Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Collection
2.2. Chemical Analysis
2.3. Determination of Antioxidant Indicators and Digestive Enzyme Activity in Rumen Fluid
2.4. Determination of Rumen pH and Volatile Fatty Acids Concentration
2.5. Rumen 16S rDNA Gene Sequencing Analysis
2.5.1. DNA Extraction and Sequencing
2.5.2. Sequencing Data Analysis
2.6. Analysis of Non-Target Metabolomics in the Rumen
2.6.1. Extraction of Metabolites
2.6.2. Liquid Chromatography-Mass Spectrometry Analysis
2.7. Statistical Analysis and Correlation Analysis
3. Results
3.1. The Antioxidant Indicators
3.2. The Digestive Enzyme Activity
3.3. The Rumen Fermentation Parameters
3.4. Sequence Analysis for 16S rDNA Gene of Rumen Microbiota
3.4.1. Rumen Microbial Abundance and Diversity
3.4.2. Relative Abundance and Functional Items at the Phylum and Genus Level of Rumen Microbiota
3.5. Non-Targeted Metabolomics Analysis of Rumen Microbiota
3.5.1. Univariate Statistical Analysis
3.5.2. Principal Component Analysis
3.5.3. Metabolic Pathways of Differential Metabolites
3.6. Microbiome–Metabolome–Phenotypic Index Joint Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haque, M.N.; Rulquin, H.; Andrade, A.; Faverdin, P.; Peyraud, J.L.; Lemosquet, S. Milk protein synthesis in response to the provision of an “ideal” amino acid profile at 2 levels of metabolizable protein supply in dairy cows. J. Dairy Sci. 2012, 95, 5876–5887. [Google Scholar] [CrossRef] [PubMed]
- Nolte, J.v.E.; Löest, C.A.; Ferreira, A.V.; Waggoner, J.W.; Mathis, C.P. Limiting amino acids for growing lambs fed a diet low in ruminally undegradable protein. J. Anim. Sci. 2008, 86, 2627–2641. [Google Scholar] [CrossRef]
- Eugenio, F.A.; van Milgen, J.; Duperray, J.; Sergheraert, R.; Le Floc’h, N. Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids 2022, 54, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Hurley, W.L.; Wu, G.; Ji, F. Ideal amino acid balance for sows during gestation and lactation. J. Anim. Sci. 2009, 87, E123–E132. [Google Scholar] [CrossRef] [PubMed]
- Belloir, P.; Lessire, M.; Lambert, W.; Corrent, E.; Berri, C.; Tesseraud, S. Changes in body composition and meat quality in response to dietary amino acid provision in finishing broilers. Animal 2019, 13, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, M.; Yamada, T.; Higuchi, M. Effects of low-crude protein diets supplemented with rumen-protected lysine and methionine on fattening performance and nitrogen excretion of Holstein steers. Anim. Sci. J. 2021, 92, e13562. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Hu, L.; Liu, Y.; Yan, C.; Fang, Z.F.; Lin, Y.; Xu, S.Y.; Li, J.; Wu, C.M.; Chen, D.W.; et al. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs. Animal 2016, 10, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Niu, X.; Li, F.; Li, F.; Guo, L. Replacing Soybean Meal with Distillers Dried Grains with Solubles plus Rumen-Protected Lysine and Methionine: Effects on Growth Performance, Nutrients Digestion, Rumen Fermentation, and Serum Parameters in Hu Sheep. Animals 2021, 11, 2428. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Mitsiopoulou, C.; Christodoulou, C.; Kariampa, P.; Simoni, M.; Righi, F.; Tsiplakou, E. Effects of Supplementing Rumen-Protected Methionine and Lysine on Milk Performance and Oxidative Status of Dairy Ewes. Antioxidants 2021, 10, 654. [Google Scholar] [CrossRef]
