Differentiation of Synanthropic Fleas from Andalusia (Spain) through Geometric Morphometrics Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Morphological Identification and Metric Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hastriter, M.W.; Bossard, R.L.; Lewis, R.E. Flea (Siphonaptera) World Species List (Spreadsheet). 2018. Available online: https://esanetworks.org/group/fleanews/page/flea-species-of-theworld-spreadsheetupdated-3-february-2018 (accessed on 3 December 2023).
- Fleta Zaragozano, J. Rickettsiosis transmitidas por piojos, pulgas y ácaros. Med. Integr. 2002, 39, 147–152. [Google Scholar]
- Parola, P.; Davoust, B.; Raoult, D. Tick- and flea-borne rickettsial emerging zoonoses. Vet. Res. 2005, 36, 469–492. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.; Fournier, P.E.; Santos-Silva, M.; Amaro, F.; Bacellar, F.; Raoult, D. Molecular detection of Rickettsia felis, Rickettsia typhi and two genotypes closely related to Bartonella elizabethae. Am. J. Trop. Med. Hyg. 2006, 75, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Beliavskaia, A.; Tan, K.K.; Sinha, A.; Husin, N.A.; Lim, F.S.; Loong, S.K.; Bell-Sakyi, L.; Carlow, C.K.S.; Abubakar, S.; Darby, A.C.; et al. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. Fleas. Microb. Genom. 2023, 9, 001045. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.; Gillespie, T.R.; Miarinjara, A. Xenopsylla cheopis (rat flea). Trends Parasitol. 2022, 38, 607–608. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.; Sepúlveda-García, P.; Di Cataldo, S.; Canales, N.; Sallaberry-Pincheira, N.; Painean, J.; Cevidanes, A.; Müller, A. Molecular identification of Bartonella spp. and Rickettsia felis in fox fleas; Chile. Comp. Immunol. Microb. 2023, 96, 101983. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-García, P.; Alabi, A.; Álvarez, K.; Rojas, L.; Mella, A.; Gonçalves, L.R.; André, M.R.; Machado, R.; Müller, A.; Monti, G. Bartonella spp. in households with cats: Risk factors for infection in cats and human exposure. One Health 2023, 16, 100545. [Google Scholar] [CrossRef]
- Yomogida, K.; Kjemtrup, A.; Martínez-López, B.; Ibrahim, M.; Contreras, Z.; Ngo, V.; Halai, U.A.; Balter, S.; Feaster, M.; Zahn, M.; et al. Surveillance of Flea-Borne Typhus in California; 2011–2019. Am. J. Trop. Med. Hyg. 2024, 110, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Kernif, T.; Socolovschi, C.; Wells, K.; Lakim, M.B.; Inthalad, S.; Slesak, G.; Boudebouch, N.; Beaucournu, J.C.; Newton, P.N.; Raoult, D.; et al. Bartonella and Rickettsia in arthropods from the Lao PDR and from Borneo; Malaysia. Comp. Immunol. Microbiol. Inf. Dis. 2012, 35, 51–57. [Google Scholar] [CrossRef]
- Clark, N.J.; Seddon, J.M.; Šlapeta, J.; Wells, K. Parasite spread at the domestic animal-wildlife interface: Anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals. Parasit. Vectors. 2018, 11, 8. [Google Scholar] [CrossRef]
- Benkacimi, L.; Diarra, A.Z.; Bompar, J.M.; Bérenger, J.M.; Parola, P. Microorganisms associated with hedgehog arthropods. Parasit. Vectors 2023, 16, 211. [Google Scholar] [CrossRef]
- Blagburn, B.L.; Dryden, M.W. Biology; treatment; and control of flea and tick infestations. Vet. Clin. N. Am. Small Anim. 2009, 39, 1173–1200. [Google Scholar] [CrossRef] [PubMed]
- Villemant, C.; Simbolotti, G.; Kenis, M. Discrimination of Eubazus (Hymenoptera; Braconidae) sibling species using geometric morphometrics analysis of wing venation. Syst. Biol. 2007, 32, 625–634. [Google Scholar] [CrossRef]
- Ruane, S. Using geometric morphometrics for integrative taxonomy: An examination of head shapes of milksnakes (genus Lampropeltis). Zool. J. Linn. Soc. 2015, 174, 394–413. [Google Scholar] [CrossRef]
- Li, S.; Ricchiardi, E.; Bai, M.; Yang, X. A taxonomy review of Oreoderus Burmeister, 1842 from China with a geometric morphometric evaluation (Coleoptera; Scarabaeidae; Valgini). ZooKeys 2016, 552, 67–89. [Google Scholar]
