Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents, Chemicals, and Antibodies
2.2. Isolation and Culture of CMECs
2.3. Experimental Infection
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Cell Viability Assay
2.6. Western Blot Analysis
2.7. Real-Time PCR Analysis
2.8. Statistical Analysis
3. Results
3.1. Influences of LPS on the Viability of CMECs and Generation of Pro-Inflammatory Cytokines, Chemokines, and IL-17A Cytokines
3.2. Regulation Effects of Endogenous IL-17A on the Generation of Pro-Inflammatory Cytokines and Chemokines in CMECs Stimulated by LPS
3.3. Regulation Effect of Endogenous IL-17A on the Activation of MAPK Inflammatory Signaling Pathways in CMECs Stimulated by LPS
3.4. Enhanced Genetic Expression of Pro-Inflammatory Cytokines and Chemokines in CMECs with Exogenous Addition of IL-17A
3.5. Activation of MAPK Signaling Pathways in CMECs through Exogenous Addition of IL-17A
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esslemont, D. Improving Dairy Cow Welfare. Vet. Rec. 2011, 168, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Dalanezi, F.M.; Joaquim, S.F.; Guimarães, F.F.; Guerra, S.T.; Lopes, B.C.; Schmidt, E.M.S.; Cerri, R.L.A.; Langoni, H. Influence of Pathogens Causing Clinical Mastitis on Reproductive Variables of Dairy Cows. J. Dairy. Sci. 2020, 103, 3648–3655. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M. Causes, Types, Etiological Agents, Prevalence, Diagnosis, Treatment, Prevention, Effects on Human Health and Future Aspects of Bovine Mastitis. Anim. Health Res. Rev. 2020, 21, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Cesnik, C.; Schwartz, K.; Foxman, B. Lactation Mastitis. JAMA 2003, 289, 1609–1612. [Google Scholar] [CrossRef] [PubMed]
- Schukken, Y.H.; Günther, J.; Fitzpatrick, J.; Fontaine, M.C.; Goetze, L.; Holst, O.; Leigh, J.; Petzl, W.; Schuberth, H.-J.; Sipka, A.; et al. Host-Response Patterns of Intramammary Infections in Dairy Cows. Vet. Immunol. Immunopathol. 2011, 144, 270–289. [Google Scholar] [CrossRef] [PubMed]
- De Freitas Guimarães, F.; Nóbrega, D.B.; Richini-Pereira, V.B.; Marson, P.M.; de Figueiredo Pantoja, J.C.; Langoni, H. Enterotoxin Genes in Coagulase-Negative and Coagulase-Positive Staphylococci Isolated from Bovine Milk. J. Dairy Sci. 2013, 96, 2866–2872. [Google Scholar] [CrossRef] [PubMed]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef] [PubMed]
- Rubino, S.J.; Geddes, K.; Girardin, S.E. Innate IL-17 and IL-22 Responses to Enteric Bacterial Pathogens. Trends Immunol. 2012, 33, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bechara, R.; Zhao, J.; McGeachy, M.J.; Gaffen, S.L. IL-17 Receptor-Based Signaling and Implications for Disease. Nat. Immunol. 2019, 20, 1594–1602. [Google Scholar] [CrossRef]
- Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional Specialization of Interleukin-17 Family Members. Immunity 2011, 34, 149–162. [Google Scholar] [CrossRef]
- Rainard, P.; Cunha, P.; Bougarn, S.; Fromageau, A.; Rossignol, C.; Gilbert, F.B.; Berthon, P. T Helper 17-Associated Cytokines Are Produced during Antigen-Specific Inflammation in the Mammary Gland. PLoS ONE 2013, 8, e63471. [Google Scholar] [CrossRef] [PubMed]
- Tassi, R.; McNeilly, T.N.; Fitzpatrick, J.L.; Fontaine, M.C.; Reddick, D.; Ramage, C.; Lutton, M.; Schukken, Y.H.; Zadoks, R.N. Strain-Specific Pathogenicity of Putative Host-Adapted and Nonadapted Strains of Streptococcus Uberis in Dairy Cattle. J. Dairy Sci. 2013, 96, 5129–5145. [Google Scholar] [CrossRef] [PubMed]
- Bruno, D.R.; Rossitto, P.V.; Bruno, R.G.S.; Blanchard, M.T.; Sitt, T.; Yeargan, B.V.; Smith, W.L.; Cullor, J.S.; Stott, J.L. Differential Levels of mRNA Transcripts Encoding Immunologic Mediators in Mammary Gland Secretions from Dairy Cows with Subclinical Environmental Streptococci Infections. Vet. Immunol. Immunopathol. 2010, 138, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Bougarn, S.; Cunha, P.; Gilbert, F.B.; Harmache, A.; Foucras, G.; Rainard, P. Staphylococcal-Associated Molecular Patterns Enhance Expression of Immune Defense Genes Induced by IL-17 in Mammary Epithelial Cells. Cytokine 2011, 56, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P.; Riollet, C. Innate Immunity of the Bovine Mammary Gland. Vet. Res. 2006, 37, 369–400. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P.; Cunha, P.; Ledresseur, M.; Staub, C.; Touzé, J.-L.; Kempf, F.; Gilbert, F.B.; Foucras, G. Antigen-Specific Mammary Inflammation Depends on the Production of IL-17A and IFN-γ by Bovine CD4+ T Lymphocytes. PLoS ONE 2015, 10, e0137755. [Google Scholar] [CrossRef] [PubMed]
