A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Literature Review
3.1. Rumen Microbiota
3.2. Carbohydrates in Ruminant Diet
4. Microorganisms Observed in the Ruminal Microbiota
4.1. Protozoa
4.2. Bacteria
4.3. Fungi
5. The Use of Molecular Techniques in the Characterization of the Ruminal Microbiome
Future Prospects
6. Conclusions
- An analysis of the literature on rumen microbiology in ruminants in different countries demonstrated the complexity of microbial interactions in rumen. As observed variations in microbial profiles, resulting from various environmental factors, it is highlighted the need for nutritional evaluation and production of ruminants, considering as specific conditions of each region. An in-depth understanding of these microbiological adaptations provides a solid basis for the development of management strategies aimed at optimizing animal health and performance in diverse contexts.
- In the ruminal microbiota, the genera of protozoa and fungi most evidenced in studies using ruminal fluid were Entodinium spp. and Aspergillus spp., respectively, and Fibrobacter spp. genus for bacteria.
- About the techniques used, it can be seen that DNA extraction, amplification, and sequencing were the most cited in the studies evaluated. Therefore, this review describes what is present in the literature and provides an overview of the main microbial agents in the rumen and the molecular techniques used.
- In addition, the review addressed the importance of ongoing research in the field of rumen microbiology, highlighting the need for more in-depth research to elucidate the precise mechanisms underlying microbial responses to different environments. Advanced knowledge of these interactions can potentially inform more sustainable agricultural practices and more efficient animal feeding strategies, helping to mitigate environmental challenges and optimize livestock production on a global scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, W.C.; Printes, O.V.N.; Lima, D.O.; Silva, É.B.R.D.; Santos, M.R.P.D.; Camargo-Júnior, R.N.C.; Barbosa, A.V.C.; Silva, J.A.R.D.; Silva, A.G.M.E.; Silva, L.K.X.; et al. Evaluation of the temperature and humidity index to support the implementation of a rearing system for ruminants in the Western Amazon. Front. Vet. Sci. 2023, 10, 1198678. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, J.A.R.D.; Camargo-Júnior, R.N.C.; Silva, É.B.R.D.; Santos, M.R.P.D.; Viana, R.B.; Silva, A.G.M.E.; Silva, C.M.G.D.; Lourenço-Júnior, J.D.B. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front. Vet. Sci. 2023, 10, 1083469. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, J.A.R.D.; Silva, É.B.R.D.; Barbosa, A.V.C.; Sousa, C.E.L.; Carvalho, K.C.D.; Santos, M.R.P.D.; Neves, K.A.L.; Martorano, L.G.; Camargo-Júnior, R.N.C.; et al. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animal 2023, 13, 2735. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kajikawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 13, 57–64. [Google Scholar] [CrossRef]
- Nonaka, I.; Takusari, N.; Tajima, K.; Suzuki, T.; Higuchi, K.; Kurihara, M. Effects of high environmental temperatures on physiological and nutritional status of prepubertal Holstein heifers. Livest. Sci. 2008, 113, 14–23. [Google Scholar] [CrossRef]
- Uyeno, Y.; Sekiguchi, Y.; Tajima, K.; Takenaka, A.; Kurihara, M.; Kamagata, Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe 2010, 16, 27–33. [Google Scholar] [CrossRef]
- Shirmohammadi, S.; Taghizadeh, A.; Hosseinkhani, A.; Moghaddam, G.A.; Salem, A.Z.; Pliego, A.B. Ruminal and post-ruminal barley grain digestion and starch granule morphology under three heat methods. Ann. Appl. Bio. 2021, 3, 508–518. [Google Scholar] [CrossRef]
- Linn, J.; Hutjens, M.; Shaver, R.; Otterby, D.; Howard, W.T.; Kilmer, L. The Ruminant Digestive System. University of Minnesota Extension. 2021. Available online: https://extension.umn.edu/dairy-nutrition/ruminant-digestive-system#large-intestine-1000463 (accessed on 23 January 2024).
