Effect of Three Semen Extenders on Sperm Quality and In Vitro Fertilization Rates of Fresh and Cryopreserved Sperm Collected from Llama (Lama glama) Vas Deferens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Experiment Location, Reagents, and Media
2.3. Animals and Procedure of Sperm Sample Collection from Vas Deferens
2.4. Sperm Quality Assessment
2.4.1. Sperm Concentration Determination
2.4.2. Sperm Morphology Assessment
2.4.3. Acrosome Integrity Analysis
2.4.4. Sperm Membrane Integrity Evaluation
2.4.5. Sperm Membrane Permeability Analysis
2.4.6. Sperm Motility Assessment
2.5. Extender Preparation: Tris-EY, Andromed® and BioxCell®
2.6. Sperm Cryopreservation Process
2.7. In Vitro Fertilization Process
2.8. Statistical Analysis
3. Results
3.1. Sperm Quality Traits in Samples Obtained from Llama (Lama glama) Vas Deferens
3.1.1. Sperm Concentration
3.1.2. Sperm Morphological Defects in Cryopreserved Sperm Samples Obtained from Llama (Lama glama) Vas Deferens Using Different Extenders
3.1.3. Acrosome Membrane Integrity during the Cryopreservation Process Using Different Extenders in Spermatozoa Obtained from Llama (Lama glama) Vas Deferens
3.1.4. Plasma Membrane Integrity and Permeability during the Cryopreservation Process Using Different Extenders in Spermatozoa Obtained from Llama (Lama glama) Vas Deferens
3.1.5. Sperm Motility during the Cryopreservation Process Using Different Extenders in Spermatozoa Obtained from Llama (Lama glama) Vas Deferens
3.2. In Vitro Fertilization Rates before and after Sperm Cryopreservation Process Using Different Extenders in Samples Obtained from Llama (Lama glama) Vas Deferens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamani-Mango, G.; Moina Gonzales, M.; Ramos Hidalgo, M.; Mendoza Mallma, J.; Ruiz Béjar, J.; Rivas Palma, V.; Mellisho Salas, E. Effect of Extender and Freezing Rate on Quality Parameters and In Vitro Fertilization Capacity of Alpaca Spermatozoa Recovered from Cauda Epididymis. Biopreserv. Biobank. 2019, 17, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Kershaw-Young, C.M.; Maxwell, W.M. The effect of seminal plasma on alpaca sperm function. Theriogenology 2011, 76, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Al-Essawe, E.M.; Abraham, C.; Kunkitti, P.; Axnér, E.; de Verdier, K.; Båge, R.; Morrell, J.M. Extenders for alpaca epididymal spermatozoa: Comparison of INRA96 and andromed. Anim. Reprod. Sci. 2020, 223, 106629. [Google Scholar] [CrossRef] [PubMed]
- Santiani, A.; Ugarelli, A.; Evangelista-Vargas, S. Characterization of functional variables in epididymal alpaca (Vicugna pacos) sperm using imaging flow cytometry. Anim. Reprod. Sci. 2016, 173, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bravo, P.W.; Moscoso, R.; Alarcon, V.; Ordonez, C. Ejaculatory Process and Related Semen Characteristics. Arch. Androl. 2002, 48, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, M.L.; Fumuso, F.G.; Neild, D.M.; Udaquiola, M.; Carretero, M.I. Use of Commercial Extenders, with and without the Addition of Egg Yolk, for Cooling Llama Semen. Anim. Reprod. Sci. 2022, 247, 107073. [Google Scholar] [CrossRef] [PubMed]
