Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collections
2.3. Laboratory Methodologies
2.4. Herd Composition Surveys
2.5. NDVI
2.6. Statistical Analyses
3. Results
3.1. Late Gestation
3.2. Early Lactation
3.3. Breeding Season Lag Effect
4. Discussion
4.1. Late Gestation
4.2. Early Lactation
4.3. Breeding Season Lag Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonenfant, C.; Gaillard, J.; Klein, F.; Hamann, J. Can we use the young:female ratio to infer ungulate dynamics? An empirical test using red deer Cervus elaphus as a model. J. Appl. Ecol. 2005, 42, 361–370. [Google Scholar] [CrossRef]
- Freddy, D.J. Predicting mule deer harvest in Middle Park, Colorado. J. Wildl. Manag. 1982, 46, 801–806. [Google Scholar] [CrossRef]
- Peek, J.M.; Dennis, B.; Hershey, T. Predicting population trends of mule deer. J. Wildl. Manag. 2002, 66, 729–736. [Google Scholar] [CrossRef]
- White, G.C.; Lubow, B.C. Fitting population models to multiple sources of observed data. J. Wildl. Manag. 2002, 66, 300–309. [Google Scholar] [CrossRef]
- Hurley, M.A.; Hebblewhite, M.; Lukacs, P.M.; Nowak, J.J.; Gaillard, J.; Bonenfant, C. Regional-scale models for predicting overwinter survival of juvenile ungulates. J. Wildl. Manag. 2017, 81, 364–378. [Google Scholar] [CrossRef]
- DeCesare, N.J.; Hebblewhite, M.; Bradley, M.; Smith, K.G.; Hervieux, D.; Neufeld, L. Estimating ungulate recruitment and growth rates using age ratios. J. Wildl. Manag. 2012, 76, 114–153. [Google Scholar] [CrossRef]
- Unsworth, J.W.; Pac, D.F.; White, G.C.; Bartmann, R.M. Mule deer survival in Colorado, Idaho, and Montana. J. Wildl. Manag. 1999, 63, 315–326. [Google Scholar] [CrossRef]
- Gaillard, J.M.; Festa-Bianchet, M.; Yoccoz, M.; Loison, A.; Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Ecol. Syst. 2000, 31, 367–393. [Google Scholar] [CrossRef]
- Harris, N.C.; Kauffman, M.J.; Mills, L.S. Inferences about ungulate population dynamics derived from age ratios. J. Wildl. Manag. 2008, 72, 1143–1151. [Google Scholar] [CrossRef]
- White, G.C.; Reeve, A.F.; Lindzey, F.G.; Burnham, K.P. Estimation of mule deer winter mortality from age ratios. J. Wildl. Manag. 1996, 60, 37–44. [Google Scholar] [CrossRef]
- Kinley, T.A.; Apps, C.D. Mortality patterns in a subpopulation of endangered mountain caribou. Wildl. Soc. Bull. 2001, 29, 158–164. [Google Scholar]
- Bright, J.L.; Hervert, J.J. Adult and fawn mortality of Sonoran pronghorn. Wildl. Soc. Bull. 2005, 33, 43–50. [Google Scholar] [CrossRef]
- Wittmer, H.U.; McLellan, B.N.; Seip, D.R.; Young, J.A.; Kinley, T.A.; Watts, G.S.; Hamilton, D. Population dynamics of the endangered mountain ecotype of woodland caribou (Rangifer tarandus caribou) in British Columbia, Canada. Can. J. Zool. 2005, 83, 407–418. [Google Scholar] [CrossRef]
- White, P.J.; Garrott, R.A. Northern Yellowstone elk after wolf restoration. Wildl. Soc. Bull. 2005, 33, 942–955. [Google Scholar] [CrossRef]
- Woodruff, S.P.; Johnson, T.R.; Waits, L.P. Examining the use of fecal pellet morphometry to differentiate age classes in Sonoran pronghorn. Wildl. Biol. 2016, 22, 217–227. [Google Scholar] [CrossRef]
- Lebreton, J.D.; Burnham, K.P.; Clobert, J.; Anderson, D.R. Modelling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Wildl. Monogr. 1992, 62, 67–118. [Google Scholar] [CrossRef]
- Schwarz, C.J.; Seber, G.A.F. A review of estimating animal abundance III. Stat. Sci. 1999, 14, 427–456. [Google Scholar] [CrossRef]