- Kilgour, R.J. In pursuit of “normal”: A review of the behaviour of cattle at pasture. Appl. Anim. Behav. Sci. 2012, 138, 1–11. [Google Scholar] [CrossRef]
- Stewart, R.D.; Auffret, M.D.; Warr, A.; Wiser, A.H.; Press, M.O.; Langford, K.W.; Watson, M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Comms. 2018, 9, 870. [Google Scholar] [CrossRef]
- Stewart, R.D.; Auffret, M.D.; Warr, A.; Walker, A.W.; Roehe, R.; Watson, M. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 2019, 37, 953–961. [Google Scholar] [CrossRef]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef]
- Wirth, R.; Kádár, G.; Kakuk, B.; Maróti, G.; Bagi, Z.; Szilágyi, Á.; Rákhely, G.; Horváth, J.; Kovács, K.L. The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing. Front. Microbiol. 2018, 9, 2285. [Google Scholar] [CrossRef]
- Neves, A.L.A.; Chen, Y.; Lê Cao, K.A.; Mandal, S.; Sharpton, T.J.; McAllister, T.; Guan, L.L. Taxonomic and functional assessment using metatranscriptomics reveals the effect of Angus cattle on rumen microbial signatures. Animal 2020, 14, 731–744. [Google Scholar] [CrossRef]
- Denman, S.E.; Morgavi, D.P.; McSweeney, C.S. The application of omics to rumen microbiota function. Animal 2018, 12, 233–245. [Google Scholar] [CrossRef]
- Andersen, T.O.; Kunath, B.J.; Hagen, L.H.; Arntzen, M.Ø.; Pope, P.B. Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits. Methods 2021, 186, 42–51. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Ogi, A.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lendez, P.; Ghezzi, M. Thermal Imaging as a Method to Indirectly Assess Peripheral Vascular Integrity and Tissue Viability in Veterinary Medicine: Animal Models and Clinical Applications. Animal 2023, 14, 142. [Google Scholar] [CrossRef]
- Camargo-Júnior, R.N.C.; Silva, W.C.D.; Silva, É.B.R.D.; Sá, P.R.D.; Friaes, E.P.P.; Costa, B.O.D.; Rocha, C.B.R.; Silva, L.C.M.S.D.; Borges, D.C.; Cruz, S.L.F.D.; et al. Revisão integrativa, sistemática e narrativa-aspectos importantes na elaboração de uma revisão de literatura. Rev. ACB Bibliotecon. SC 2023, 28, 4. [Google Scholar]
- Martinele, I.; Siqueira-Castro, I.C.V.; D’Agosto, M. Protozoários ciliados no rúmen de bovinos alimentados com dietas de capim–elefante e com dois níveis de concentrado. Rev. Bras. Saúde Prod. Anim. 2008, 9, 74–81. [Google Scholar]
- Oyeleke, S.B.; Okusanmi, T.A. Isolation and characterization of cellulose hydrolysing microorganism from the rumen of ruminants. Afr. J. Biotechnol. 2008, 7, 1503–1504. [Google Scholar]
- Ríspoli, T.B.; Rodrigues, I.L.; Neto, R.G.M.; Kazama, R.; Prado, O.P.P.; Zeoula, L.M.; Arcuri, P.B. Protozoários ciliados do rúmen de bovinos e bubalinos alimentados com dietas suplementadas com monensina ou própolis. Pesq. Agropecu. Bras. 2009, 44, 92–97. [Google Scholar] [CrossRef]
- Jami, E.; Mizrahi, I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE 2012, 7, e33306nel. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.N.M.D.; Duarte, E.R.; Abrão, F.O.; Freitas, C.E.S.; Geraseev, L.C.; Rosa, C.A. Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage. Rev. Bras. Zootec. 2012, 41, 2336–2342. [Google Scholar] [CrossRef]
- Tymensen, L.D.; Beauchemin, K.A.; McAllister, T.A. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 2012, 158, 1808–1817. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Fuente, G.D.L.; Newbold, C.J. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 2014, 90, 663–677. [Google Scholar] [CrossRef]