- Beaucournu, J.C.; Ménier, K. Le genre Ctenocephalides Stiles et Collins; 1930 (Siphonaptera; Pulicidae). Parasite 1998, 5, 3–16. [Google Scholar] [CrossRef]
- Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological and molecular study of the genus Nosopsyllus (Siphonaptera: Ceratophyllidae). Nosopsyllus barbarus (Jordan & Rothschild 1912) as a junior synonym of Nosopsyllus fasciatus (Bosc d’Antic; 1800). Insect Syst. Evol. 2018, 49, 81–101. [Google Scholar]
- Lawrence, A.L.; Webb, C.E.; Clark, N.J.; Halajian, A.; Mihalca, A.D.; Miret, J.; D’Amico, G.; Brown, G.; Kumsa, B.; Modrý, D.; et al. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: The hitchhiker’s guide to world domination. Int. J. Parasitol. 2019, 49, 321–336. [Google Scholar] [CrossRef]
- Deak, G.; Safarov, A.; Xie, X.C.; Wang, R.; Mihalca, A.D.; Šlapeta, J. Fleas from the Silk Road in Central Asia: Identifcation of Ctenocephalides canis and Ctenocephalides orientis on owned dogs in Uzbekistan using molecular identification and geometric morphometrics. Parasite. Vectors 2022, 15, 345. [Google Scholar] [CrossRef]
- García-Sánchez, A.M.; Zurita, A.; Cutillas, C. Morphometrics as a Complementary Tool in the Differentiation of Two Cosmopolitan Flea Species: Ctenocephalides felis and Ctenocephalides canis. Insects 2022, 13, 707. [Google Scholar] [CrossRef]
- Zurita, A.; García-Sánchez, Á.M.; Cutillas, C. Ctenophthalmus baeticus boisseauorum (Beaucournu; 1968) and Ctenophthalmus apertus allani (Smit; 1955) (Siphonaptera: Ctenophthalmidae) as synonymous taxa: Morphometric; phylogenetic; and molecular characterization. Bull. Entomol. Res. 2020, 110, 663–676. [Google Scholar] [CrossRef]
- Zurita, A.; Callejón, R.; García-Sánchez, Á.M.; Urdapilleta, M.; Lareschi, M.; Cutillas, C. Origin, evolution, phylogeny and taxonomy of Pulex irritans. Med. Vet. Entomol. 2019, 33, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.; García-Sánchez, Á.M.; Cutillas, C. Comparative molecular and morphological study of Stenoponia tripectinata tripectinata (Siphonaptera: Stenoponiidae) from the Canary Islands and Corsica. Bull. Entomol. Res. 2022, 112, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Beugnet, F.; Marié, J.L. Emerging arthropod-borne diseases of companion animals in Europe. Vet. Parasitol. 2009, 163, 298–305. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; Arenas-Montes, A.; Napp, S.; Jaén-Téllez, J.A.; Fernández-Morente, M.; Fernández-Molera, V.; Arenas, A. Seroprevalence and risk factors associated to West Nile virus in horses from Andalusia; Southern Spain. Vet. Microbiol. 2012, 160, 341–346. [Google Scholar] [CrossRef]
- Hiraldo, J.D.G.; Fuerte-Hortigón, A.; Domínguez-Mayoral, A.; De la Rosa Riestra, S.; Palacios-Baena, Z.R.; Fernández, F.S.; Ruiz, R.L.; Pascual-Vaca, D.; de León, C.M.; Hurtado, R.J.; et al. Uncovering the neurological effects of West Nile virus during a record-breaking southern Spain outbreak in 2020–2021. J. Neuroimmunol. 2023, 383, 578179. [Google Scholar] [CrossRef]
- Rodríguez-Alonso, B.; Almeida, H.; Alonso-Sardón, M.; Velasco-Tirado, V.; Robaina Bordón, J.M.; Carranza Rodríguez, C.; Pérez Arellano, J.L.; Belhassen-García, M. Murine typhus. How does it affect us in the 21st century? The epidemiology of inpatients in Spain (1997–2015). Int. J. Infect. Dis. 2020, 96, 165–171. [Google Scholar] [CrossRef]
- Beugnet, F.; Labuschagne, M.; Fourie, J.; Jacques, G.; Farkas, R.; Cozma, V.; Halos, L.; Hellmann, K.; Knaus, M.; Rehbein, S. Occurrence of Dipylidium caninum in fleas from client-owned cats and dogs in Europe using a new PCR detection assay. Vet. Parasitol. 2014, 205, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.; Benkacimi, L.; El Karkouri, K.; Cutillas, C.; Parola, P.; Laroche, M. New records of bacteria in different species of fleas from France and Spain. Comp. Immunol. Microbiol. Inf. Dis. 2021, 76, 101648. [Google Scholar] [CrossRef]