- Perez-Guerra, U.H.; Quispe, Y.M.; Gonzáles, H.I.; Luque, N.; Ruelas, D.A.; Carretero, M.I.; Gutiérrez-Reinoso, M.A.; Pérez-Durand, M.G.; García-Herreros, M. Ovarian Follicular Dynamics and Its Functional Significance in Relation with Follicle Deviation, Vaginal Cytology, and Hormone Profiles in Llamas (Lama glama). Animals 2022, 12, 3299. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.C.; De Verdier, K.; Båge, R.; Morrell, J.M. Semen Collection Methods in Alpacas. Vet. Rec. 2017, 180, 613–614. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, J.A.; Morton, K.M.; Billah, M. Artificial Insemination in Dromedary Camels. Anim. Reprod. Sci. 2013, 136, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, J.A. The Use of Some Assisted Reproductive Technologies in Old World Camelids. Anim. Reprod. Sci. 2019, 207, 138–145. [Google Scholar] [CrossRef]
- Swelum, A.A.A.; Saadeldin, I.M.; Ba-Awadh, H.; Al-Mutary, M.G.; Moumen, A.F.; Alowaimer, A.N.; Abdalla, H. Efficiency of Commercial Egg Yolk-Free and Egg Yolk-Supplemented Tris-Based Extenders for Dromedary Camel Semen Cryopreservation. Animals 2019, 9, 999. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Durand, M.G.; Massa-Guzmán, A.; Luque-Mamani, N.; Ruelas-Calloapaza, D.A.; Urviola-Sánchez, J.M.; Condori-Chuchi, E.A.; Gutiérrez-Reinoso, M.A.; Perez-Guerra, U.H.; García-Herreros, M. Age-Related Differences in Testosterone Concentration and Its Relation to Testicular Biometrics, Hemodynamics, and Fertility in Alpacas (Vicugna pacos). Vet. Sci. 2023, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Morton, K.M.; Thomson, P.C.; Bailey, K.; Evans, G.; Maxwell, W.M.C. Quality Parameters for Alpaca (Vicugna pacos) Semen Are Affected by Semen Collection Procedure. Reprod. Domest. Anim. 2010, 45, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Bravo, P.W.; Skidmore, J.A.; Zhao, X.X. Reproductive Aspects and Storage of Semen in Camelidae. Anim. Reprod. Sci. 2000, 62, 173–193. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, M.L.; Torres, E.Y.; Huanca, T.; Neild, D.; Carretero, M.I. Comparison of Extenders With the Addition of Egg Yolk for Cooling Alpaca Sperm Obtained from Deferent Ducts. Front. Vet. Sci. 2020, 7, 597954. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F. Recent Developments and Concepts in the Cryopreservation of Spermatozoa and the Assessment of Their Post-Thawing Function. Reprod. Fertil. Dev. 1995, 7, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M. Sperm Cryopreservation Update: Cryodamage, Markers, and Factors Affecting the Sperm Freezability in Pigs. Theriogenology 2016, 85, 47–64. [Google Scholar] [CrossRef] [PubMed]