- Silva, K.L.D.; Duarte, E.R.; Freitas, C.E.S.; Abrão, F.O.; Geraseev, L.C. Protozoários ruminais de novilhos de corte criados em pastagem tropical durante o período seco. Cienc. Anim. Bras. 2014, 15, 259–265. [Google Scholar] [CrossRef]
- Almeida, P.N.M.; Freitas, C.E.S.; Abrão, F.O.; Ribeiro, I.C.O.; Vieira, E.A.; Geraseev, L.C.; Duarte, E.R. Atividade celulolítica de fungos aeróbios isolados do rúmen de bovinos leiteiros alimentados com forragens tropicais. Rev. Caatinga 2014, 27, 202–207. [Google Scholar]
- Morgavi, D.P.; Rathahao-Paris, E.; Popova, M.; Boccard, J.; Nielsen, K.F.; Boudra, H. Rumen microbial communities influence metabolic phenotypes in lambs. Front. Microbiol. 2015, 6, 1060. [Google Scholar] [CrossRef]
- Belanche, A.; Fuente, G.D.L.; Newbold, C.J. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiol. Ecol. 2015, 91, fiu026. [Google Scholar] [CrossRef]
- Abrar, A.; Watanabe, H.; Kitamura, T.; Kondo, M.; Ban-Tokuda, T.; Matsui, H. Diversity and fluctuation in ciliate protozoan population in the rumen cattle. Anim. Sci. J. 2016, 87, 1188–1192. [Google Scholar] [CrossRef]
- Danielsson, R.; Dicksved, J.; Sun, L.; Gonda, H.; Müller, B.; Schnürer, A.; Bertilsson, J. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol. 2017, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Nigri, A.C.A.; Ribeiro, I.C.O.; Vieira, E.A.; Silva, M.L.F.; Virgínio-Júnior, G.F.; Abrão, F.O.; Geraseev, L.C.; Duarte, E.R. População de protozoários ruminais em novilhos zebuínos alimentados com ou sem volumoso. Arq. Bras. Med. Vet. Zootec. 2017, 69, 1339–1345. [Google Scholar] [CrossRef]
- Khiaosa-Ard, R.; Pourazad, P.; Aditya, S.; Humer, E.; Zebeli, Q. Factors related to variation in the susceptibility to subacute ruminal acidosis in early lactating Simmental cows fed the same grain-rich diet. Anim. Feed Sci. Technol. 2018, 238, 111–122. [Google Scholar] [CrossRef]
- Neubauer, V.; Humer, E.; Kröger, I.; Braid, T.; Wagner, M.; Zebeli, Q. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels. J. Anim. Physiol. Anim. Nutr. 2018, 102, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.W.; Zhang, Q.; Yang, Y.; Li, L.; Zou, C.; Huang, C.; Lin, B. Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. J. Appl. Anim. Res. 2018, 46, 740–748. [Google Scholar] [CrossRef]
- Duarte, E.R.; Abrão, F.O.; Oliveira-Ribeiro, I.C.; Vieira, E.A.; Nigri, A.C.; Silva, K.L.; Junior, G.F.V.; Barreto, S.M.P.; Geraseev, L.C. Rumen protozoa of different ages of beef cattle raised in tropical pastures during the dry season. J. Appl. Anim. Res. 2018, 46, 1457–1461. [Google Scholar] [CrossRef]
- Jesus, R.B.D.; Granja-Salcedo, Y.T.; Messana, J.D.; Kishi, L.T.; Lemos, E.G.; Souza, J.A.M.D.; Berchielli, T.T. Characterization of ruminal bacteria in grazing Nellore steers. Rev. Colomb. Cienc. Pecu. 2019, 32, 248–260. [Google Scholar] [CrossRef]
- Souza, L.L.D.; Azevedo, M.M.R.; Hager, A.X. Detecção molecular de grupos de bactérias fermentadoras no rúmen de bovinos e bubalinos em Santarém-PA. Cien. Anim. 2019, 29, 158–164. [Google Scholar]
- Luna, L.; Hernández, D.; Silva, H.V.; Cobos, M.A.; González, S.S.; Cortez, C.; Pinto, R.; Ramírez, E.; Pinos, J.M.; Vargas, J.M. Isolamento, caracterização bioquímica e filogenia de uma bacteria ruminal degradante de celulose. Rev. Colomb. Cienc. Pecu. 2019, 32, 117–125. [Google Scholar] [CrossRef]