- Zurita, A.; Trujillo, I.; García-Sánchez, Á.M.; Cutillas, C. Survey of flea infestation in cats and dogs in Western Andalusia; Spain: Seasonality and other risk factors for flea infestation. Med. Vet. Entomol. 2024, 38, 244–251. [Google Scholar] [CrossRef]
- Beck, W.; Clark, H.H. Differentialdiagnose medizinisch relevanter Flohspezies und ihre Bedeutung in der Dermatologie. Der Hautarzt 1997, 48, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Beck, W. Animal parasites and dermatophytes as a cause of epizoonoses in humans. Der Prakt. Tierarzt 2005, 86, 426–434. [Google Scholar]
- Gaglio, G.; Allen, S.; Bowden, L.; Bryant, M.; Morgan, E.R. Parasites of European hedgehogs (Erinaceus europaeus) in Britain: Epidemiological study and coprological test evaluation. Eur. J. Wildl. Res. 2010, 56, 839–844. [Google Scholar] [CrossRef]
- Dudek, K.; Földvári, G.; Majláthová, V.; Majláth, I.; Rigó, K.; Molnár, V.; Tóth, M.; Jankowiak, L.; Tryjanowski, P. Patterns in the distribution and directional asymmetry of fleas living on the northern white-breasted hedgehog Erinaceus roumanicus. Folia Parasit. 2017, 64, 026. [Google Scholar] [CrossRef] [PubMed]
- Marchiondo, A.A.; Holdsworth, P.A.; Fourie, L.J.; Rugg, D.; Hellmann, K.; Snyder, D.E.; Dryden, M.W. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition: Guidelines for evaluating the efficacy of parasiticides for the treatment; prevention and control of flea and tick infestations on dogs and cats. Vet. Parasitol. 2013, 194, 84–97. [Google Scholar] [PubMed]
- Lewis, R.E. Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. J. Med. Entomol. 1993, 30, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, G.H.E.; Rothschild, M. An Illustrated Catalogue of the Rothschild Collection of Fleas in the British Museum (Nat. Hist.), Vol. III. Hystrichopsyllidae; Cambridge University Press: Cambridge, UK, 1962. [Google Scholar]
- Beaucournu, J.C.; Launay, H. Les Puces (Siphonaptera) de France et du Bassin Méditerranéen Occidental, Faune de France; Fedération Française des Sociétés des Sciences Naturelles: Paris, France, 1990; Volume 76. [Google Scholar]
- Lawrence, A.L.; Brown, G.K.; Peters, B.; Spielman, D.S.; Morin-Adeline, V.; Slapeta, J. High phylogenetic diversity of the cat flea (Ctenocephalides felis) at two mitochondrial DNA markers. Med. Vet. Entomol. 2014, 28, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.; Callejón, R.; de Rojas, M.; Cutillas, C. Morphological, biometrical and molecular characterization of Archaeopsylla erinacei (Bouché; 1835). Bull. Entomol. Res. 2018, 108, 726–738. [Google Scholar] [CrossRef]
- van der Mescht, L.; Matthee, S.; Matthee, C.A. New taxonomic and evolutionary insights relevant to the cat flea, Ctenocephalides felis: A geographic perspective. Mol. Phylogenet. Evol. 2021, 155, 106990. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Marcus, L.F. A revolution morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [Google Scholar] [CrossRef]
- Bookstein, F.L. Size and shape: A comment on semantics. Syst. Zool. 1989, 38, 173–180. [Google Scholar] [CrossRef]
- Dujardin, J.P. Morphometrics applied to medical entomology. Infect. Genet. Evol. 2008, 8, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, S.P.; Pessoa, L.M.; Strauss, R.E. Application of size-free canonical discriminant analysis to studies of geographic differentiation. Braz. J. Genet. 1990, 13, 509–520. [Google Scholar]
- Dujardin, J.P.; Le Pont, F. Geographical variation of metric properties within the neotropical sandflies. Infect. Genet. Evol. 2004, 4, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Dujardin, J.P. BAC Software; Institut de Recherches pour le Développement (IRD): Paris, France, 2002; Available online: http://www.fsf.org/copyleft/gpl.html (accessed on 10 April 2024).
- Hii, S.F.; Lawrence, A.L.; Cuttell, L.; Tynas, R.; Abd Rani, P.A.M.; Šlapeta, J.; Traub, R.J. Evidence for a specifc host-endosymbiont relationship between ‘Rickettsia sp. genotype RF2125’ and Ctenocephalides felis orientis infesting dogs in India. Parasit. Vectors 2015, 8, 169. [Google Scholar] [CrossRef] [PubMed]
- Ménier, K.; Beaucournu, J.C. Taxonomic study of the genus Ctenocephalides Stiles & Collins; 1930 (Insecta: Siphonaptera: Pulicidae) by using aedeagus characters. J. Med. Entomol. 1998, 35, 883–890. [Google Scholar] [PubMed]
- Güvendi, M.; Can, H.; Köseoğlu, A.F.; Alak, S.E.; Kandemir, C.; Taskın, T.; Sürgeç, E.; Demir, S.; Değirmenci Döşkaya, A.; Karakavuk, M.; et al. Investigation of the genetic diversity and flea-borne pathogens in Ctenocephalides felis samples collected from goats in İzmir and Şanlıurfa provinces of Turkey. Comp. Immunol. Microbiol. Infect. Dis. 2022, 90–91, 101896. [Google Scholar]
- Chotelersak, K.; Puttikamonkul, S.; Samung, Y.; Chaiphongpachara, T.; Dujardin, J.P.; Sumruayphol, S. Ctenocephalides orientis and Ctenocephalides felis in Thailand: Head geometry by species, sex and geography. Med. Vet. Entomol. 2024, 38, 179–188. [Google Scholar] [CrossRef]
- Ruenchit, P. State-of-the-Art Techniques for Diagnosis of Medical Parasites and Arthropods. Diagnostics 2021, 11, 1545. [Google Scholar] [CrossRef]
- Ghosh, N.; Silva, J.; Vazquez, A.; Das, A.B.; Smith, D.W. Use of fluorescence and scanning electron microscopy as tools in teaching biology. In Scanning Microscopies 2011: Advanced Microscopy Technologies for Defense, Homeland Security, Forensic, Life, Environmental, and Industrial Sciences; Postek, M.T., Newbury, D.E., Platek, S.F., Joy, D.C., Maugel, T.K., Eds.; SPIE: Bellingham, WA, USA, 2011; Volume 8036, pp. 217–227. [Google Scholar]
- García-Sánchez, A.M.; Rivero, J.; Callejón, R.; Zurita, A.; Reguera-Gomez, M.; Valero, M.A.; Cutillas, C. Differentiation of Trichuris species using a morphometric approach. Int. J. Parasitol. Parasites Wildl. 2019, 31, 218–223. [Google Scholar] [CrossRef]
- Escobar-Chavarría, O.; Cossío-Bayúgar, R.; Ramírez-Noguera, P.; Prado-Ochoa, M.G.; Velázquez-Sánchez, A.M.; Muñoz-Guzmán, M.A.; Angeles, E.; Alba-Hurtado, F. In vivo and in vitro apoptosis induced by new acaricidal ethyl-carbamates in Rhipicephalus microplus. Ticks Tick-Borne Dis. 2021, 12, 101603. [Google Scholar] [CrossRef] [PubMed]
- Kassa, B.; Lee, M.H.; Kumar, R.; Mickael, C.; Sanders, L.; Tuder, R.M.; Mentink-Kane, M.; Graham, B.B. Experimental Schistosoma japonicum-induced pulmonary hypertension. PLoS Neglect. Trop. Dis. 2022, 16, e0010343. [Google Scholar] [CrossRef] [PubMed]