- Carretero, M.I.; Giuliano, S.M.; Arraztoa, C.C.; Santa Cruz, R.C.; Fumuso, F.G.; Neild, D.M. Comparison of Two Cooling Protocols for Llama Semen: With and without Collagenase and Seminal Plasma in the Medium. Andrologia 2017, 49, e12691. [Google Scholar] [CrossRef] [PubMed]
- Guillén Palomino, C.Y.; Fumuso, F.G.; Bertuzzi, M.L.; Giuliano, S.M.; Velásquez González, N.; Bariani, M.V.; Carretero, M.I. Use of Androcoll-ETM to Separate Frozen-Thawed Llama Sperm from Seminal Plasma and Diluent. Front. Vet. Sci. 2021, 7, 594926. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.D.; Bustamante, C.Q.; Coronel, I.U.; Carretero, M.I.; Manrique, Y.Q.; Condori, E.C.; Perez, U.G. Criopreservación de Espermatozoides de Llama Obtenidos Del Conducto Deferente Utilizando Tres Curvas de Congelamiento. Rev. Investig. Vet. Perú 2022, 33, e24099. [Google Scholar] [CrossRef]
- Meza, A.; Caldeira, C.; Valverde, A.; Ordóñez, C.; Ampuero, E.; Cucho, H.; Soler, C. Sperm Kinematic Characterization of Alpaca (Vicugna pacos L.) during the Reproductive Season. Reprod. Domest. Anim. 2018, 53, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Trasorras, V.; Giuliano, S.; Miragaya, M. In Vitro Production of Embryos in South American Camelids. Anim. Reprod. Sci. 2013, 136, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Paulo Santayana, R.; José Mendoza, M.; Leandra Landeo, J.; Huamán, E.; Ticllacuri, F.; Fidel Mujica, L.; Silva, M.; Ratto, M.H. Effect of Oocyte Maturation Time, Sperm Selection Method and Oxygen Tension on in Vitro Embryo Development in Alpacas. Theriogenology 2017, 95, 127–132. [Google Scholar] [CrossRef]
- Aponte, P.M.; Gutierrez-Reinoso, M.A.; Garcia-Herreros, M. Bridging the Gap: Animal Models in Next-Generation Reproductive Technologies for Male Fertility Preservation. Life 2023, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Trasorras, V.L.; Carretero, M.I.; Neild, D.M.; Chaves, M.G.; Giuliano, S.M.; Miragaya, M.H. Production, Preservation, and Transfer of South American Camelid Embryos. Front. Vet. Sci. 2017, 4, 190. [Google Scholar] [CrossRef] [PubMed]
- Conde, P.A.; Herrera, C.; Trasorras, V.L.; Giuliano, S.M.; Director, A.; Miragaya, M.H.; Chaves, M.G.; Sarchi, M.I.; Stivale, D.; Quintans, C.; et al. In Vitro Production of Llama (Lama glama) Embryos by IVF and ICSI with Fresh Semen. Anim. Reprod. Sci. 2008, 109, 298–308. [Google Scholar] [CrossRef]
- Durand, M.G.P.; Zevallos Aragon, J.P.; Perez Guerra, U.H. In Vivo Culture of Alpaca Embryos in the Oviduct versus Embryo Culture in Vitro. Spermova 2018, 8, 138–143. [Google Scholar] [CrossRef]