- Dong, L.F.; Yan, T.U.; Diao, Q.Y. Weaning methods affect ruminal methanogenic archaea composition and diversity in Holstein calves. J. Integr. Agric. 2019, 18, 1080–1092. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Jiang, L.; Mao, S. Effect of high-concentrate diets on microbial composition, function, and the VFAs formation process in the rumen of dairy cows. Anim. Feed Sci. Technol. 2020, 269, 114619. [Google Scholar] [CrossRef]
- Chen, G.J.; Zhang, R.; Wu, J.H.; Shang, Y.S.; Li, X.D.; Qiong, M.; Wang, P.C.; Li, S.G.; Gao, Y.H.; Xiong, X.Q. Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livest. Sci. 2020, 240, 104121. [Google Scholar] [CrossRef]
- Freitas, A.S.; David, D.B.; Takagaki, B.M.; Roesch, L.F.W. Microbial patterns in rumen are associated with gain of weight in beef cattle. Antonie Van Leeuwenhoek 2020, 113, 1299–1312. [Google Scholar] [CrossRef]
- Alves, K.L.G.C.; Granja-Salcedo, Y.T.; Messana, J.D.; Souza, V.C.D.; Ganga, M.J.G.; Colovate, P.H.D.; Kishi, L.T.; Berchielli, T.T. Rumen bacterial diversity in relation to nitrogen retention in beef cattle. Anaerobe 2021, 67, 102316. [Google Scholar] [CrossRef]
- Lima, L.G.F.; Targueta, C.P.; Nunes, R.; Paula, R.S.; Apolinário, A.M.; Arnhold, E.; Gomes, R.R.; Caixeta, L.F.D.S.; Miyagi, E.S.; Corrêa, D.S.; et al. Ruminal microbiome and blood parameters in beef cattle fed with high-grain diets buffered with Lithothamnium calcareum. Anim. Prod. Sci. 2024, 64, AN22192. [Google Scholar] [CrossRef]
- Gilbert, G.N. Referencing as persuasion. Soc. Stud. Sci. 1977, 7, 113–122. [Google Scholar] [CrossRef]
- Medinger, R.; Nolte, V.; Pandey, R.V.; Jost, S.; Ottenwälder, B.; Schlötterer, C.; Boenigk, J. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 2010, 19, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- McSweeney, C.; Mackie, R. Commission on genetic resources for food and agriculture. Micro-organisms and ruminant digestion: State of knowledge, trends and future prospects. Backgr. Study Pap. (FAO) 2012, 61, 1–62. [Google Scholar]
- Singh, K.M.; Ahir, V.B.; Tripathi, A.K.; Ramani, U.V.; Sajnani, M.; Koringa, P.G.; Jakhesara, S.; Pandya, P.R.; Rank, D.N.; Murty, D.S.; et al. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: A preliminary study. Mol. Biol. Rep. 2012, 39, 4841–4848. [Google Scholar] [CrossRef]
- Morey, M.; Fernández-Marmiesse, A.; Castiñeiras, D.; Fraga, J.M.; Couce, M.L.; Cocho, J.A. A glimpse into past, present, and future DNA sequencing. Mol. Genet. 2013, 110, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.K.; Rowe, S.J.; Van-Stijn, T.C.; Henry, H.M.; Hickey, S.M.; Brauning, R.; Mcculloch, A.F.; Hess, A.S.; Kirk, M.R.; Kumar, S.; et al. A restriction enzyme reduced representation sequencing approach for low-cost, high-throughput metagenome profiling. PLoS ONE 2020, 15, e0219882. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.S.D.; Moura-Zanine, A.D.; Santos, E.M. Processo fermentativo, digestivo e fatores antinutricionais de nutrientes para ruminantes. Rev. Electron. Vet. 2007, 8, 1–13. [Google Scholar]
- Castillo-González, A.R.; Burrola-Barraza, M.E.; Domínguez-Viveros, J.; Chávez-Martínez, A. Rumen microorganisms and fermentation. Arch. Med. Vet. 2014, 46, 349–361. [Google Scholar] [CrossRef]
- Gebert, D.; Morais, G.D. Acidose Ruminal Em Bovinos. Rev. IGTEC Agro. 2022, 1, 234–263. [Google Scholar]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef] [PubMed]
- Deusch, S.; Tilocca, B.; Camarinha-Silva, A.; Seifert, J. News in livestock research—Use of Omics-technologies to study the microbiota in the gastrointestinal tract of farm animals. Comput. Struct. Biotechnol. J. 2015, 13, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Vahidi, M.F.; Sharifi, G.; Ariaeenejad, S.; Ding, X.Z.; Han, J.L.; Salekdeh, G.H. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. Environ. Res. 2023, 229, 115925. [Google Scholar] [CrossRef]
- Owens, F.N.; Basalan, M. Ruminal fermentation. In Rumenology; Springer: Cham, Switzerland, 2016; pp. 63–102. [Google Scholar]
- Djordjević, N.; Stojanović, B.; Božičković, A.; Stojković, B.; Radonjić, D. Influence of Proteolysis and Lipolysis in Silage on Milk Production and Milk Fat Composition in Ruminants. In Proceedings of the XIII International Scientific Agricultural Symposium “Agrosym 2022”, Jahorina, Bosnia and Herzegovina, 6–9 October 2022; Volume 1, p. 1045. [Google Scholar]
- Reddy, P.R.K.; Hyder, I. Ruminant Digestion. In Textbook of Veterinary Physiology; Springer: Singapore, 2023; Volume 1, pp. 353–366. [Google Scholar]
- Tymensen, L.; Barkley, C.; McAllister, T.A. Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. J. Microbiol. Methods 2012, 88, 1–6. [Google Scholar] [CrossRef]
- Seshadri, R.; Leahy, S.C.; Attwood, G.T.; Teh, K.H.; Lambie, S.C.; Cookson, A.L.; Eloe-Fadrosh, E.A.; Pavlopoulos, G.A.; Hadjithomas, M.; Varghese, N.J.; et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 2018, 36, 359–367. [Google Scholar] [CrossRef]
- Newbold, C.J.; Ramos-Morales, E. Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- Berchielli, T.T.; Pires, A.V.; Oliveira, S.G.D. Nutrição de Ruminantes; Funep: Jaboticabal, Brazil, 2011; Volume 2, p. 616. [Google Scholar]
- Zhang, X.; Tang, D.; Ren, C. Research Progress on Effects of Dietary Carbohydrate on Growth and Gastrointestinal Tract Development of Young Ruminants. Chin. J. Anim. Nutr. 2023, 35, 4182–4190. [Google Scholar]
- Li, X. Plant cell wall chemistry: Implications for ruminant utilisation. J. Appl. Anim. Nut. 2021, 9, 31–56. [Google Scholar] [CrossRef]
- Yin, M.J.; Wang, S.P.; Ran, T.; Chen, K.; Yang, D.S.; Liu, Y.; Tan, Z.L. Effects of dietary amylose/amylopectin ratio on rumen fermentation and bacterial community in weaned lambs. Chin. J. Anim. Nutr. 2022, 33, 5142–5151. [Google Scholar]
- Andrade-Montemayor, H.; García Gasca, T.; Kawas, J. Modificação da fermentação ruminal de proteína e carboidrato por meio da tostagem e estimativa de síntese de proteína microbiana. Rev. Bras. Zootec. 2009, 38, 277–291. [Google Scholar] [CrossRef]
- Fonseca, A.J.M.; Dias-da-Silva, A.A. Effects of rumen defaunation on productivity in ruminants—A review. Rev. Port. Cienc. Vet. 2001, 96, 60–64. [Google Scholar]
- Kamra, D.N. Rumen microbial ecosystem. Curr. Sci. 2005, 119, 124–135. [Google Scholar]
- Wlodarski, L.; Maeda, E.M.; Fluck, A.C.; Gilioli, D. Microbiota ruminal: Diversidade, importância e caracterização. Rev. Electron. Vet. 2017, 18, 1–20. [Google Scholar]
- Newbold, C.J.; Fuente, G.D.L.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef]
- Willians, A.G.; Coleman, G.S. The Rumen Protozoa; Springer: New York, NY, USA, 1991; Volume 1, pp. 73–139. [Google Scholar]
- Dehority, B.A.; Odenyo, A.A. Influence of diet on the rúmen protozoal fauna of indigenous African wild ruminants. J. Eukaryot. Microbiol. 2003, 50, 220–223. [Google Scholar] [CrossRef]
- Ushida, K.; Kayouli, C.S.S.; Jouany, J.P. Effect of defaunation on protein and fibre digestion in sheep feed on ammonia-treated straw-based diets with or without maize. Br. J. Nutr. 1990, 64, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, A.; Tajima, K.; Mitsumori, M.; Kajikawa, H. Fiber digestion by rumen ciliate protozoa. Microbes Environ. 2004, 19, 203–210. [Google Scholar] [CrossRef]
- Jesus, R.B.D.; Omori, W.P.; Lemos, E.G.D.M.; Souza, J.A.M.D. Bacterial diversity in bovine rumen by metagenomic 16S rDNA sequencing and scanning electron microscopy. Acta Scientiarum. Anim. Sci. 2015, 37, 251–257. [Google Scholar] [CrossRef]
- Brewer, D.; Taylor, A. Aspergillus Fumigatus and Sporormia Minima Isolated from the Rumen of Sheep. J. Gen. Microbiol. 1969, 59, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Flipphi, M.; Sun, J.; Robellet, X.; Karaffa, L.; Fekete, E.; Zeng, A.P.; Kubicek, C.P. Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. Fungal Genet. Biol. 2009, 46, S19–S44. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.O.; Nagaraja, T.G.; Wright, A.D.G.; Callaway, T.R. Board-invited review: Rumen microbiology: Leading the way in microbial ecology. J. Anim. Sci. 2013, 91, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.E.; Forster, R.J.; Callaghan, T.M.; Dollhofer, V.; Dagar, S.S.; Cheng, Y.; Chang, J.; Kittelmann, S.; Fliegerova, K.; Puniya, A.P.; et al. PCR and omics-based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Front. Microbiol. 2017, 8, 1657. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.M.D.; Moreira, E.D.A.; Pereira, L.; Tomich, T.; Machado, F.; Campos, M.M.; Carneiro, J.C.; Ribeiro, M.T.; Lima, J.C.F.; Arcuri, P. Método de Extração de DNA nos Estudos de Microbiologia Ruminal; Embrapa: Brasília, Brazil, 2018; Volume 1, p. 33. [Google Scholar]
- Ansorge, W.J. Next-generation DNA sequencing techniques. New Biotechnol. 2009, 25, 195–203. [Google Scholar] [CrossRef]
- Wickland, D.P.; Battu, G.; Hudson, K.A.; Diers, B.W.; Hudson, M.E. A comparison of genotyping-by-sequencing analysis methods on low-coverage crop datasets shows advantages of a new workflow, GB-eaSy. BMC Bioinform. 2017, 18, 586. [Google Scholar] [CrossRef] [PubMed]
- Delwart, E.L. Viral metagenomics. Rev. Med. Virol. 2007, 17, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Donelson, J.E.; Coulson, A.E.; Kössel, H.; Fischer, D. Determination of a nucleotide sequence in bacteriophage f1 DNA by primed synthesis with DNA polymerase. J. Mol. Bio. 1974, 90, 315. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Bio. 1975, 94, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Air, G.M.; Barrell, B.G.; Brown, N.L.; Coulson, A.R.; Fiddes, J.C.; Hutchison III, C.A.; Slocombe, P.M.; Smith, M. Nucleotide sequence of bacteriophage DNA. Nature 1977, 265, 687–695. [Google Scholar] [CrossRef]
- Maxam, A.M.; Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 1997, 2, 560–564. [Google Scholar] [CrossRef]
- Delseny, M.; Han, B.; Hsing, Y.I. High throughput DNA sequencing: The new sequencing revolution. Plant Sci. 2010, 179, 407–422. [Google Scholar] [CrossRef]
Year | Authors | Title | Species | Breed | NA | Diet |
---|---|---|---|---|---|---|
2008 | Martinele et al. [20] | Ciliated protozoa in the rumen of cattle fed elephant grass diets with two levels of concentrate + | Cattle | Mestizo | 7 | Elephant grass |
2008 | Oyleke and Okusanmi [21] | Isolation and characterization of cellulose hydrolysing microorganism from the rumen of ruminants | Sheep, goats, and cattle | Ῠ | 5 | ῨῨῨῨ |
2009 | Rispoli et al. [22] | Ciliated protozoa in the rumen of cattle and buffaloes fed diets supplemented with monensin or propolis + | Cattle and buffalo | Holstein e Murrah | 8 | Corn silage and concentrates based on different products |
2012 | Jami et al. [23] | Composition and similarity of bovine rumen microbiota across individual animals | Cattle | Holstein | 16 | 30% roughage and 70% concentrate ῨῨ |