- Lebreton, J.D.; Pradel, R. Multistate recapture models: Modelling incomplete individual histories. J. Appl. Stat. 2002, 29, 359–369. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Hohenlohe, P.A.; Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 2010, 11, 697–709. [Google Scholar] [CrossRef]
- Pannoni, S.B.; Proffitt, K.M.; Holben, W.E. Non-invasive monitoring of multiple wildlife health factors by fecal microbiome analysis. Ecol. Evol. 2022, 12, e8564. [Google Scholar] [CrossRef]
- Stoops, M.A.; Anderson, G.B.; Lasley, B.L.; Shideler, S.E. Use of fecal steroid metabolites to estimate the pregnancy rate of a free-ranging herd of Tule elk. J. Wildl. Manag. 1999, 63, 561–569. [Google Scholar] [CrossRef]
- Peterson, M.N.; Lopez, R.R.; Frank, P.A.; Peterson, M.J.; Silvy, N.J. Evaluating capture methods for urban white-tailed deer. Wildl. Soc. Bull. 2003, 31, 1176–1187. [Google Scholar]
- Jessup, D.A.; Clark, R.K.; Weaver, R.A.; Kock, M.D. The safety and cost effectiveness of net-gun capture of desert bighorn sheep (Ovis canadensis nelsoni). J. Zoo Anim. Med. 1988, 19, 208–213. [Google Scholar] [CrossRef]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef]
- De Souza, L.J.; Tanaka, Y.; Santo, L.G.D.; Duarte, J.M.B. Effect of dietary fiber on fecal androgens levels: An experimental analysis in brown brocket deer (Mazama gouazoubira). Gen. Comp. Endocrinol. 2022, 321–322, 114029. [Google Scholar] [CrossRef]
- Millspaugh, J.J.; Woods, R.J.; Hunt, K.E.; Raedeke, K.J.; Brundige, G.C.; Washburn, B.E.; Wasser, S.K. Fecal glucocorticoid assays and the physiological stress response in elk. Wildl. Soc. Bull. 2001, 29, 899–907. [Google Scholar]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Schwarzenberger, F.; Möstl, E.; Palme, R.; Bamberg, E. Faecal steroid analysis for non-invasive monitoring of reproductive status in farm, wild and zoo animals. Anim. Reprod. Sci. 1996, 42, 515–526. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- Crespi, E.J.; Williams, T.D.; Jessop, T.S.; Delehanty, B. Life and history and the ecology of stress: How do glucocorticoid hormones influence life-history variation in animals? Funct. Ecol. 2013, 27, 93–106. [Google Scholar] [CrossRef]
- Bleke, C.A. Evaluation of Noninvasive Methods for Determining Pregnancy, Diet, Nutrition, and Stress among Pronghorn Antelope: Implications for Population Monitoring. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2022. [Google Scholar]
- Touma, C.; Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 2005, 1046, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, M.J.; Krebs, C.J.; Boonstra, R. Assessing stress in animal populations: Do fecal and plasma glucocorticoids tell the same story? Gen. Comp. Endocrinol. 2010, 166, 614–619. [Google Scholar] [CrossRef]
- Dalmau, A.; Ferret, A.; Chacon, G.; Manteca, X. Seasonal changes in fecal cortisol metabolites in Pyrenean chamois. J. Wildl. Manag. 2007, 71, 190–194. [Google Scholar] [CrossRef]
- Lexen, E.; El-Bahr, S.M.; Sommerfeld-Stur, I.; Palme, R.; Möstl, E. Monitoring the adrenocortical response to disturbances in sheep by measuring glucocorticoid metabolites in the faeces. Wien. Tierarztl. Monatsschr. 2008, 95, 64–71. [Google Scholar]
- Santos, J.P.V.; Acevedo, P.; Carvalho, J.; Queirós, J.; Villamuelas, M.; Fonseca, C.; Gortázar, C.; López-Olvera, J.R.; Vicente, J. The importance of intrinsic traits, environment and human activities in modulating stress levels in a wild ungulate. Ecol. Indic. 2018, 89, 706–715. [Google Scholar] [CrossRef]
- Parker, K.L.; Barboza, P.S.; Gillingham, M.P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 2009, 23, 57–69. [Google Scholar] [CrossRef]