- Castillo, C.; Hernandez, J.; Bravo, A.; Lopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef]
- Alian, H.A.; Samy, H.M.; Ibrahim, M.T.; Mahmoud, M.M.A. Nanoselenium effect on growth performance, carcass traits, antioxidant activity, and immune status of broilers. Environ. Sci. Pollut. Res. 2020, 27, 38607–38616. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.J.; Xu, L.N.; Shao, L.W.; Zhu, B.C.; Liu, H.; Wang, Y.J.; Gao, K.Y. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep. Animal 2022, 16, 100576. [Google Scholar] [CrossRef]
- Youssef, N.; Sheik, C.S.; Krumholz, L.R.; Najar, F.Z.; Roe, B.A.; Elshahed, M.S. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl. Environ. Microbiol. 2009, 75, 5227–5236. [Google Scholar] [CrossRef] [PubMed]
- Hess, M.; Sczyrba, A.; Egan, R.; Kim, T.W.; Chokhawala, H.; Schroth, G.; Luo, S.; Clark, D.S.; Chen, F.; Zhang, T.; et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 2011, 331, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hakimi, P.; Liu, X.; Yu, W.M.; Ye, F.; Fujioka, H.; Raza, S.; Shankar, E.; Tang, F.; Dunwoodie, S.L.; et al. Cited2, a transcriptional modulator protein, regulates metabolism in murine embryonic stem cells. J. Biol. Chem. 2014, 289, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Geng, C. Alterations in the rumen bacterial communities and metabolites of finishing bulls fed high-concentrate diets supplemented with active dry yeast and yeast culture. Front. Microbiol. 2022, 13, 908244. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.P.; Wang, W.J.; Degen, A.A.; Guo, Y.M.; Kang, J.P.; Liu, P.P.; Ding, L.M.; Shang, Z.H.; Zhou, J.W.; Long, R.J. Small intestinal morphology and sugar transporters expression when consuming diets of different energy levels: Comparison between Tibetan and small-tailed Han sheep. Animal 2022, 16, 100463. [Google Scholar] [CrossRef] [PubMed]
- Astals, S.; José Chávez-Fuentes, J.; Capson-Tojo, G.; Hutňan, M.; Jensen, P.D. The interaction between lipids and ammoniacal nitrogen mitigates inhibition in mesophilic anaerobic digestion. Waste Manag. 2021, 136, 244–252. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, TX, USA, 2006. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kumaraguruparan, R.; Subapriya, R.; Kabalimoorthy, J.; Nagini, S. Antioxidant profile in the circulation of patients with fibroadenoma and adenocarcinoma of the breast. Clin. Biochem. 2002, 35, 275–279. [Google Scholar] [CrossRef]
- Liang, S.L.; Wei, Z.H.; Wu, J.J.; Dong, X.L.; Liu, J.X.; Wang, D.M. Effect of N-acetyl-l-methionine supplementation on lactation performance and plasma variables in mid-lactating dairy cows. J. Dairy Sci. 2019, 102, 5182–5190. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, Y.; Jiao, F.Z.; Yang, F.; Li, X.; Wang, L.W. Sinomenine Attenuates Acetaminophen-Induced Acute Liver Injury by Decreasing Oxidative Stress and Inflammatory Response via Regulating TGF-β/Smad Pathway in vitro and in vivo. Drug Des. Dev. Ther. 2020, 14, 2393–2403. [Google Scholar] [CrossRef] [PubMed]
- Hoover, W.H.; Miller, T.K. Rumen digestive physiology and microbial ecology. Vet. Clin. N. Am. Food Anim. Pract. 1991, 7, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Hendriks, W.H.; Xiong, B.; Pellikaan, W.F. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals 2022, 12, 3020. [Google Scholar] [CrossRef] [PubMed]
