Interferon-Tau in Maternal Peripheral Blood and Its Relationship with Progesterone and Pregnancy-Associated Glycoproteins in the Early Phases of Gestation in Water Buffalo
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Pregnancy Diagnosis
2.3. P4 Radioimmunoassay
2.4. PAG Radioimmunoassay
2.5. IFNt Quantitative Sandwich Enzyme Immunoassay
2.6. PBMCs Purification, RNA Isolation and RT-qPCR
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez, J.M.; Mathew, D.J.; Passara, C.; Fair, T.; Lonergan, P. Embryonic maternal interaction in cattle and its relationship with fertility. Reprod. Dom. Anim. 2018, 53, 20–27. [Google Scholar] [CrossRef]
- De Vries, A. Economic value of pregnancy in dairy cattle. J. Dairy Sci. 2006, 89, 3876–3885. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Czerniawska-Piątkowska, E.; Wrzecińska, M. The Importance of Interferon-Tau in the Diagnosis of Pregnancy. BioMed Res. Int. 2021, 2021, e9915814. [Google Scholar] [CrossRef]
- Bazer, F.W. Pregnancy Recognition Signaling Mechanisms in Ruminants and Pigs. J. Anim. Sci. Biotechnol. 2013, 4, 23. [Google Scholar] [CrossRef]
- Roberts, R. Interferon-Tau, a Type 1 Interferon Involved in Maternal Recognition of Pregnancy. Cytokine Growth Factor. Rev. 2007, 18, 403–408. [Google Scholar] [CrossRef]
- Sandra, O.; Constant, F.; Corvalho, A.V.; Eozenou, C.; Valour, D.; Mauffrè, V.; Hue, V. Maternal organism and embryo biosensoring: Inseghts from ruminants. J. Reprod. Imm. 2015, 108, 105–113. [Google Scholar] [CrossRef]
- Saugandhika, S.; Sharma, V.; Malik, H.; Saini, S.; Bag, S.; Kumar, S.; Singh, N.K.; Mohanty, A.K.; Malakar, D. Expression and Purification of Buffalo Interferon-Tau and Efficacy of Recombinant Buffalo Interferon-Tau for in Vitro Embryo Development. Cytokine 2015, 75, 186–196. [Google Scholar] [CrossRef]
- Spencer, T.E.; Bazer, F.W. Conceptus Signals for Establishment and Maintenance of Pregnancy. Reprod. Biol. Endocrinol. 2004, 2, 49. [Google Scholar]
- Meidan, R.; Basavaraja, R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest. Anim. Endocrinol. 2022, 78, 106671. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.F.; Henkes, L.E.; Ashley, R.L.; Purcell, S.H.; Smirnova, N.P.; Veeramachaneni, D.N.; Anthony, R.V.; Hansen, T.R. Expression of interferon (IFN)-stimulated genes in extrauterine tissues during early pregnancy in sheep is the consequence of endocrine IFN-_ release from the uterine vein. Endocrinology 2008, 149, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Dorniak, P.; Welsh, T.H., Jr.; Bazer, F.W.; Spencer, T.E. Cortisol and interferon tau regulation of endometrial function and conceptus development in female sheep. Endocrinology 2013, 154, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Singh, G.; Paul, A.; Bharati, J.; Rajesh, G.; Gm, V.; Chouhan, V.S.; Bhure, S.K.; Maurya, V.P.; Singh, G.; et al. Expression and Molecular Cloning of Interferon Stimulated Genes in Buffalo (Bubalus bubalis). Theriogenology 2017, 100, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Casano, A.B.; Menchetti, L.; Trabalza-Marinucci, M.; Riva, F.; De Matteis, G.; Brecchia, G.; Inglesi, A.; Rossi, E.; Signorelli, F.; Barile, V.L.; et al. Gene expression of pregnancy-associated glycoproteins-1 (PAG-1), minterferon-tau (IFNt) and interferon stimulated genes (ISGs) as diagnostic and prognostic markers of maternal-fetal cellular interaction in buffalo cows. Theriohenology 2023, 209, 89–97. [Google Scholar] [CrossRef]