- O’Gara, B.W. Physical characteristics. In Pronghorn: Ecology and Management; O’Gara, B.W., Yoakum, J.D., Eds.; University Press of Colorado: Denver, CO, USA, 2004; pp. 109–144. ISBN 978-0-87081-757-1. [Google Scholar]
- Verheyden, H.; Aubry, L.; Merlet, J.; Petibon, P.; Chauvean-Duriot, B.; Guillon, N.; Duncan, P. Faecal nitrogen, an index of diet quality in roe deer Capreolus capreolus? Wildl. Biol. 2011, 17, 166–175. [Google Scholar] [CrossRef]
- Stephenson, T.R.; German, D.W.; Cassirer, E.F.; Walsh, D.P.; Blum, M.E.; Cox, M.; Stewart, K.M.; Monteith, K.L. Linking population performance to nutritional condition in an alpine ungulate. J. Mammal. 2020, 101, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Proffitt, K.M.; Hebblewhite, M.; Peters, W.; Hupp, N.; Shamhart, J. Linking landscape-scale differences in forage to ungulate nutritional ecology. Ecol. Appl. 2016, 26, 2156–2174. [Google Scholar] [CrossRef]
- Brown, R.D.; Hellgren, E.C.; Abbott, M.; Ruthven, D.C.; Bingham, R.L. Effects of dietary energy and protein restriction on nutritional indices of female white-tailed deer. J. Wildl. Manag. 1995, 59, 595–609. [Google Scholar] [CrossRef]
- Lovari, S.; Franceschi, S.; Chiatante, G.; Fattorini, L.; Fattorini, N.; Ferretti, F. Climatic changes and the fate of mountain herbivores. Clim. Change 2020, 162, 2319–2337. [Google Scholar] [CrossRef]
- Zemanova, M.A. Towards more compassionate wildlife research through the 3Rs principles: Moving from invasive to non-invasive methods. Wildl. Biol. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Osborn, R.G.; Ginnett, T.F. Fecal nitrogen and 2,6-diaminopimelic acid as indices to dietary nitrogen in white-tailed deer. Wildl. Soc. Bull. 2001, 29, 1131–1139. [Google Scholar]
- Wehausen, J. Fecal measures of diet quality in wild and domestic ruminants. J. Wildl. Manag. 1995, 59, 816–823. [Google Scholar] [CrossRef]
- Smyser, T.J. Population productivity and pronghorn nutrition during lactation. In Pronghorn Antelope Workshop Proceedings; Western Association of Fish and Wildlife Agencies: Boise, ID, USA, 2008; Volume 23, pp. 127–144. [Google Scholar]
- Davitt, B.B.; Nelson, J.R. Methodology for the determination of DAPA in feces of large ruminants. In Proceedings of the 1984 Western States and Provinces Elk Workshop, Edmonton, AB, Canada, 17–19 April 1984; pp. 133–147. [Google Scholar]
- Dennehy, J.J. Influence of social dominance rank on diet quality of pronghorn females. Behav. Ecol. 2001, 12, 177–181. [Google Scholar] [CrossRef]
- Robinson, M.; Wild, M.; Byers, J. Relationship between diet quality and fecal nitrogen, fecal diaminopimelic acid and behavior in a captive group of pronghorn. In Pronghorn Antelope Workshop Proceedings; Western Association of Fish and Wildlife Agencies: Boise, ID, USA, 2001; Volume 19, pp. 28–44. [Google Scholar]
- Cain, J.W.; Avery, M.M.; Caldwell, C.A.; Abbott, L.B.; Holechek, J.L. Diet composition, quality and overlap of sympatric American pronghorn and gemsbok. Wildl. Biol. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Gordon, I.J. Browsing and grazing ruminants: Are they different beasts. For. Ecol. Manag. 2003, 181, 13–21. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef]
- Van Soest, P.J. Allometry and ecology of feeding behavior and digestive capacity in herbivores: A review. Zoo Biol. 1996, 15, 455–479. [Google Scholar]
- Reinking, A.K.; Smith, K.T.; Monteith, K.L.; Mong, T.W.; Read, M.J.; Beck, J.L. Intrinsic, environmental, and anthropogenic factors related to pronghorn summer mortality. J. Wildl. Manag. 2018, 82, 608–617. [Google Scholar] [CrossRef]