- Moharrery, A.; Das, T.K. Correlation between microbial enzyme activities in the rumen fluid of sheep under different treatments. Reprod. Nutr. Dev. 2001, 41, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Garnot, P.; Valles, E.; Thapon, J.L.; Toullec, R.; Tomassone, R.; Ribadeau-Dumas, B. Influence of dietary proteins on rennin and pepsin content of preruminant calf vell. J. Dairy Res. 1974, 41, 19–23. [Google Scholar] [CrossRef]
- Wilson, D.B. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 2011, 14, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Istiqomah, L.; Hardian, H.; Febrisantosa, A.; Putra, D.D. Waru Leaf (Hibiscus tiliaceus) as Saponin Source on In Vitro Ruminal Fermentation Characteristic. J. Indones. Trop. Anim. Agric. 2011, 36, 43–49. [Google Scholar] [CrossRef]
- Murphy, J.J.; Kennelly, J.J. Effect of protein concentration and protein source on the degradability of dry matter and protein in situ. J. Dairy Sci. 1987, 70, 1841–1849. [Google Scholar] [CrossRef]
- Tamura, T.; Inoue, K.; Nishiki, H.; Sakata, M.; Seki, M.; Koga, T.; Ookubo, Y.; Akutsu, K.; Sato, S.; Saitou, K.; et al. Effects of rumen-protected methionine on milk production in early lactation dairy cattle fed with a diet containing 14.5% crude protein. Anim. Sci. J. 2019, 90, 62–70. [Google Scholar] [CrossRef]
- Corrêa, L.B.; Saran Netto, A.; Cônsolo, N.R.B.; Garrine, C.; Yoshikawa, C.Y.C.; da Cunha, J.A.; da Silva, J.S.; Silva, S.L.; Zanetti, M.A. Effects of canola oil and antioxidants on performance, serum parameters, carcass traits, and rumen fermentation patterns of Nellore cattle. Animal 2021, 15, 100217. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal 2020, 14, s78–s86. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Fang, L.; Meng, Q.; Li, S.; Chai, S.; Liu, S.; Schonewille, J.T. Assessment of Ruminal Bacterial and Archaeal Community Structure in Yak (Bos grunniens). Front. Microbiol. 2017, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Kim, M.; Morrison, M.; Yu, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. 2011, 76, 49–63. [Google Scholar] [CrossRef]
- Evans, N.J.; Brown, J.M.; Murray, R.D.; Getty, B.; Birtles, R.J.; Hart, C.A.; Carter, S.D. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 2011, 77, 138–147. [Google Scholar] [CrossRef]
- Robinson, L.S.; Lewis, W.G.; Lewis, A.L. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9-O-acetylated sialoglycans. J. Biol. Chem. 2017, 292, 11861–11872. [Google Scholar] [CrossRef]
- Pitta, D.W.; Pinchak, W.E.; Indugu, N.; Vecchiarelli, B.; Sinha, R.; Fulford, J.D. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat. Front. Microbiol. 2016, 7, 689. [Google Scholar] [CrossRef]
- An, J.; Shen, W.; Liu, H.; Yang, C.; Chen, K.; Yuan, Q.; Li, Z.; Xiao, D.; Wang, Z.; Lan, X.; et al. Comparison of the effects of rumen-protected and unprotected L-leucine on fermentation parameters, bacterial composition, and amino acids metabolism in in vitro rumen batch cultures. Front. Microbiol. 2023, 14, 1282767. [Google Scholar] [CrossRef]
- Liu, H.; Ran, T.; Zhang, C.; Yang, W.; Wu, X.; Degen, A.; Long, R.; Shi, Z.; Zhou, J. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Front. Microbiol. 2022, 13, 982338. [Google Scholar] [CrossRef] [PubMed]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Stiverson, J.; Morrison, M.; Yu, Z. Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int. J. Microbiol. 2011, 2011, 750613. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, H.M.; Lapage, G. Memoirs: On a Remarkable New Type of Protistan Parasite. Q. J. Microsc. Sci. 1913, 2, 431–457. [Google Scholar]