2012 | Almeida et al. [24] | Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage | Cows and calves | Breed | 30 | 53 kg sorghum/animal; 5 kg concentrate/animal; voluminous Brachiaria brizantha |
2012b | Tymensen et al. [25] | Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes | Cattle | Black Angus | 4 | Grass hay and different grains with vitamin supplementation and mineral salt |
2013 | Jami et al. [26] | Exploring the bovine rumen bacterial community from birth to adulthood | Cattle | Holstein | 10 | Silage and concentrate ῨῨ |
2014 | Belanche et al. [27] | Study of methanogen communities associated with different rumen protozoal populations | Sheep | Texel | 4 | 67% ryegrass hay and 33% ground barley |
2014 | Silva et al. [28] | Rumen protozoa of beef steers raised on tropical pasture during the dry period + | Cattle | Nelore | 36 | Brachiaria decumbens and mineral salt |
2014a | Almeida et al. [29] | Cellulolytic activity of aerobic fungi isolated from the rumen of dairy cattle fed tropical forages + | Cows | Holstein | 85 | Brachiaria Brizantha |
2015 | Morgavi et al. [30] | Rumen microbial communities influence metabolic phenotypes in lambs | Sheep | Ῠ | 8 | Milk replacer, hay and concentrate |
2015 | Belanche et al. [31] | Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions | Sheep | Mestizo | 8 | Mixed ryegrass and white clover pasture |
2016 | Abrar et al. [32] | Diversity and fluctuation in ciliate protozoan population in the rumen cattle | Cattle | Holstein and Japonese Black Cattle | 3 | Concentrate ῨῨ |
2017 | Danielsson et al. [33] | Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure | Cattle | Red Swedes and Holstein | 73 | Concentrate and silage based on different products |
2017 | Nigri et al. [34] | Rumen protozoa population in zebu steers fed with or without roughage + | Cattle | Nelore | 50 | Brachiaria spp. and mineral supplementation |
2018 | Khiaosa et al. [35] | Factors related to variation in the susceptibility to subacute ruminal acidosis in early lactating Simmental cows fed the same grain-rich diet | Cattle | Simmental | 18 | Concentrate: 20–60% depending on the group ῨῨ |
2018 | Neubauer et al. [36] | Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels | Cattle | Holstein | 8 | Grass silage and concentrate ῨῨ |
2018 | Iqbal et al. [37] | Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows un-der similar feeding conditions. | Buffalo and cattle | Jersey | 8 | Corn silage and concentrates based on different products |
2018 | Duarte et al. [38] | Anaerobic fungi in the rumen of heifers and dairy cows fed different tropical roughages | Cattle | Mestizo | 100 | Brachiaria spp. |
2019 | Jesus et al. [39] | Characterization of ruminal bacteria in grazing Nellore steers | Cattle | Nelore | 3 | 70% Tifton 85 roughage and 30% concentrate based on different products |
2019 | Souza et al. [40] | Molecular detection of fermentative bacteria groups in the rumen of cattle and buffalo in Santarém-PA + | Buffalo and cattle | Ῠ | 10 | ῨῨ |
2019 | Luna et al. [41] | Isolation, biochemical characterization, and phylogeny of a cellulosedegrading ruminal bacterium | Cattle | Holstein | ῨῨῨ | Pasture of Lolium perene L. |
2019 | Dong et al. [42] | Weaning methods affect ruminal methanogenic archaea composition and diversity in Holstein calves | Cattle | Holstein | 6 | Nutritional composition produced by the group |