- Harveson, L.A. Life history and ecology of pronghorn. In Proceedings of the 22nd Biennial Pronghorn Workshop, Idaho Falls, ID, USA, 16–19 May 2006; pp. 1–4. [Google Scholar]
- Yoakum, J.D. Distribution and abundance. In Pronghorn: Ecology and Management; O’Gara, B.W., Yoakum, J.D., Eds.; University Press of Colorado: Denver, CO, USA, 2004; pp. 75–105. ISBN 978-0-87081-757-1. [Google Scholar]
- Kreeger, T.J.; Arnemo, J.M.; Raath, J.P. Handbook of Wildlife Chemical Immobilization, 2nd ed.; Wildlife Pharmaceuticals: Fort Collins, CO, USA, 2002; ISBN 0965465209. [Google Scholar]
- Chalmers, G.A.; Barrett, M.W. Capture myopathy in pronghorns in Alberta, Canada. J. Am. Vet. Med. Assoc. 1977, 171, 918–923. [Google Scholar]
- Scott, J.M.; Peterson, C.R.; Karl, J.W.; Strand, E.; Svancara, L.K.; Wright, N.M. A Gap Analysis of Idaho: Final Report; Idaho Cooperative Fish and Wildlife Research Unit: Moscow, ID, USA, 2002. [Google Scholar]
- Kinder, C.A. Camas County Situation Summary; University of Idaho, Camas County Extension Office: Moscow, ID, USA, 2004. [Google Scholar]
- Bleke, C.A.; Gese, E.M.; Roberts, S.B.; Villalba, J.J. Seasonal shifts in pronghorn antelope diets under a new lens: Examining diet composition using a molecular technique. PLoS ONE 2023, 18, e0292725. [Google Scholar] [CrossRef] [PubMed]
- Bleke, C.A.; Gese, E.M.; French, S.S. Variation, validations, degradation, and noninvasive determination of pregnancy using fecal steroid metabolites in free-ranging pronghorn. Gen. Comp. Endocrinol. 2021, 312, 113841. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M. Seasonal patterns of bison diet across climate gradients in North America. Sci. Rep. 2021, 11, 6829. [Google Scholar] [CrossRef]
- Pojar, T.M. Survey methods to estimate population. In Pronghorn: Ecology and Management; O’Gara, B.W., Yoakum, J.D., Eds.; University Press of Colorado: Denver, CO, USA, 2004; pp. 631–644. ISBN 978-0-87081-757-1. [Google Scholar]
- Mitchell, G.J. The Pronghorn Antelope in Alberta, 1st ed.; Alberta Department of Lands and Forests, Fish and Wildlife Division: Alberta, CA, Canada, 1980. [Google Scholar]
- Woolley, T.P.; Lindzey, F.G. Relative precision and sources of bias in pronghorn sex and age composition surveys. J. Wildl. Manag. 1997, 6, 57–63. [Google Scholar] [CrossRef]
- Gese, E.M.; Bleke, C.A.; Atwood, P.; Roberts, S.B.; Terletzky, P.A. Spatially and temporally explicit environmental drivers of fawn recruitment in a native ungulate. Ecosphere 2023, 14, e4681. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Csiszar, I.; Eidenshink, J.; Myneni, R.; Baret, F.; Masuoka, E.; Wolfe, R.; Claverie, M.; NOAA CDR Program. NOAA Climate Data Record of Normalized Difference Vegetation Index, 4th ed.; NOAA National Climatic Data Center: Asheville, NC, USA, 2014. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Illyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2014; ISBN 978-0-19-969316-0. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson: London, UK, 2016; ISBN 978-0-13-405816-0. [Google Scholar]
- Villamuelas, M.; Fernández, N.; Albanell, E.; Gálvez-Cerón, A.; Bartolomé, J.; Mentaberre, G.; López-Olvera, J.R.; Fernández-Aguilar, X.; Colom-Cadena, A.; López-Martín, J.M. The Enhanced Vegetation Index (EVI) as a proxy for diet quality and composition in a mountain ungulate. Ecol. Indic. 2016, 61, 658–666. [Google Scholar] [CrossRef]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef]
- Eilers, P.H.C. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef] [PubMed]
- Atzberger, C.; Eilers, P.H.C. A time series for monitoring vegetation activity and phenology at 10 daily time steps covering large parts of South America. Int. J. Dig. Earth 2011, 4, 365–386. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- DeMars, C.A.; Gilbert, S.; Serrouya, R.; Kelly, A.P.; Larter, N.C.; Hervieux, D.; Boutin, S. Demographic responses of a threatened, low-density ungulate to annual variation in meteorological and phenological conditions. PLoS ONE 2021, 16, e0258136. [Google Scholar] [CrossRef]
- Jesmer, B.R.; Kauffman, M.J.; Courtemanch, A.B.; Kilpatrick, S.; Thomas, T.; Yost, J.; Monteith, K.L.; Goheen, J.R. Life-history theory provides a framework for detecting resource limiting: A test of the nutritional buffer hypothesis. Ecol. Appl. 2021, 31, e02299. [Google Scholar] [CrossRef]
- Taylor, R. Interpretation of the correlation coefficient: A basic review. J. Diagn. Med. Sonogr. 1990, 1, 35–39. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York City, NY, USA, 2002; ISBN 978-0-38-795364-9. [Google Scholar]
- McLaughlin, M.E.; Janousek, W.M.; McCarty, J.P.; Wolfenbarger, L.L. Effects of urbanization on site occupancy and density of grassland birds in tallgrass prairie fragments. J. Field Ornithol. 2014, 85, 258–273. [Google Scholar] [CrossRef]
- Gese, E.M.; Terletzky, P.A.; Cooley, H.S.; Knowlton, F.F.; Lonsinger, R.S. Survey and monitoring methods for furbearers. In Wild Furbearer Management and Conservation in North America; Hiller, T.L., Applegate, R.D., Bluett, R.D., Frey, S.N., Gese, E.M., Organ, J.F., Eds.; Wildlife Ecology Institute: Helena, MT, USA, 2024; pp. 1–44. [Google Scholar]
- Short, H.L. Forage digestibility and diet of deer on southern upland range. J. Wildl. Manag. 1971, 35, 698–708. [Google Scholar] [CrossRef]
- Yoakum, J.D. Foraging ecology, diet studies and nutrient values. In Pronghorn: Ecology and Management; O’Gara, B.W., Yoakum, J.D., Eds.; University Press of Colorado: Denver, CO, USA, 2004; pp. 447–502. ISBN 978-0-87081-757-1. [Google Scholar]
- Pekins, P.J.; Smith, K.S.; Mautz, W.W. The energy costs of gestation in white-tailed deer. Can. J. Zool. 1998, 76, 1091–1097. [Google Scholar] [CrossRef]
- Robbins, C.T.; Robbins, B.L. Fetal and neonatal growth patterns and maternal reproductive effort in ungulates and subungulates. Am. Nat. 1979, 114, 101–116. [Google Scholar] [CrossRef]
- Byers, J.A.; Moodie, J.D. Sex-specific maternal investment in pronghorn, and the question of a limit on differential provisioning in ungulates. Behav. Ecol. Sociobiol. 1990, 26, 157–164. [Google Scholar] [CrossRef]
- Forbes, J.M. The effects of sex hormones, pregnancy and lactation on digestion, metabolism and voluntary food intake. In Control of Digestion and Metabolism in Ruminants; Milligan, L.P., Grovum, W.L., Dobson, A., Eds.; Prentice-Hall: Hoboken, NJ, USA, 1986; pp. 420–435. ISBN 978-0-83591-014-9. [Google Scholar]
- Fairbanks, W.S. Birthdate, birthweight, and survival in pronghorn fawns. J. Mammal. 1993, 74, 129–135. [Google Scholar] [CrossRef]
- Panting, B.R.; Gese, E.M.; Conner, M.M.; Bergen, S. Factors influencing survival rates of pronghorn fawns in Idaho. J. Wildl. Manag. 2021, 85, 97–108. [Google Scholar] [CrossRef]
- Hodgman, T.P.; Bowyer, R.T. Fecal crude protein relative to browsing intensity by white-tailed deer on wintering areas in Maine. Acta Theriol. 1986, 31, 347–353. [Google Scholar] [CrossRef]
- Dunlop, A.L.; Mulle, J.G.; Ferranti, E.P.; Edwards, S.M.N.; Dunn, A.B.; Corwin, E.J. Maternal microbiome and pregnancy outcomes that impact infant health. Adv. Neonatal Care 2015, 15, 377–385. [Google Scholar] [CrossRef]
- Prince, A.L.; Chu, D.M.; Seferovic, M.D.; Antony, K.M.; Ma, J.; Aagaard, K.M. The perinatal microbiome and pregnancy: Moving beyond the vaginal microbiome. Cold Spring Harb. Perspect. Med. 2015, 5, a023051. [Google Scholar] [CrossRef]
- Blaser, M.J.; Dominguez-Bello, M.G. The human microbiome before birth. Cell Host Microbe 2016, 20, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, O.T. Pregnancy and lactation. In Bioenergetics of Wild Herbivores; Hudson, R.J., White, R.G., Eds.; CRC Press, Inc.: Boca Raton, FL, USA, 1985; pp. 216–238. ISBN 978-0-84935-911-8. [Google Scholar]
- Robbins, C.T. Wildlife Feeding and Nutrition, 2nd ed.; Academic Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Martin, S.K.; Parker, K.L. Rates of growth and morphological dimensions of bottle-raised pronghorns. J. Mammal. 1997, 78, 23–30. [Google Scholar] [CrossRef]
- O’Gara, B.W. Reproduction. In Pronghorn: Ecology and Management; O’Gara, B.W., Yoakum, J.D., Eds.; University Press of Colorado: Denver, CO, USA, 2004; pp. 275–298. ISBN 978-0-87081-757-1. [Google Scholar]
- Byers, J.A. American Pronghorn: Social Adaptations and the Ghosts of Predators Past; University of Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Clancey, E.; Dunn, S.J.; Byers, J.A. Do single point condition measurements predict fitness in female pronghorn (Antilocapra americana)? Can. J. Zool. 2012, 90, 729–735. [Google Scholar] [CrossRef]
- Kie, J.G.; Bowyer, R.T.; Stewart, K.M. Ungulates in western forests: Habitat requirements, population dynamics, and ecosystem processes. In Mammal Community Dynamics: Management and Conservation in the Coniferous Forests of Western North America; Zabel, C.J., Anthony, R.G., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 296–340. [Google Scholar]
- Festa-Bianchet, M.; Gaillard, J.M.; Jorgenson, J.T. Mass- and density-dependent reproductive success and reproductive costs in a capital breeder. Am. Nat. 1998, 152, 367–379. [Google Scholar] [CrossRef]
- Byers, J.A.; Hogg, J.T. Environmental effects on prenatal growth rate in pronghorn and bighorn: Further evidence for energy constraint on sex-biased maternal expenditure. Behav. Ecol. 1995, 6, 451–457. [Google Scholar] [CrossRef]
- Leslie, D.M., Jr.; Bowyer, R.T.; Jenks, J.A. Facts from feces: Nitrogen still measures up as a nutritional index for mammalian herbivores. J. Wildl. Manag. 2008, 72, 1420–1433. [Google Scholar] [CrossRef]
- Stephenson, T.R.; Bleich, V.C.; Pierce, B.M.; Mulcahy, G.P. Validation of mule deer body composition using in vivo and postmortem indices of nutritional condition. Wildl. Soc. Bull. 2002, 30, 557–564. [Google Scholar]
- Cook, J.G.; Johnson, B.K.; Cook, R.C.; Riggs, R.A.; Delcurto, T.; Bryant, L.D.; Irwin, L.L. Effects of summer–autumn nutrition and parturition date on reproduction and survival of elk. Wildl. Monogr. 2004, 155, 1–61. [Google Scholar] [CrossRef]
- Monteith, K.L.; Stephenson, T.R.; Bleich, V.C.; Conner, M.M.; Pierce, B.M.; Bowyer, R.T. Risk-sensitive allocation in seasonal dynamics of fat and protein reserves in a long-lived mammal. J. Anim. Ecol. 2013, 82, 377–388. [Google Scholar] [CrossRef]
Subpopulation | Mean Elevation (m) | Mean Annual Precipitation (cm) | Mean Monthly Max Temperature (°C) | Mean Monthly Min Temperature (°C) | GDDs (2018) | GDDs (2019) | 2018 Recruitment | 2019 Recruitment | 2020 Recruitment |
---|---|---|---|---|---|---|---|---|---|
Birch Creek | 2018 | 23.72 | 27.78 | −15.56 | 1967 | 1851 | 0.36 | 0.42 | 0.5 |
Camas Prairie | 1552 | 33.66 | 29.44 | 14.44 | 1893 | 2005 | 0.5 | 0.51 | 0.82 |