- Zoli, A.P.; Beckers, J.F.; Wouters-Ballman, P.; Closset, J.; Falmagne, P.; Ectors, F. Purification and Characterization of a Bovine Pregnancy-Associated Glycoprotein. Biol. Reprod. 1991, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.M.; Pohler, K.G.; Smith, M.F.; Green, J.A. Placental PAGs: Gene Origins, Expression Patterns, and Use as Markers of Pregnancy. Reproduction 2015, 149, R115–R126. [Google Scholar] [CrossRef]
- Barbato, O.; Sousa, N.M.; Klisch, K.; Clerget, E.; Debenedetti, A.; Barile, V.L.; Malfatti, A.; Beckers, J.F. Isolation of New Pregnancy- Associated Glycoproteins from Water Buffalo (Bubalus bubalis) Placenta by Vicia Villosa Affinity Chromatograph. Res. Vet. Sci. 2008, 85, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.M.; Xie, S.; Mathialagan, N. Maternal Recognition of Pregnancy. Biol. Reprod. 1996, 54, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Dosogne, H.; Burvenich, C.; Freeman, A.E.; Kehrli, M.E., Jr.; Detilleux, J.C.; Sulon, J.; Beckers, J.-F.; Hoeben, D. Pregnancy- Associated Glycoprotein and Decreased Polymorphonuclear Leukocyte Function in Early Post-Partum Dairy Cows. Vet. Immunol. Immunopathol. 1999, 67, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, R.P.; Sutherland, W.D.; Sasser, R.G. Bovine Luteal Cell Production in Vitro of Prostaglandin E2, Oxytocin and Progesterone in Response to Pregnancy-Specific Protein B and Prostaglandin F2 Alpha. J. Reprod. Fertil. 1996, 107, 131–136. [Google Scholar] [CrossRef]
- Weems, C.W. Effects of Luteinizing Hormone (LH), PGE2, 8-Epi-PGE1, 8-Epi-PGF2 Alpha, Trichosanthin and Pregnancy Specific Protein B (PSPB) on Secretion of Prostaglandin (PG) E (PGE) or F2 Alpha (PGF2 Alpha) in Vitro by Corpora Lutea (CL) from Nonpregnant and Pregnant Cows. Prostaglandins Other Lipid Mediat. 1998, 55, 359–376. [Google Scholar]
- Barile, V.L.; Menchetti, L.; Casano, A.B.; Brecchia, G.; Melo de Sousa, N.; Zelli, R.; Canali, C.; Beckers, J.F.; Barbato, O. Approaches to Identify Pregnancy Failure in Buffalo Cows. Animals 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Barbato, O.; Menchetti, L.; Brecchia, G.; Barile, V.L. Using Pregnancy-Associated Glycoproteins (PAGs) to Improve Reproductive Management: From Dairy Cows to Other Dairy Livestock. Animals 2022, 12, 2033. [Google Scholar] [CrossRef]
- Karen, A.; Darwish, S.; Ramoun, A.; Tawfeek, K.; Van Hanh, N.; De Sousa, N.; Sulon, J.; Szenci, O.; Beckers, J.-F. Accuracy of Ultrasonography and Pregnancy-Associated Glycoprotein Test for Pregnancy Diagnosis in Buffaloes. Theriogenology 2007, 68, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Barbato, O.; Melo de Sousa, N.; Barile, V.L.; Canali, C.; Beckers, J.-F. Purification of Pregnancy-Associated Glycoproteins from Late-Pregnancy Bubalus bubalis Placentas and Development of a Radioimmunoassay for Pregnancy Diagnosis in Water Buffalo Females. BMC Vet. Res. 2013, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Barbato, O.; Menchetti, L.; Sousa, N.M.; Brecchia, G.; Malfatti, A.; Canali, C.; Beckers, J.-F.; Barile, V.L. Correlation of Two Radioimmunoassay Systems for Measuring Plasma Pregnancy-Associated Glycoproteins Concentrations during Early Pregnancy and Postpartum Periods in Water Buffalo. Reprod. Domest. Anim. 2018, 53, 1483–1490. [Google Scholar] [CrossRef] [PubMed]