- Marrugal, A.; Callejón, R.; de Rojas, M.; Halajian, A.; Cutillas, C. Morphological, biometrical, and molecular characterization of Ctenocephalides felis and Ctenocephalides canis isolated from dogs from different geographical regions. Parasitol. Res. 2013, 112, 2289–2298. [Google Scholar] [CrossRef]
C. felis | P. irritans | A. erinacei | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | MIN | Mean | SD | VC | MAX | MIN | Mean | SD | VC | MAX | MIN | Mean | SD | VC | |
Global measures | |||||||||||||||
Area (mm2) † | 1058.4 | 659.3 | 847.3 | 123.4 | 15 | 1379.8 | 688.6 | 1009.6 | 276 | 27 | 1436.7 | 990.3 | 1225.5 | 153.3 | 13 |
Roundness † | 2.41 | 2.02 | 2.20 | 0.11 | 5 | 2.06 | 1.88 | 1.95 | 0.08 | 4 | 2.48 | 2.09 | 2.32 | 0.14 | 6 |
Circularity † | 0.36 | 0.30 | 0.33 | 0.02 | 5 | 0.5 | 0.42 | 0.46 | 0.03 | 6 | 0.43 | 0.35 | 0.38 | 0.02 | 6 |
Perimeter (µm) † | 5642.4 | 4213.9 | 4828.5 | 418.3 | 9 | 5676.4 | 4114.8 | 4925.4 | 649.5 | 13 | 6685.8 | 5424.4 | 5958 | 410.7 | 7 |
TL (µm) | 2084 | 1563.0 | 1777.7 | 138.3 | 8 | 2027.7 | 1312.2 | 1650.0 | 285.8 | 17 | 2094.5 | 1667.3 | 1877.9 | 158.5 | 8 |
TW (µm) † | 815.1 | 627.5 | 722.1 | 52.6 | 7 | 1064.1 | 772.3 | 926.0 | 120.9 | 13 | 989.4 | 810.1 | 890.0 | 56.4 | 6 |
Head measures | |||||||||||||||
Area (µm2) † | 78,287 | 53,982 | 68,194 | 6318 | 9 | 100,673 | 74,318 | 83,921 | 9520 | 11 | 145,712 | 114,111 | 127,334 | 11,327 | 9 |
Roundness † | 1.39 | 1.29 | 1.35 | 0.02 | 2 | 1.31 | 1.23 | 1.27 | 0.03 | 2 | 1.24 | 1.17 | 1.19 | 0.02 | 2 |
Circularity † | 0.46 | 0.42 | 0.44 | 0.01 | 3 | 0.50 | 0.45 | 0.48 | 0.02 | 4 | 0.63 | 0.59 | 0.61 | 0.02 | 3 |
Perimeter (µm) † | 1153 | 953.8 | 1072.6 | 49.8 | 5 | 1261.0 | 1071.6 | 1153.9 | 68.6 | 6 | 1502.9 | 1302.7 | 1379.8 | 64.0 | 5 |
HL (μm) † | 391.1 | 306.8 | 360 | 22.9 | 6 | 357.0 | 293.4 | 317.6 | 25.0 | 8 | 453.2 | 378.3 | 412.6 | 23.2 | 6 |
HW (μm) † | 251.2 | 210.0 | 228.4 | 12.1 | 5 | 263.0 | 228.3 | 248.2 | 15.1 | 6 | 378.1 | 323.4 | 352.2 | 16.2 | 5 |
Prothorax measures | |||||||||||||||
Area (µm2) † | 24,848 | 14,287 | 19,192 | 3395 | 18 | 20,140 | 9635 | 13,081 | 3712 | 28 | 33,268 | 18,711 | 28,802 | 4038 | 14 |
Roundness † | 1.45 | 1.23 | 1.37 | 0.06 | 4 | 2.08 | 1.68 | 1.90 | 0.14 | 7 | 1.60 | 1.25 | 1.43 | 0.11 | 8 |
Circularity † | 0.58 | 0.46 | 0.51 | 0.04 | 8 | 0.36 | 0.26 | 0.32 | 0.04 | 11 | 0.61 | 0.38 | 0.46 | 0.07 | 16 |
Perimeter (µm) † | 665.5 | 478.9 | 570.2 | 50.3 | 9 | 651.1 | 466.6 | 550.1 | 60.4 | 11 | 778.0 | 594.9 | 715.2 | 53.0 | 7 |