Jarbidge | 1552 | 24.41 | 31.67 | −6.11 | 1789 | 1457 | 0.19 | 0.37 | 0.37 |
Little Wood | 1726 | 32.89 | 29.44 | −13.33 | 2385 | 2218 | - | 0.28 | 0.9 |
Pahsimeroi | 1897 | 19.76 | 31.11 | −14.44 | 2579 | 2349 | 0.37 | 0.29 | 0.31 |
Type | Variable 1 | Description |
---|---|---|
Intrinsic | FN | Mean FN of samples |
Intrinsic | FN SD | Standard deviation of FN of samples |
Intrinsic | DAPA | Mean DAPA of samples |
Intrinsic | DAPA SD | Standard deviation of DAPA of samples |
Intrinsic | FGM | Mean FGM of samples |
Intrinsic | FGM SD | Standard deviation of FGM of samples |
Intrinsic | Forb | Mean proportion of dietary protein intake from forbs of samples |
Intrinsic | Forb SD | Standard deviation dietary protein intake from forbs |
Intrinsic | Graminoid | Mean proportion of dietary protein intake from graminoids of samples |
Intrinsic | Graminoid SD | Standard deviation dietary protein intake from graminoids |
Intrinsic | Legume | Mean proportion of dietary protein intake from legumes of samples |
Intrinsic | Legume SD | Standard deviation dietary protein intake from legumes |
Intrinsic | Shrub | Mean proportion of dietary protein intake from shrubs of samples |
Intrinsic | Shrub SD | Standard deviation dietary protein intake from shrubs |
Intrinsic | Other | Mean proportion of dietary protein intake from other functional group of samples |
Intrinsic | Other SD | Standard deviation dietary protein intake from other functional group |
Extrinsic | NDVI | Temporal mean NDVI of subpopulation summer ranges |
Extrinsic | NDVI SD | Spatial variation in NDVI of subpopulation summer ranges |
Birch Creek | Camas Prairie | Jarbidge | Little Wood | Pahsimeroi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 |
Fawns | 42 | 126 | 122 | 82 | 90 | 126 | 38 | 72 | 80 | - | 18 | 38 | 69 | 135 | 126 |
Adult females | 118 | 216 | 246 | 165 | 175 | 153 | 203 | 193 | 216 | - | 64 | 42 | 187 | 466 | 153 |
Young:Adult female | 0.36 | 0.58 | 0.5 | 0.5 | 0.51 | 0.82 | 0.19 | 0.37 | 0.37 | - | 0.28 | 0.90 | 0.37 | 0.29 | 0.82 |
Model 1 | K | AICc | ΔAICc | wi | R2 |
---|---|---|---|---|---|
Late gestation model | |||||
Forb SD | 3 | −9.86 | 0 | 0.40 | 0.53 |
Null | 2 | −9.34 | 0.52 | 0.30 | |
Forb | 3 | −7.27 | 2.59 | 0.11 | 0.36 |
Legume | 3 | −7.22 | 2.64 | 0.11 | 0.33 |
DAPA SD | 3 | −6.68 | 3.18 | 0.08 | 0.31 |
Legume + Forb SD | 4 | −1.30 | 8.56 | 0.01 | 0.57 |
Early lactation model | |||||
FN | 3 | −18.19 | 0 | 0.97 | 0.76 |
Null | 2 | −10.33 | 7.86 | 0.02 | |
NDVI | 3 | −8.63 | 9.57 | 0.01 | 0.29 |
Breeding season model | |||||
DAPA SD | 3 | 1.69 | 0.00 | 0.41 | 0.28 |
NDVI | 3 | 2.22 | 0.54 | 0.32 | 0.34 |
Null | 2 | 2.53 | 0.85 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bleke, C.A.; Gese, E.M.; Villalba, J.J.; Roberts, S.B.; French, S.S. Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring. Animals 2024, 14, 1468. https://doi.org/10.3390/ani14101468
Bleke CA, Gese EM, Villalba JJ, Roberts SB, French SS. Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring. Animals. 2024; 14(10):1468. https://doi.org/10.3390/ani14101468
Chicago/Turabian StyleBleke, Cole A., Eric M. Gese, Juan J. Villalba, Shane B. Roberts, and Susannah S. French. 2024. "Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring" Animals 14, no. 10: 1468. https://doi.org/10.3390/ani14101468
APA StyleBleke, C. A., Gese, E. M., Villalba, J. J., Roberts, S. B., & French, S. S. (2024). Temporal and Spatial Influences on Fawn Summer Survival in Pronghorn Populations: Management Implications from Noninvasive Monitoring. Animals, 14(10), 1468. https://doi.org/10.3390/ani14101468