- Bazer, F.W.; Wu, G.; Spencer, T.E.; Johnson, G.A.; Burghardt, R.C.; Bayless, K. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol. Hum. Reprod. 2010, 16, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Wiltbank, M.C.; Souza, A.H.; Carvalho, P.D.; Cunha, A.P.; Giordano, J.O.; Fricke, P.M.; Baez, G.M.; Diskin, M.G. Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 2014, 8 (Suppl. S1), 70–81. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.E.; Forde, N.; Lonergan, P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 2016, 99, 5941–5950. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Robinson, R.; Shi, Z.; Mann, G. Efficacy of progesterone supplementation during early pregnancy in cows: A meta-analysis. Theriogenology 2016, 85, 1390–1398. [Google Scholar] [CrossRef]
- Lonergan, P.; Sánchez, J.M. Symposium review: Progesterone effects on early embryo development in cattle. J. Dairy Sci. 2020, 103, 8698–8707. [Google Scholar] [CrossRef]
- Wiltbank, M.C.; Pedro, L.J.M.; Domingues, R.R.; Andrade, J.P.N.; Mezera, M.A. Review: Maintenance of the ruminant corpus luteum during pregnancy: Interferon-tau and beyond. Animal 2023, 17, 100827. [Google Scholar] [CrossRef]
- Sheikh, A.A.; Hooda, O.K.; Kalyan, A.; Kamboj, A.; Mohammed, S.; Mohammed, A.; Reddi, S.; Shimray, P.G.; Rautela, A.; Pandita, S.; et al. Interferon-tau stimulated gene expression: A proxy to predict embryonic mortality in dairy cows. Theriogenology 2018, 120, 61–67. [Google Scholar] [CrossRef]
- Panjaitan, B.; Siregar, T.N.; Sayuti, H.A.; Adam, M.; Syafruddin, A.T. Comparison of the effectiveness of pregnancy diagnosis in Aceh cow through measurement of interferon-tau and progesterone concentrations. Biodiversitas 2021, 22, 1712–1716. [Google Scholar] [CrossRef]
- Arosh, J.A.; Banu, S.K.; McCrackhen, J.M. Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. J. Dairy Sci. 2016, 99, 5926–5940. [Google Scholar] [CrossRef]
- Barile, V.; Terzano, G.; Pacelli, C.; Todini, L.; Malfatti, A.; Barbato, O. LH Peak and Ovulation after Two Different Estrus Synchronization Treatments in Buffalo Cows in the Daylight-Lengthening Period. Theriogenology 2015, 84, 286–293. [Google Scholar] [CrossRef]
- Barbato, O.; Merlo, M.; Celi, P.; Sousa, N.M.; Guarneri, L.; Beckers, J.F.; Gabai, G. Relationship between plasma progesterone and pregnancy-associated glycoprotein concentrations during early pregnancy in dairy cows. Vet. J. 2013, 195, 385–387. [Google Scholar] [CrossRef]
- Barbato, O.; Menchetti, L.; Sousa, N.M.; Malfatti, A.; Brecchia, G.; Canali, C.; Beckers, J.F.; Barile, V.L. Pregnancy-Associated Glycoproteins (PAGs) Concentrations in Water Buffaloes (Bubalus bubalis) during Gestation and the Postpartum Period. Theriogenology 2017, 97, 73–77. [Google Scholar] [CrossRef]
- Greenwood, F.C.; Hunter, W.M.; Glover, J.S. The preparation of 131I-labelled human growth hormone of high specific radioactivity. Biochem. J. 1963, 89, 114–123. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2_DDCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Agradi, S.; Menchetti, L.; Curone, G.; Faustini, M.; Vigo, D.; Villa, L.; Zanzani, S.A.; Postoli, R.; Kika, T.S.; Riva, F.; et al. Comparison of Female Verzaschese and Camosciata Delle Alpi Goats′ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy. Animals 2022, 12, 1703. [Google Scholar] [CrossRef]