- Roussel, P.; Cunha, P.; Porcherie, A.; Petzl, W.; Gilbert, F.B.; Riollet, C.; Zerbe, H.; Rainard, P.; Germon, P. Investigating the Contribution of IL-17A and IL-17F to the Host Response during Escherichia Coli Mastitis. Vet. Res. 2015, 46, 56. [Google Scholar] [CrossRef] [PubMed]
- Riollet, C.; Mutuel, D.; Duonor-Cérutti, M.; Rainard, P. Determination and Characterization of Bovine Interleukin-17 cDNA. J. Interferon Cytokine Res. 2006, 26, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhang, S.; Gu, B.; Cao, J.; Mao, W.; Yao, Y.; Zhao, J.; Ren, P.; Zhang, K.; Liu, B. Codonopsis Pilosula Polysaccharides Attenuate Escherichia Coli-Induced Acute Lung Injury in Mice. Food Funct. 2022, 13, 7999–8011. [Google Scholar] [CrossRef]
- Porcherie, A.; Gilbert, F.B.; Germon, P.; Cunha, P.; Trotereau, A.; Rossignol, C.; Winter, N.; Berthon, P.; Rainard, P. IL-17A Is an Important Effector of the Immune Response of the Mammary Gland to Escherichia Coli Infection. J. Immunol. 2016, 196, 803–812. [Google Scholar] [CrossRef]
- Yan, J.; Meng, X.; Wancket, L.M.; Lintner, K.; Nelin, L.D.; Chen, B.; Francis, K.P.; Smith, C.V.; Rogers, L.K.; Liu, Y. Glutathione Reductase Facilitates Host Defense by Sustaining Phagocytic Oxidative Burst and Promoting the Development of Neutrophil Extracellular Traps. J. Immunol. 2012, 188, 2316–2327. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Pei, Y.; Wang, X.; Feng, J.; Zhang, Y.; Gao, M.-Q. LncRNA XIST Mediates Bovine Mammary Epithelial Cell Inflammatory Response via NF-κB/NLRP3 Inflammasome Pathway. Cell Prolif. 2019, 52, e12525. [Google Scholar] [CrossRef] [PubMed]
- Doe, C.; Bafadhel, M.; Siddiqui, S.; Desai, D.; Mistry, V.; Rugman, P.; McCormick, M.; Woods, J.; May, R.; Sleeman, M.A.; et al. Expression of the T Helper 17-Associated Cytokines IL-17A and IL-17F in Asthma and COPD. Chest 2010, 138, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Cao, L.; Wang, X.; Li, J.; Dong, J.; Zhang, N.; Li, X.; Li, S.; Sun, M.; Zhang, X.; et al. Giardia Duodenalis Extracellular Vesicles Regulate the Proinflammatory Immune Response in Mouse Macrophages in Vitro via the MAPK, AKT and NF-κB Pathways. Parasit. Vectors 2021, 14, 358. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; He, Z.; Jiang, P.; Wang, K.; Guo, J.; Zhao, C.; Cao, Y.; Zhang, N.; Fu, Y. Neutralization of Interleukin-17A Attenuates Lipopolysaccharide-Induced Mastitis by Inhibiting Neutrophil Infiltration and the Inflammatory Response. J. Interferon Cytokine Res. 2019, 39, 577–584. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Sequences (5′-3′) | Accession Number |
---|---|---|
β-actin | F:5′-CCAAGGCCAACCGTGAGAAGAT-3′ R:5′-CCACGTTCCGTGAGGATCTTCA-3′ | NM_173979.3 |
IL-1β | F:5′-ATGAAGAGCTGCATCCAACACCTG-3′ R:5′-ACCGACACCACCTGCCTGAAG-3′ | NM_174093.1 |
IL-6 | F: 5′-ATGATGAGTGTGAAAGCAGCAAGG-3′ R:5′-TGATACTCCAGAAGACCAGCAGTG-3 | NM_173923.2 |
IL-8 | F: 5′-GCTGGCTGTTGCTCTCTTGG-3′ R: 5′-GGGTGGAAAGGTGTGGAATGTG-3′ | NM_173925.2 |
TNF-α | F: 5′-CAACGGTGTGAAGCTGGAAGAC-3′ R:5′-TGAAGAGGACCTGTGAGTAGATGAG-3′ | NM_173966.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhang, M.; Su, H.; Zhao, F.; Wang, D.; Zhang, Y.; Cao, G.; Zhang, Y. Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals 2024, 14, 1572. https://doi.org/10.3390/ani14111572
Zhang K, Zhang M, Su H, Zhao F, Wang D, Zhang Y, Cao G, Zhang Y. Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals. 2024; 14(11):1572. https://doi.org/10.3390/ani14111572
Chicago/Turabian StyleZhang, Kai, Min Zhang, Hong Su, Feifei Zhao, Daqing Wang, Yuanyuan Zhang, Guifang Cao, and Yong Zhang. 2024. "Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines" Animals 14, no. 11: 1572. https://doi.org/10.3390/ani14111572
APA StyleZhang, K., Zhang, M., Su, H., Zhao, F., Wang, D., Zhang, Y., Cao, G., & Zhang, Y. (2024). Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals, 14(11), 1572. https://doi.org/10.3390/ani14111572