PROTW (μm) † | 120.4 | 82.0 | 100.8 | 11.0 | 11 | 83.5 | 46.1 | 60.1 | 12.8 | 21 | 151.0 | 88.6 | 120.7 | 16.6 | 14 |
Mesothorax measures | |||||||||||||||
Area (µm2) † | 31,142 | 14,043 | 22,358 | 4518 | 20 | 28,396 | 8581 | 18,186 | 7347 | 40 | 33,772 | 23,289 | 28,643 | 3716 | 13 |
Roundness † | 1.64 | 1.33 | 1.46 | 0.08 | 6 | 2.05 | 1.65 | 1.81 | 0.19 | 10 | 1.92 | 1.40 | 1.72 | 0.19 | 11 |
Circularity † | 0.57 | 0.42 | 0.48 | 0.04 | 8 | 0.43 | 0.29 | 0.37 | 0.05 | 15 | 0.55 | 0.37 | 0.42 | 0.05 | 13 |
Perimeter (µm) † | 723.9 | 512.8 | 634.1 | 63.3 | 10 | 764.6 | 467.7 | 624.0 | 107.4 | 17 | 858.8 | 670.8 | 783.0 | 64.7 | 8 |
MESOW (μm) † | 137.4 | 88.7 | 109.0 | 13.8 | 13 | 103.5 | 47.7 | 76.2 | 21.8 | 29 | 137.0 | 99.3 | 111.3 | 13.6 | 12 |
Metathorax measures | |||||||||||||||
Area (µm2) † | 37,152 | 20,305 | 28,528 | 5061 | 18 | 53,522 | 20,280 | 35,569 | 12,210 | 34 | 48,486 | 33,659 | 38,673 | 4209 | 11 |
Roundness † | 1.57 | 1.28 | 1.46 | 0.07 | 5 | 1.64 | 1.38 | 1.53 | 0.10 | 7 | 1.81 | 1.47 | 1.60 | 0.10 | 7 |
Circularity † | 0.57 | 0.39 | 0.44 | 0.04 | 10 | 0.47 | 0.42 | 0.44 | 0.02 | 5 | 0.42 | 0.34 | 0.39 | 0.02 | 6 |
Perimeter (µm) † | 877.8 | 625.5 | 758.6 | 71.6 | 9 | 1024.4 | 667.7 | 857.8 | 123.5 | 14 | 1023.2 | 883.7 | 922.7 | 41.9 | 5 |
METW (μm) † | 142.8 | 102.3 | 120.4 | 12.6 | 10 | 177.1 | 97.5 | 131.4 | 30.4 | 23 | 157.1 | 109.7 | 134.2 | 13.9 | 10 |
AW (μm) † | 34.9 | 12.9 | 20.7 | 6.0 | 29 | 51.3 | 19.2 | 37.0 | 12.2 | 33 | 31.3 | 11.3 | 23.1 | 6.2 | 27 |
C. felis | P. irritans | A. erinacei | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | MIN | Mean | SD | VC | MAX | MIN | Mean | SD | VC | MAX | MIN | Mean | SD | VC | |
Global measures | |||||||||||||||
Area (mm2) | 2290.4 | 827.8 | 1724.7 | 438.2 | 25 | 2876.6 | 1180.3 | 1596.4 | 567.1 | 36 | 2874.6 | 1368.8 | 2023.6 | 434.1 | 21 |
Roundness † | 2.57 | 1.82 | 2.10 | 0.20 | 10 | 2.11 | 1.80 | 1.90 | 0.08 | 4 | 2.34 | 1.76 | 2.02 | 0.17 | 8 |
Circularity † | 0.40 | 0.33 | 0.36 | 0.02 | 5 | 0.50 | 0.40 | 0.46 | 0.02 | 5 | 0.49 | 0.36 | 0.41 | 0.03 | 8 |
Perimeter (µm) † | 7967.9 | 4583.8 | 6661.7 | 837.0 | 13 | 8379.8 | 5310.4 | 6092.9 | 993.7 | 16 | 8733.5 | 6038.3 | 7127.7 | 902.6 | 13 |
TL (mm) † | 2859.5 | 1616.2 | 2439.8 | 337.8 | 14 | 2861.0 | 1757.8 | 2041.3 | 372.8 | 18 | 2938.3 | 1885.7 | 2425.1 | 332.8 | 14 |
TW (mm) † | 1208.6 | 767.4 | 1038.7 | 136.2 | 13 | 1495.9 | 1003.5 | 1150.2 | 144.0 | 13 | 1487.5 | 1058.3 | 1220.5 | 112.7 | 9 |
Head measures | |||||||||||||||