- Walton, R.M. Subject-based reference values: Biological variation, individuality, and reference change values. Vet. Clin. Pathol. 2012, 41, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.C. Inherent biological variation and reference values. Clin. Chem. Lab. Med. 2004, 42, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using SPSS, 3rd ed.; SAGE Publications: London, UK, 2009; Volume 81. [Google Scholar]
- Talukder, A.K.; Rabaglino, M.B.; Browne, J.A.; Charpigny, G.; Lonergan, P. Dose- and time-dependent effects of interferon tau on bovine endometrial gene expression. Theriogenology 2023, 211, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Forde, N.; Lonergan, P. Interferon-tau and fertility in ruminants. Reproduction 2017, 154, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Wiltbank, M.C.; Baez, G.M.; Garcia-Guerra, A.; Toledo, M.Z.; Monteiro, P.L.; Melo, L.F.; Ochoa, J.C.; Santos, J.E.P.; Sartori, R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 2016, 86, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Bott, R.C.; Ashley, R.L.; Henkes, L.E.; Antoniazzi, A.Q.; Bruemmer, J.E.; Niswender, G.D.; Bazer, F.W.; Spencer, T.E.; Smirnova, N.P.; Anthony, R.V.; et al. Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biol. Reprod. 2010, 82, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, H.; Toji, N.; Sasaki, K.; Koshi, K.; Yamagishi, N.; Takahashi, T.; Ishiguro-Oonuma, T.; Matsuda, H.; Yamanouchi, T.; Hashiyada, Y.; et al. A predictive threshold value for the diagnosis of early pregnancy in cows using interferon-stimulated genes in granulocytes. Theriogenology 2018, 107, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Melo, G.D.; Pinto, L.M.F.; Rocha, C.C.; Motta, I.G.; Silva, L.A.; da Silveira, J.C.; Gonella-Diaza, A.M.; Binelli, M.; Pugliesi, G. Type I interferon receptors and interferon-t-stimulated genes in peripheral blood mononuclear cells and polymorphonuclear leucocytes during early pregnancy in beef heifers. Reprod. Fertil. Dev. 2020, 32, 953–966. [Google Scholar] [CrossRef]
- Mishra, S.R.; Sarkar, M. Interferon stimulated genes (ISGs): Novel pregnancy specific biomarker in buffaloes (Bubalus bubalis). J. Immunol. Sci. 2018, 2, 48–51. [Google Scholar]
- Nag, B.P.; Arunmozhi, N.; Sarath, T.; Asokan, S.; Vijayarani, K.; Monica, G.; Gopikrishnan, D.; Krishnakumar, K. Interferon stimulated gene 15 and Myxovirus resistance 2 genes are upregulated during early pregnancy in buffaloes. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 1755–1762. [Google Scholar] [CrossRef]
- Frisée, V.; Rigaux, G.; Dufour, P.; Barbato, O.; Brutinel, F.; Egyptien, S.; Bossaert, P.; Deleuze, S.; Cavalier, E.; Ponthier, J. American Bison (Bison bison) reproductive endocrinology: Serum Pregnancy Associated Glycoproteins (PAG), Progesterone, Estrone and Estrone-Sulfate in non pregnant animals and during gestation. Domest. Anim. Endocrinol. 2022, 78, 106684. [Google Scholar] [CrossRef]
- Pacelli, C.; Barile, V.L.; Sabia, E.; Casano, A.B.; Braghieri, A.; Martina, V.; Barbato, O. Use of GnRH treatment based on pregnancy-associated glycoproteins (PAGs) levels as a strategy for the maintenance of pregnancy in buffalo cows: A field study. Animals 2022, 12, 2822. [Google Scholar] [CrossRef]
- Celi, P.; Merlo, M.; Da Daltl, L.; Stefani, A.; Barbato, O.; Gabai, G. Relationship between late embryonic mortality and the increase in plasma advanced oxidised protein products (AOPP) in dairy cows. Reprod. Fertil. