nutrient digestibility, carcass traits, and odor emissions in growing-finishing pigs. Anim. Biosci. 2023, 36, 1584–1595. [Google Scholar] [CrossRef]
- Yang, F.; Tang, C.; Antonietti, M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev. 2021, 50, 6221–6239. [Google Scholar] [CrossRef]
- Benz, M.; Schink, B.; Brune, A. Humic acid reduction by propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 1998, 64, 4507–4512. [Google Scholar] [CrossRef]
- Deng, J.J.; Deng, D.; Wang, Z.L.; Luo, X.C.; Chen, H.P.; Liu, S.Y.; Ma, X.Y.; Li, J.Z. Indole metabolism mechanisms in a new, efficient indole-degrading facultative anaerobe isolate Enterococcus hirae GDIAS-5. J. Hazard. Mater. 2022, 434, 128890. [Google Scholar] [CrossRef]
Item | Experimental Diet | ||||
---|---|---|---|---|---|
Control | Benzoic Acid | Adipic Acid | Bromelain | Humic Substances 1 | |
Ingredients, % | |||||
Ground corn | 68.3 | 68.3 | 68.3 | 68.3 | 68.3 |
Soybean meal, 45.1% crude protein | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 |
Rapeseed meal | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Soybean oil | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
L-Lys·HCl, 78.8% | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
L-Thr, 99.0% | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
DL-Met, 99.0% | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Dicalcium phosphate | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Ground limestone | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Salt | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Vitamin-mineral premix 2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Corn starch | 1.0 | - | - | - | - |
Benzoic acid | - | 1.0 | - | - | - |
Adipic acid | - | - | 1.0 | - | - |
Bromelain | - | - | - | 1.0 | - |
Humic substances | - | - | - | - | 1.0 |
Analyzed chemical composition | |||||
Dry matter, % | 87.5 | 87.0 | 87.5 | 87.5 | 87.4 |
Gross energy, kcal/kg | 3887 | 3907 | 3899 | 3900 | 3868 |
Crude protein, % | 17.4 | 17.5 | 17.4 | 17.5 | 18.0 |
Ash, % | 5.1 | 5.0 | 5.0 | 5.2 | 5.5 |
Amylase-treated neutral detergent fiber, % | 10.4 | 10.5 | 11.1 | 9.5 | 10.9 |
Acid detergent fiber, % | 4.1 | 4.2 | 4.4 | 3.8 | 4.2 |
Item | Experimental Diet 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | Benzoic Acid | Adipic Acid | Bromelain | Humic Substances | |||
Dry matter intake, kg/d | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 0.06 | 0.888 |
N intake, g/d | 46.5 | 46.9 | 46.9 | 46.5 | 49.0 | 2.02 | 0.124 |
Fecal DM output, kg/d | 0.18 bc | 0.19 ab | 0.19 bc | 0.17 c | 0.21 a | 0.01 | 0.006 |
ATTD of DM, % | 88.2 ab | 87.1 bc | 87.5 abc | 88.5 a | 86.3 c | 1.01 | 0.022 |
Fecal N output, g/d | 6.0 b | 6.4 b | 6.5 b | 5.7 b | 7.9 a | 0.51 | 0.002 |
ATTD of N, % | 86.9 a | 86.2 a | 86.0 a | 87.6 a | 83.7 b | 1.01 | 0.018 |
Urine output, kg/d | 2.4 | 2.7 | 3.0 | 3.3 | 3.1 | 0.36 | 0.334 |
Urinary N output, g/d | 14.2 | 13.3 | 17.8 | 15.7 | 16.2 | 2.04 | 0.158 |
Digested N, g/d | 40.5 | 40.5 | 40.4 | 40.8 | 41.0 | 2.03 | 0.980 |
Retained N, g/d | 26.2 | 27.2 | 22.7 | 25.0 | 24.8 | 1.57 | 0.098 |
N retention, % of ingested | 56.7 | 58.2 | 48.3 | 54.0 | 50.8 | 3.59 | 0.074 |
N retention, % of digested | 65.4 | 67.6 | 56.4 | 61.7 | 60.7 | 4.02 | 0.144 |
Item | Experimental Diet 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | Benzoic Acid | Adipic Acid | Bromelain | Humic Substances | |||
Urinary pH | 8.61 a | 7.83 ab | 7.17 b | 8.59 a | 8.67 a | 0.30 | 0.006 |
Slurry pH | 8.06 | 7.55 | 7.25 | 7.93 | 8.04 | 0.31 | 0.074 |
Item, mg/L | Experimental Diet 2 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | Benzoic Acid | Adipic Acid | Bromelain | Humic Substances | |||
VFA in feces | |||||||
Acetate | 3930 | 3868 | 3559 | 3943 | 3641 | 283 | 0.698 |
Propionate | 1981 | 1807 | 1788 | 1742 | 1741 | 182 | 0.818 |
Isobutyrate | 290 | 264 | 247 | 218 | 201 | 29 | 0.153 |
Butyrate | 1097 | 842 | 984 | 949 | 1030 | 116 | 0.607 |
Isovalerate | 490 | 417 | 407 | 366 | 322 | 43 | 0.062 |
Valerate | 529 | 402 | 406 | 346 | 361 | 66 | 0.139 |
Phenol compound in feces 3 | |||||||
p-Cresol | 16.0 | 14.5 | 20.0 | 18.1 | 11.7 | 3.6 | 0.431 |
Indole compound in feces | |||||||
Indole | 5.5 | 7.5 | 5.1 | 3.2 | 4.0 | 1.4 | 0.485 |
Skatole | 9.0 | 7.3 | 10.5 | 8.8 | 6.8 | 2.2 | 0.160 |
VFA in slurry | |||||||
Acetate | 1268 | 1340 | 1220 | 1238 | 1003 | 177 | 0.727 |
Propionate | 387 | 418 | 482 | 344 | 314 | 86 | 0.650 |
Isobutyrate | 56.7 | 57.2 | 64.9 | 41.8 | 35.2 | 13.1 | 0.445 |
Butyrate | 243 | 220 | 261 | 182 | 191 | 53 | 0.787 |
Isovalerate | 102 | 95 | 115 | 76 | 61 | 22 | 0.447 |
Valerate | 118 | 101 | 114 | 68 | 63 | 29 | 0.437 |
Phenol compound in slurry | |||||||
Phenol | 4.5 | 4.6 | 3.1 | 4.7 | 3.9 | 0.8 | 0.512 |
p-Cresol | 155 | 136 | 84 | 109 | 78 | 38 | 0.209 |
Indole compound in slurry | |||||||
Indole | 1.6 | 1.7 | 1.2 | 0.8 | 0.7 | 0.4 | 0.084 |
Skatole | 1.5 | 1.0 | 1.3 | 1.0 | 0.8 | 0.3 | 0.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.B.; Song, Y.S.; Seo, S.; Kim, B.G. Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs. Animals 2024, 14, 82. https://doi.org/10.3390/ani14010082
Yoo SB, Song YS, Seo S, Kim BG. Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs. Animals. 2024; 14(1):82. https://doi.org/10.3390/ani14010082
Chicago/Turabian StyleYoo, Seung Bin, Yoon Soo Song, Siyoung Seo, and Beob Gyun Kim. 2024. "Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs" Animals 14, no. 1: 82. https://doi.org/10.3390/ani14010082
APA StyleYoo, S. B., Song, Y. S., Seo, S., & Kim, B. G. (2024). Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs. Animals, 14(1), 82. https://doi.org/10.3390/ani14010082