Area (µm2) † | 100,169 | 67,749 | 83,173 | 9264 | 11 | 135,023 | 87,601 | 111,137 | 12,669 | 11 | 163,067 | 107,663 | 135,800 | 18,243 | 13 |
Roundness † | 1.55 | 1.35 | 1.45 | 0.05 | 3 | 1.40 | 1.22 | 1.30 | 0.06 | 4 | 1.26 | 1.16 | 1.20 | 0.02 | 2 |
Circularity † | 0.46 | 0.38 | 0.42 | 0.02 | 5 | 0.50 | 0.43 | 0.46 | 0.02 | 5 | 0.58 | 0.51 | 0.55 | 0.02 | 4 |
Perimeter (µm) † | 1354.0 | 1102.8 | 1229.3 | 73.2 | 6 | 1455.0 | 1238.6 | 1342.4 | 65.3 | 5 | 1564.9 | 1273.1 | 1423.1 | 89.7 | 6 |
HL (μm) † | 449.5 | 357.9 | 406.6 | 27.3 | 7 | 428.5 | 344.0 | 371.5 | 24.4 | 7 | 463.8 | 380.5 | 421.3 | 26.4 | 6 |
HW (μm) † | 296.8 | 243.2 | 265.4 | 15.1 | 6 | 330.1 | 243.7 | 287.6 | 22.2 | 8 | 383.9 | 274.2 | 324.7 | 30.5 | 9 |
Prothorax measures | |||||||||||||||
Area (µm2) † | 36,972 | 15,844 | 25,774 | 5347 | 21 | 29,118 | 16,764 | 22,842 | 3602 | 16 | 48,287 | 25,729 | 37,136 | 7542 | 20 |
Roundness † | 1.92 | 1.40 | 1.65 | 0.14 | 8 | 2.22 | 1.53 | 1.78 | 0.18 | 10 | 1.50 | 1.26 | 1.42 | 0.08 | 5 |
Circularity † | 0.53 | 0.36 | 0.45 | 0.05 | 10 | 0.43 | 0.26 | 0.34 | 0.04 | 13 | 0.59 | 0.41 | 0.48 | 0.05 | 11 |
Perimeter (µm) † | 876.7 | 576.8 | 723.8 | 74.3 | 10 | 812.5 | 615.0 | 709.3 | 51.4 | 7 | 879.0 | 691.0 | 805.6 | 71.8 | 9 |
PROTW (μm) † | 139.0 | 67.7 | 105.0 | 18.3 | 17 | 98.6 | 56.9 | 84.8 | 12.2 | 14 | 168.1 | 106.3 | 138.2 | 20.2 | 15 |
Mesothorax measures | |||||||||||||||
Area (µm2) | 48,419 | 20,032 | 35,002 | 8398 | 24 | 49,243 | 27,112 | 37,914 | 5734 | 15 | 50,800 | 29,397 | 40,732 | 6543 | 16 |
Roundness † | 1.69 | 1.24 | 1.51 | 0.11 | 7 | 1.86 | 1.52 | 1.64 | 0.10 | 6 | 1.86 | 1.50 | 1.60 | 0.12 | 7 |
Circularity † | 0.60 | 0.33 | 0.46 | 0.06 | 13 | 0.46 | 0.35 | 0.42 | 0.03 | 7 | 0.51 | 0.40 | 0.47 | 0.03 | 6 |
Perimeter (µm) † | 967.0 | 638.1 | 807.6 | 101.4 | 13 | 1031.0 | 732.8 | 879.5 | 78.2 | 9 | 1012.9 | 783.6 | 899.3 | 75.2 | 8 |
MESOW (μm) † | 161.4 | 88.1 | 135.2 | 19.0 | 14 | 145.5 | 105.9 | 124.5 | 10.0 | 8 | 168.1 | 113.8 | 140.8 | 15.6 | 11 |
Metathorax measures | |||||||||||||||
Area (µm2) † | 63,421 | 26,207 | 46,240 | 10,448 | 23 | 73,621 | 48,603 | 63,117 | 7854 | 12 | 66,054 | 44,555 | 54,053 | 7425 | 14 |
Roundness † | 2.09 | 1.41 | 1.68 | 0.17 | 10 | 1.73 | 1.37 | 1.51 | 0.10 | 7 | 1.59 | 1.31 | 1.48 | 0.07 | 5 |
Circularity † | 0.48 | 0.34 | 0.41 | 0.03 | 9 | 0.48 | 0.37 | 0.44 | 0.03 | 8 | 0.50 | 0.40 | 0.44 | 0.03 | 7 |
Perimeter (µm) † | 1185.4 | 772.5 | 979.9 | 128.9 | 13 | 1199.2 | 943.2 | 1090.1 | 70.3 | 6 | 1116.9 | 897.5 | 997.9 | 73.2 | 7 |