- Perez Guerra, U.H.; Quispe Barriga, Y.M.; Luque Mamani, N.; Ruelas Calloapaza, D.A.; Palomino Cano, J.M.; Pérez Durand, M.G. Comparison of Superstimulatory Protocols with Different Doses of ECG on Ovarian Response and Oocyte Recovery by Follicular Aspiration in Llamas (Lama glama). Anim. Reprod. 2024, 21, e20220134. [Google Scholar] [CrossRef] [PubMed]
- Cebra, C.; Van Saun, R.J.; Anderson, D.E.; Tibary, A.; Johnson, L.R.W. Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition, and Herd Health, 1st ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013; pp. 1–789. [Google Scholar] [CrossRef]
- Perez, M.G.; Zevallos, J.; Perez, U.H. Recovery of Alpaca Sperm from Vas Deferens during the Breeding Season. Spermova 2014, 4, 139–144. [Google Scholar]
- Zampini, R.; Castro-González, X.A.; Sari, L.M.; Martin, A.; Diaz, A.V.; Argañaraz, M.E.; Apichela, S.A. Effect of Cooling and Freezing on Llama (Lama glama) Sperm Ultrastructure. Front. Vet. Sci. 2020, 7, 587596. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Quispe, O.E.; Pérez, M.G.; Ojeda-Gutierrez, Y.G. Survival to Freezing of Sperm Collected by Vas Deferens from Vicugna Pacos with Tempol Antioxidant Addition. Asian J. Anim. Vet. Adv. 2016, 11, 377–382. [Google Scholar] [CrossRef]
- Flores Huarco, N.H.; Giuliano, S.M.; Fumuso, F.G.; Miragaya, M.H.; Cucho Dolmos, H.C.; Carretero, M.I. Use of Dimethylformamide to Cryopreserve Alpaca Semen Previously Incubated with Collagenase. Reprod. Domest. Anim. 2021, 56, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Parrish, J.J.; Susko-Parrish, J.; Winer, M.A.; First, N.L. Capacitation of Bovine Sperm by Heparin. Biol. Reprod. 1988, 38, 1171–1180. [Google Scholar] [CrossRef]
- Morton, K.M.; Bathgate, R.; Evans, G.; Maxwell, W.M.C. Cryopreservation of Epididymal Alpaca (Vicugna pacos) Sperm: A Comparison of Citrate-, Tris- and Lactose-Based Diluents and Pellets and Straws. Reprod. Fertil. Dev. 2007, 19, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Banda, J.R.; Evangelista, S.V.; Ruiz, L.G.; Sandoval, R.M.; Rodríguez, L.C.; Valdivia, M.C.; Santiani, A.A. Effect of extenders based on tris, tes and skim milk on cryopreservation of epididymal alpaca sperm. Rev. Inv. Vet. Perú 2010, 21, 145–153. [Google Scholar]
- Raymundo, F.; Huanca, W.; Huanca, T.; Huerta, S.; Cordero, A. Efecto de tres dilutores en la conservación del semen de alpacas. Rev. Inv. Vet. Perú 2006, 17, 125–130. [Google Scholar]
- Giuliano, S.; Santa Cruz, R.; Arraztoa, C.; Fumuso, F.G.; Bertuzzi, M.; Carretero, M.I.; Susana, D.; Giuliano, M.; María, D.; Carretero, I. Selección espermatica de semen refrigerado de llama con diluyente a base de yema de huevo Sperm Selection in Cooled Llama Semen with Egg Yolk Extender. Spermova 2019, 9, 35–41. [Google Scholar] [CrossRef]
- Aisen, E.G.; Huanca López, W.; Pérez Durand, M.G.; Torres Mamani, E.; Villanueva Mori, J.C.; Ousset, M.J.; Medina, V.H.; Pérez Guerra, U.H.; Huanca Mamani, T. Spermatozoa Obtained From Alpaca Vas Deferens. Effects of Seminal Plasma Added at Post-Thawing. Front. Vet. Sci. 2021, 8, 611301. [Google Scholar] [CrossRef] [PubMed]
- Torres Hualla, E.A. Comparación de 2 Tipos de Dilutores (Tris-Yema de Huevo y Leche Descremada) En La Sobrevivencia Espermática Post—Descongelamiento de Semen de Alpaca (Vicugna pacos) de La Raza Huacaya En La Zona Costa de Tacna. Bachelor´s Thesis, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru, 2018. [Google Scholar]
- Ordoñez, C.; Ampuero, E.; Alarcón, V.; Franco, E.; Hanzen, C.; Cucho, H. Three Extenders Evaluation in Cryopreservation of Alpaca (Vicugna pacos) Semen in Pellets. Spermova 2015, 5, 119–123. [Google Scholar] [CrossRef]
- Kumar, S.; Millar, J.D.; Watson, P.F. The Effect of Cooling Rate on the Survival of Cryopreserved Bull, Ram, and Boar Spermatozoa: A Comparison of Two Controlled-Rate Cooling Machines. Cryobiology 2003, 46, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Choez, K.; Arriaga, I.; Terreros, M.; Condori, R.; Arroyo, G.; Huanca, W. Características Del Semen de Alpacas Obtenido Por Electroeyaculación y Su Motilidad Durante La Refrigeración. Spermova 2015, 5, 42–46. [Google Scholar] [CrossRef]
- Juyena, N.S.; Vencato, J.; Pasini, G.; Vazzana, I.; Stelletta, C. Alpaca Semen Quality in Relation to Different Diets. Reprod. Fertil. Dev. 2013, 25, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Fumuso, F.G.; Bertuzzi, M.L.; Velásquez González, N.; Miragaya, M.H.; Carretero, M.I. Cryopreservation of Llama Semen Using a Combination of Permeable Cryoprotectants. Reprod. Domest. Anim. 2021, 56, 958–964. [Google Scholar] [CrossRef]
- Fumuso, F.G.; Giuliano, S.M.; Chaves, G.; Neild, D.M.; Miragaya, M.H.; Bertuzzi, M.L.; Carretero, M.I. Incubation of Frozen-Thawed Llama Sperm with Seminal Plasma. Andrologia 2020, 52, e13597. [Google Scholar] [CrossRef] [PubMed]
- Hammerstedt, R.H.; Graham, J.K.; Nolan, J.P. Cryopreservation of Mammalian Sperm: What We Ask Them to Survive. J. Androl. 1990, 11, 73–88. [Google Scholar] [CrossRef] [PubMed]
- García, W.; Maxi, E.; Macedo, V.; Ampuero, E.; Malaga, J. Cryopreservation of Alpaca Spermatozoa obtained via Post Copula in a Tris Extender with EGG Yolk from three Avian Species. Spermova 2021, 11, 11–16. [Google Scholar] [CrossRef]
- Carretero, M.I.; Chaves, M.G.; Arraztoa, C.C.; Fumuso, F.G.; Gambarotta, M.C.; Neild, D.M. Air-Drying Llama Sperm Affects DNA Integrity. Front. Vet. Sci. 2020, 7, 597952. [Google Scholar] [CrossRef]
- Celeghini, E.C.C.; de Arruda, R.P.; de Andrade, A.F.C.; Nascimento, J.; Raphael, C.F.; Rodrigues, P.H.M. Effects That Bovine Sperm Cryopreservation Using Two Different Extenders Has on Sperm Membranes and Chromatin. Anim. Reprod. Sci. 2008, 104, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Gamarra, G.; Huaman, E.; León, S.; Carpio, M.; Alvarado, E.; Asparrin, M.; Vivanco, H.W. First In Vitro Embryo Production in Alpacas (Lama pacos). Reprod. Fertil. Dev. 2008, 21, 177–178. [Google Scholar] [CrossRef]
- Durand, M.G.P.; Aragón, J.P.Z.; Guerra, U.H.P. Comparación de Sistemas de Cultivo de Embriones de Alpacas. Rev. Investig. Altoandinas—J. High Andean Res. 2017, 19, 157–164. [Google Scholar] [CrossRef]
- Coleman, N.V.; Shagiakhmetova, G.A.; Lebedeva, I.Y.; Kuzmina, T.I.; Golubev, A.K. In Vitro Maturation and Early Developmental Capacity of Bovine Oocytes Cultured in Pure Follicular Fluid and Supplementation with Follicular Wall. Theriogenology 2007, 67, 1053–1059. [Google Scholar] [CrossRef]
Morphological Parameter | Cryopreservation Extender | ||
---|---|---|---|
Tris-EY | Andromed® | BioxCell® | |
Cytoplasmic droplet F (%) | 6.27 ± 2.69 aA | 10.58 ± 2.49 aA | 8.53 ± 1.91 aA |
Cytoplasmic droplet C (%) | 6.37 ± 3.49 aA | 15.58 ± 2.76 aA | 8.37 ± 3.91 bA |
Macrocephalia F (%) | 0.21 ± 0.06 abA | 0.08 ± 0.02 aA | 0.41 ± 0.20 bA |
Macrocephalia C (%) | 0.31 ± 0.16 aA | 0.18 ± 0.04 bB | 0.51 ± 0.19 aA |
Fusiform head F (%) | 0.10 ± 0.01 aA | 0.09 ± 0.02 aA | 0.11 ± 0.03 aA |
Fusiform head C (%) | 7.46 ± 1.45 aB | 6.69 ± 1.59 bB | 7.71 ± 2.09 aB |
Microcephalia F (%) | 0.41 ± 0.33 aA | 0.39 ± 0.19 aA | 0.41 ± 0.33 aA |
Microcephalia C (%) | 2.41 ± 0.23 aB | 2.39 ± 0.34 aB | 2.17 ± 0.54 aB |
Detached head F (%) | 1.41 ± 0.52 aA | 0.37 ± 0.14 bA | 0.76 ± 0.25 abA |
Detached head C (%) | 11.12 ± 2.52 aB | 9.37 ± 1.42 aB | 12.56 ± 2.51 aB |
Midpiece defects F (%) | 30.21 ± 6.01 aA | 27.84 ± 5.52 aA | 28.97 ± 6.32 aA |
Midpiece defects C (%) | 29.10 ± 5.81 aA | 28.98 ± 6.77 aA | 30.55 ± 7.64 aA |
Bent/Coiled tail F (%) | 12.74 ± 1.99 aA | 11.37 ± 1.71 aA | 12.72 ± 1.58 aA |
Bent/Coiled tail C (%) | 16.32 ± 2.03 aA | 14.25 ± 2.93 aA | 17.01 ± 2.71 aB |
Double-tailed F (%) | 1.36 ± 0.29 aA | 0.62 ± 0.12 bA | 0.51 ± 0.21 bA |
Double-tailed C (%) | 1.86 ± 0.25 aA | 1.26 ± 0.21 aB | 1.51 ± 0.61 aB |
Detached tail F (%) | 5.43 ± 1.93 aA | 2.35 ± 0.37 bA | 3.05 ± 0.56 abA |
Detached tail C (%) | 9.09 ± 2.34 aB | 7.87 ± 1.73 bB | 9.95 ± 2.98 aB |
Total defects F (%) | 59.14 ± 2.00 aA | 53.69 ± 3.40 aA | 55.47 ± 3.30 aA |
Total defects C (%) | 84.00 ± 3.08 aB | 86.50 ± 3.00 aB | 90.34 ± 3.22 aB |
Parameter | Cryopreservation Extender | ||
---|---|---|---|
Tris-EY | Andromed® | BioxCell® | |
Acrosome membrane integrity (AI) at 37 °C (%) | 70.58 ± 1.02 aA | 64.88 ± 0.48 bA | 59.20 ± 0.49 cA |
Acrosome membrane integrity (AI) at 5 °C (%) | 60.83 ± 0.61 aB | 55.35 ± 0.71 bB | 53.64 ± 0.42 bB |
Acrosome membrane integrity (AI) post-thawing (%) | 23.63 ± 0.58 aC | 31.52 ± 0.31 bC | 9.97 ± 0.31 cC |
Parameter | Cryopreservation Extender | ||
---|---|---|---|