2020 | Zhang et al. [43] | Effect of high-concentrate diets on microbial composition, function, and the VFAs formation process in the rumen of dairy cows | Cattle | Holstein | 4 | Concentrate: 40–70% depending on the group ῨῨ |
2020 | Chen et al. [44] | Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers | Cattle | Simmental | 60 | Soy lecithin and dry matter ῨῨ |
2020 | Freitas et al. [45] | Microbial patterns in rumen are associated with gain of weight in beef cattle | Cattle | Braford | 17 | 12 kg of forage and native pasture |
2021 | Alves et al. [46] | Rumen bacterial diversity in relation to nitrogen retention in beef cattle | Cattle | Nelore | 8 | Protein concentrate and sugar cane |
2024 | Lima et al. [47] | Rumen bacterial diversity in relation to nitrogen retention in beef cattle | Cattle | Nelore | 4 | T1, no additive (CON); T2, inclusion of 90 g of sodium bicarbonate (BIC); T3, inclusion of 90 g of L. calcareum (L90); and T4, inclusion of 45 g of L. caldarium (L45). |
Year | Authors | Title | Method |
---|---|---|---|
2020 | Palevich et al. [48] | Complete genome sequence of the polysaccharide-degrading rumen bacterium Pseudobutyrivibrio xylanivorans MA3014 reveals an incomplete glycolytic pathway | DNA sequencing |
2010 | Medinger et al. [49] | Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms | DNA amplification and sequencing |
2011 | Elshire et al. [50] | A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. | DNA genotyping and sequencing by restriction enzymes (REs) |
2012 | McSweeney et al. [51] | Commission on genetic resources for food and agriculture. Microorganisms and ruminant digestion: State of knowledge, trends and future prospects. | DNA extraction and quantitative real-time PCR |
2012 | Singh et al. [52] | Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. | DNA extraction and sequencing |
2018 | Morey et al. [53] | High throughput DNA sequencing: the new sequencing revolution. | DNA amplification and nucleotide terminators marked by fluorophores |
2020 | Hess et al. [54] | DNA extraction method in rumen microbiology studies | 16S rRNA gene sequencing and DNA extraction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, É.B.R.d.; Silva, J.A.R.d.; Silva, W.C.d.; Belo, T.S.; Sousa, C.E.L.; Santos, M.R.P.d.; Neves, K.A.L.; Rodrigues, T.C.G.d.C.; Camargo-Júnior, R.N.C.; Lourenço-Júnior, J.d.B. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals 2024, 14, 1448. https://doi.org/10.3390/ani14101448
Silva ÉBRd, Silva JARd, Silva WCd, Belo TS, Sousa CEL, Santos MRPd, Neves KAL, Rodrigues TCGdC, Camargo-Júnior RNC, Lourenço-Júnior JdB. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals. 2024; 14(10):1448. https://doi.org/10.3390/ani14101448
Chicago/Turabian StyleSilva, Éder Bruno Rebelo da, Jamile Andréa Rodrigues da Silva, Welligton Conceição da Silva, Tatiane Silva Belo, Carlos Eduardo Lima Sousa, Maria Roseane Pereira dos Santos, Kedson Alessandri Lobo Neves, Thomaz Cyro Guimarães de Carvalho Rodrigues, Raimundo Nonato Colares Camargo-Júnior, and José de Brito Lourenço-Júnior. 2024. "A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants" Animals 14, no. 10: 1448. https://doi.org/10.3390/ani14101448
APA StyleSilva, É. B. R. d., Silva, J. A. R. d., Silva, W. C. d., Belo, T. S., Sousa, C. E. L., Santos, M. R. P. d., Neves, K. A. L., Rodrigues, T. C. G. d. C., Camargo-Júnior, R. N. C., & Lourenço-Júnior, J. d. B. (2024). A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals, 14(10), 1448. https://doi.org/10.3390/ani14101448