METW (μm) † | 175.8 | 109.0 | 147.5 | 18.5 | 13 | 206.9 | 145.3 | 178.4 | 15.8 | 9 | 188.3 | 144.9 | 170.2 | 16.1 | 9 |
Spermatheca measures | |||||||||||||||
Area (µm2) † | 3088 | 2162 | 2619 | 259 | 10 | 3489 | 2439 | 3062 | 309 | 10 | 11,768 | 3875 | 7474 | 2120 | 28 |
Roundness † | 1.21 | 1.05 | 1.14 | 0.04 | 4 | 1.06 | 1.01 | 1.03 | 0.01 | 1 | 1.25 | 1.05 | 1.12 | 0.06 | 6 |
Circularity † | 0.76 | 0.59 | 0.65 | 0.05 | 7 | 0.89 | 0.76 | 0.85 | 0.04 | 5 | 0.81 | 0.53 | 0.66 | 0.08 | 12 |
BULGAP (µm) † | 212.1 | 167.8 | 192.7 | 10.9 | 6 | 210.8 | 176.3 | 198.0 | 10.3 | 5 | 396.7 | 227.0 | 320.4 | 45.6 | 14 |
BULGAL (μm) † | 71.5 | 52.6 | 61.2 | 5.0 | 8 | 70.6 | 54.3 | 63.9 | 4.7 | 7 | 127.0 | 80.3 | 99.7 | 15.0 | 15 |
BULGAW (μm) † | 58.2 | 46.4 | 50.9 | 3.0 | 6 | 66.7 | 55.6 | 59.6 | 3.1 | 5 | 133.7 | 57.8 | 90.8 | 22.6 | 25 |
APEHILL (μm) † | 52.8 | 22.9 | 35.6 | 9.1 | 25 | 64.2 | 26.9 | 46.9 | 12.2 | 26 | 118.9 | 38.4 | 83.4 | 21.0 | 25 |
APEHILW (μm) † | 31.7 | 17.0 | 24.7 | 4.4 | 18 | 64.5 | 23.4 | 31.7 | 10.7 | 34 | 57.9 | 20.9 | 38.1 | 9.4 | 25 |
DBMV (μm) † | 349 | 131 | 251 | 57.1 | 23 | 485 | 290 | 378 | 56.7 | 15 | 503.8 | 150.3 | 293.4 | 116.5 | 40 |
Geographical Origin | C. felis (Number of Fleas) | P. irritans (Number of Fleas) | A. erinaceid (Number of Fleas) | |||
---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |
Sanlúcar de Barrameda (Cadiz, Spain) | 18 | 21 | - | - | - | - |
Seville (Seville, Spain) | - | - | 5 | 13 | - | - |
Huelva (Huelva, Spain) | - | - | 1 | - | - | - |
Dos Hermanas (Seville, Spain) | - | - | - | - | 10 | 13 |
Total | 18 | 21 | 6 | 13 | 10 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sánchez, A.M.; Trujillo, I.; Zurita, A.; Cutillas, C. Differentiation of Synanthropic Fleas from Andalusia (Spain) through Geometric Morphometrics Analysis. Animals 2024, 14, 1582. https://doi.org/10.3390/ani14111582
García-Sánchez AM, Trujillo I, Zurita A, Cutillas C. Differentiation of Synanthropic Fleas from Andalusia (Spain) through Geometric Morphometrics Analysis. Animals. 2024; 14(11):1582. https://doi.org/10.3390/ani14111582
Chicago/Turabian StyleGarcía-Sánchez, Angela M., Ignacio Trujillo, Antonio Zurita, and Cristina Cutillas. 2024. "Differentiation of Synanthropic Fleas from Andalusia (Spain) through Geometric Morphometrics Analysis" Animals 14, no. 11: 1582. https://doi.org/10.3390/ani14111582
APA StyleGarcía-Sánchez, A. M., Trujillo, I., Zurita, A., & Cutillas, C. (2024). Differentiation of Synanthropic Fleas from Andalusia (Spain) through Geometric Morphometrics Analysis. Animals, 14(11), 1582. https://doi.org/10.3390/ani14111582