Tris-EY | Andromed® | BioxCell® | |
Plasma membrane integrity (Viability) at 37 °C (%) | 48.91 ± 5.55 aA | 65.78 ± 3.38 bA | 55.89 ± 1.27 abA |
Plasma membrane integrity (Viability) at 5 °C (%) | 45.23 ± 3.77 aAB | 61.57 ± 2.37 bA | 50.64 ± 0.86 abA |
Plasma membrane integrity (Viability) post-thawing (%) | 38.57 ± 1.52 aB | 29.05 ± 0.48 bB | 10.98 ± 0.32 cB |
Hypo-Osmotic Swelling test (HOST) at 37 °C (%) | 69.79 ± 2.83 aA | 62.68 ± 1.19 bA | 57.01 ± 2.27 bA |
Hypo-Osmotic Swelling test (HOST) at 5 °C (%) | 43.88 ± 6.54 aB | 56.63 ± 1.89 aB | 46.19 ± 1.25 aB |
Hypo-Osmotic Swelling test (HOST) post-thawing (%) | 24.78 ± 4.11 aC | 30.73 ± 2.35 bC | 20.07 ± 4.65 cC |
Motility Parameter | Cryopreservation Extender | ||
---|---|---|---|
Tris-EY | Andromed® | BioxCell® | |
Total Motility at 37 °C (%) | 61.77 ± 3.00 aA | 65.56 ± 2.11 aA | 38.33 ± 0.63 bA |
Total Motility at 5 °C (%) | 54.71 ± 3.61 aA | 55.90 ± 0.85 aB | 33.21 ± 0.88 bB |
Total Motility Post-Thawing (%) | 26.54 ± 1.52 aB | 31.37 ± 0.57 bC | 9.17 ± 0.51 cC |
Progressive Motility at 37 °C (%) | 29.00 ± 3.23 aA | 22.44 ± 1.67 aA | 18.59 ± 1.38 aA |
Progressive Motility at 5 °C (%) | 23.12 ± 4.48 aA | 15.81 ± 0.82 aB | 15.01 ± 0.66 aA |
Progressive Motility Post-Thawing (%) | 11.10 ± 1.23 aB | 7.24 ± 0.57 bC | 2.05 ± 0.09 cB |
Oscillatory Motility at 37 °C (%) | 34.96 ± 1.17 aA | 37.20 ± 2.16 aA | 17.06 ± 1.00 bA |
Oscillatory Motility at 5 °C (%) | 27.65 ± 2.57 aB | 32.52 ± 0.85 aB | 16.30 ± 0.99 bA |
Oscillatory Motility Post-Thawing (%) | 14.01 ± 0.89 aB | 23.01 ± 0.80 bB | 6.24 ± 0.34 cB |
Circular Motility at 37 °C (%) | 7.82 ± 1.30 aA | 5.96 ± 0.69 aA | 2.69 ± 0.12 aA |
Circular Motility at 5 °C (%) | 6.26 ± 2.21 aA | 7.58 ± 1.23 aA | 1.89 ± 0.16 bB |
Circular Motility Post-Thawing (%) | 1.43 ± 0.62 aB | 1.12 ± 0.20 aB | 1.19 ± 0.05 aC |
Kinetic Parameter | Cryopreservation Extender | ||
---|---|---|---|
Tris-EY | Andromed® | Bioxcell® | |
VCL F (µm/s) | 36.16 ± 1.41 aA | 34.76 ± 1.37 aA | 33.06 ± 2.67 aA |
VCL C (µm/s) | 14.17 ± 1.04 aB | 25.33 ± 1.94 bB | 15.33 ± 1.56 aB |
VSL F (µm/s) | 20.50 ± 0.87 aA | 20.63 ± 1.58 aA | 10.91 ± 1.94 bA |
VSL C (µm/s) | 7.57 ± 0.67 aB | 12.90 ± 1.08 bB | 9.03 ± 0.90 aA |
VAP F (µm/s) | 24.71 ± 1.46 aA | 24.52 ± 1.71 aA | 16.64 ± 1.82 bA |
VAP C (µm/s) | 10.00 ± 0.86 aB | 17.16 ± 1.38 bB | 10.50 ± 1.09 aB |
DCL F (µm) | 9.73 ± 0.64 aA | 8.55 ± 1.23 aA | 14.14 ± 1.78 bA |
DCL C (µm) | 4.73 ± 0.34 aB | 8.40 ± 0.88 bA | 4.67 ± 0.51 aB |
DSL F (µm) | 2.82 ± 2.14 aA | 2.56 ± 1.31 aA | 4.04 ± 0.52 aA |
DSL C (µm) | 1.55 ± 0.14 aA | 2.33 ± 0.16 bA | 1.60 ± 0.19 aB |
DAP F (µm) | 4.67 ± 0.81 aA | 4.24 ± 0.66 aA | 6.76 ± 0.86 bA |
DAP C (µm) | 2.77 ± 0.21 aB | 4.45 ± 0.46 bA | 2.30 ± 0.28 aB |
ALH F (µm) | 0.36 ± 0.07 aA | 0.33 ± 0.08 aA | 0.49 ± 0.09 aA |
ALH C (µm) | 0.22 ± 0.02 aB | 0.32 ± 0.04 aA | 0.18 ± 0.03 bB |
BCF F (Hz) | 2.78 ± 0.81 aA | 2.42 ± 0.24 aA | 4.91 ± 0.27 bA |
BCF C (Hz) | 0.82 ± 0.11 aB | 2.02 ± 0.24 bB | 0.57 ± 0.13 aB |
HAC F (rad) | 0.09 ± 0.00 aA | 0.08 ± 0.00 aA | 0.10 ± 0.04 aA |
HAC C (rad) | 0.04 ± 0.00 aB | 0.05 ± 0.00 aB | 0.03 ± 0.00 bB |
WOB F (VAP/VCL) | 0.68 ± 0.01 aA | 0.71 ± 0.07 aA | 0.50 ± 0.09 aA |
WOB C (VAP/VCL) | 0.70 ± 0.01 aA | 0.68 ± 0.02 aA | 0.68 ± 0.02 aB |
LIN F (VSL/VCL) | 0.57 ± 0.02 aA | 0.59 ± 0.04 aA | 0.33 ± 0.03 aA |
LIN C (VSL/VCL) | 0.50 ± 0.02 aB | 0.51 ± 0.04 aA | 0.60 ± 0.02 bB |
STR F (VCL/VAP) | 0.83 ± 0.02 aA | 0.84 ± 0.09 aA | 0.66 ± 0.00 bA |
STR C (VCL/VAP) | 0.77 ± 0.02 aB | 0.75 ± 0.03 aA | 0.86 ± 0.00 bB |
Type of Sperm | Sperm Extender | ||
---|---|---|---|
Tris-EY Fertilized Oocytes/ Total Oocytes Submitted to IVF (%) | Andromed® Fertilized Oocytes/ Total Oocytes Submitted to IVF (%) | BioxCell® Fertilized Oocytes/ Total Oocytes Submitted to IVF (%) | |
Fresh | 47/149 (31.54) aA | 51/149 (34.23) aA | 36/150 (24.00) bA |
Frozen-thawed | 40/180 (22.22) aB | 44/179 (24.58) aB | 30/180 (16.66) bB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Durand, M.G.; Bustamante, C.W.; Machaca, P.P.; García, W.; Condori, E.A.; Macedo, R.; Fernández, E.; Manrique, Y.P.; Gutiérrez-Reinoso, M.A.; Perez-Guerra, U.H.; et al. Effect of Three Semen Extenders on Sperm Quality and In Vitro Fertilization Rates of Fresh and Cryopreserved Sperm Collected from Llama (Lama glama) Vas Deferens. Animals 2024, 14, 1573. https://doi.org/10.3390/ani14111573
Pérez-Durand MG, Bustamante CW, Machaca PP, García W, Condori EA, Macedo R, Fernández E, Manrique YP, Gutiérrez-Reinoso MA, Perez-Guerra UH, et al. Effect of Three Semen Extenders on Sperm Quality and In Vitro Fertilization Rates of Fresh and Cryopreserved Sperm Collected from Llama (Lama glama) Vas Deferens. Animals. 2024; 14(11):1573. https://doi.org/10.3390/ani14111573
Chicago/Turabian StylePérez-Durand, Manuel G., Carlos W. Bustamante, Pedro P. Machaca, Wilber García, Eloy A. Condori, Rassiel Macedo, Eliseo Fernández, Yan P. Manrique, Miguel A. Gutiérrez-Reinoso, Uri H. Perez-Guerra, and et al. 2024. "Effect of Three Semen Extenders on Sperm Quality and In Vitro Fertilization Rates of Fresh and Cryopreserved Sperm Collected from Llama (Lama glama) Vas Deferens" Animals 14, no. 11: 1573. https://doi.org/10.3390/ani14111573
APA StylePérez-Durand, M. G., Bustamante, C. W., Machaca, P. P., García, W., Condori, E. A., Macedo, R., Fernández, E., Manrique, Y. P., Gutiérrez-Reinoso, M. A., Perez-Guerra, U. H., & García-Herreros, M. (2024). Effect of Three Semen Extenders on Sperm Quality and In Vitro Fertilization Rates of Fresh and Cryopreserved Sperm Collected from Llama (Lama glama) Vas Deferens. Animals, 14(11), 1573. https://doi.org/10.3390/ani14111573