- Orpin, C.G. The culture in vitro of the rumen bacterium Quin’s Oval. J. Gen. Microbiol. 1972, 73, 523–530. [Google Scholar] [CrossRef]
- Kittelmann, S.; Pinares-Patiño, C.S.; Seedorf, H.; Kirk, M.R.; Ganesh, S.; McEwan, J.C.; Janssen, P.H. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE 2014, 9, e103171. [Google Scholar] [CrossRef]
- Martens, E.C.; Kelly, A.G.; Tauzin, A.S.; Brumer, H. The devil lies in the details: How variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J. Mol. Biol. 2014, 426, 3851–3865. [Google Scholar] [CrossRef] [PubMed]
- Pitta, D.W.; Pinchak, E.; Dowd, S.E.; Osterstock, J.; Gontcharova, V.; Youn, E.; Dorton, K.; Yoon, I.; Min, B.R.; Fulford, J.D.; et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb. Ecol. 2010, 59, 511–522. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Gui, L.; Raza, S.H.A.; Hou, S.; Yang, B.; Wang, Z.; Ma, Y.; Makhlof, R.T.M.; Alhuwaymil, Z.; et al. Metabolome and microbiome analysis revealed the effect mechanism of different feeding modes on the meat quality of Black Tibetan sheep. Front. Microbiol. 2022, 13, 1076675. [Google Scholar] [CrossRef]
- Chowdhury, V.S. L-Citrulline: A novel hypothermic amino acid promoting thermotolerance in heat-exposed chickens. Anim. Sci. J. 2023, 94, e13826. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Wong, A.; Jaime, S.J.; Gonzales, J.U. Influence of L-citrulline and watermelon supplementation on vascular function and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Orskov, E.R.; Hovell, F.D. Excretion of purine derivatives by ruminants: Endogenous excretion, differences between cattle and sheep. Br. J. Nutr. 1990, 63, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Moraes, M.C.; Birkett, M.A.; Gordon-Weeks, R.; Smart, L.E.; Martin, J.L.; Pye, B.J.; Bromilow, R.; Pickett, J.A. cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 2008, 69, 9–17. [Google Scholar] [CrossRef]
- Tsiftsoglou, O.S.; Atskakani, M.E.; Krigas, N.; Stefanakis, M.K.; Gounaris, C.; Hadjipavlou-Litina, D.; Lazari, D. Exploring the Medicinal Potential of Achillea grandifolia in Greek Wild-Growing Populations: Characterization of Volatile Compounds, Anti-Inflammatory and Antioxidant Activities of Leaves and Inflorescences. Plants 2023, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.K.; Sangwan, N.S.; Trivedi, P.K.; Negi, A.S.; Misra, L.; Sangwan, R.S. Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): Biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PLoS ONE 2013, 8, e74777. [Google Scholar] [CrossRef] [PubMed]
- Cosi, C.; Chopin, P.; Marien, M. Benzamide, an inhibitor of poly(ADP-ribose) polymerase, attenuates methamphetamine-induced dopamine neurotoxicity in the C57B1/6N mouse. Brain Res. 1996, 735, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Identification of YH-GKA, a novel benzamide glucokinase activator as therapeutic candidate for type 2 diabetes mellitus. Arch. Pharm. Res. 2012, 35, 2029–2033. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi-Tago, M.; Nonaka, Y.; Tago, K.; Takeda, M.; Ishihara, Y.; Sakai, A.; Matsutaka, M.; Kobata, K.; Tamura, H. Pyrocatechol, a component of coffee, suppresses LPS-induced inflammatory responses by inhibiting NF-κB and activating Nrf2. Sci. Rep. 2020, 10, 2584. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Xu, X.; Hou, Q.; Ren, J.; Yan, X. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome 2023, 11, 102. [Google Scholar] [CrossRef]
Items | LP-L | LP-M | LP-H |
---|---|---|---|
Ingredient (%) | |||
Oat hay | 15.000 | 15.000 | 15.000 |
Oat silage | 15.000 | 15.000 | 15.000 |
Corn | 36.533 | 37.100 | 37.100 |
Wheat | 7.700 | 7.700 | 7.700 |
Soybean meal | 0.700 | 0.700 | 0.700 |
Rapeseed meal | 7.000 | 7.000 | 7.000 |
Cottonseed meal | 0.700 | 0.700 | 0.700 |
Maize germ meal | 0.700 | 0.700 | 0.700 |
Palm meal | 11.200 | 11.200 | 11.200 |
NaCl | 0.350 | 0.350 | 0.602 |
Limestone | 0.350 | 0.441 | 0.700 |
Baking soda | 0.070 | 0 | 0.070 |
Premix (1) | 2.940 | 2.940 | 2.940 |
Lys | 1.386 | 0.931 | 0.483 |
Met | 0.371 | 0.238 | 0.105 |
Total | 100.000 | 100.000 | 100.000 |
Nutrient levels | |||
DE (MJ·kg−1) (2) | 10.760 | 10.840 | 10.840 |
Crude protein | 9.940 | 9.980 | 9.980 |
Ether extract | 2.850 | 2.870 | 2.870 |
Crude fiber | 22.470 | 22.61 | 22.610 |
Neutral detergent fiber | 33.720 | 33.77 | 33.770 |
Acid detergent fiber | 23.370 | 23.39 | 23.390 |
Ca | 0.421 | 0.424 | 0.424 |
P | 0.171 | 0.172 | 0.172 |
Items | LP-H | LP-M | LP-L | p-Value |
---|---|---|---|---|
T-AOC | 7.95 ± 0.43 b | 8.36 ± 0.55 b | 10.58 ± 0.28 a | 0.004 |
CAT | 124.14 ± 8.32 | 123.57 ± 7.81 | 126.94 ± 4.72 | 0.938 |
GSH-Px | 262.59 ± 21.30 b | 218.61 ± 2.24 b | 320.93 ± 19.94 a | 0.007 |
SOD | 86.90 ± 10.61 b | 106.01 ± 10.21 b | 156.73 ± 6.98 a | 0.001 |
MDA | 8.64 ± 0.16 | 8.52 ± 0.14 | 7.76 ± 0.93 | 0.514 |
Items | LP-H | LP-M | LP-L | p-Value |
---|---|---|---|---|
α-amylase | 198.80 ± 1.79 | 213.42 ± 7.03 | 217.22 ± 3.30 | 0.065 |
Chymotrypsin | 182.12 ± 1.09 | 163.03 ± 23.79 | 174.55 ± 10.92 | 0.685 |
Cellulase | 135.32 ± 2.94 b | 242.27 ± 12.06 a,b | 315.41 ± 50.71 a | 0.027 |
Trypsin | 509.61 ± 21.65 | 492.75 ± 32.85 | 529.22 ± 34.24 | 0.707 |
Lipase | 509.61 ± 21.65 | 560.47 ± 49.76 | 568.47 ± 56.77 | 0.617 |
Items | LP-H | LP-M | LP-L | p-Value |
---|---|---|---|---|
Acetate/(mmol/mL) | 59.23 ± 8.62 b | 87.43 ± 4.25 a | 74.20 ± 3.06 a | 0.039 |
Propionate/(mmol/mL) | 20.45 ± 1.53 | 21.60 ± 1.13 | 22.25 ± 1.62 | 0.794 |
Butyrate/(mmol/mL) | 9.63 ± 1.51 | 10.07 ± 3.41 | 10.39 ± 0.41 | 0.934 |
Isobutyrate(mmol/mL) | 2.01 ± 0.13 | 1.89 ± 0.16 | 1.97 ± 0.11 | 0.840 |
Valerate/(mmol/mL) | 1.63 ± 0.14 | 2.53 ± 0.28 | 1.97 ± 0.02 | 0.054 |
Isovalerate/(mmol/mL) | 3.53 ± 0.24 | 4.31 ± 0.28 | 3.51 ± 0.23 | 0.109 |
Ammonia nitrogen (mg/L) | 256.70 ± 6.52 a | 242.97 ± 6.48 a | 202.65 ± 11.17 b | 0.042 |
pH | 6.58 ± 0.16 | 6.65 ± 0.07 | 6.79 ± 0.03 | 0.306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, Y.; He, T.; Ji, Q.; Hou, S.; Gui, L. Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets. Animals 2024, 14, 1533. https://doi.org/10.3390/ani14111533
Zhang F, Zhang Y, He T, Ji Q, Hou S, Gui L. Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets. Animals. 2024; 14(11):1533. https://doi.org/10.3390/ani14111533
Chicago/Turabian StyleZhang, Fengshuo, Yu Zhang, Tingli He, Qiurong Ji, Shengzhen Hou, and Linsheng Gui. 2024. "Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets" Animals 14, no. 11: 1533. https://doi.org/10.3390/ani14111533
APA StyleZhang, F., Zhang, Y., He, T., Ji, Q., Hou, S., & Gui, L. (2024). Changes in Rumen Microbiology and Metabolism of Tibetan Sheep with Different Lys/Met Ratios in Low-Protein Diets. Animals, 14(11), 1533. https://doi.org/10.3390/ani14111533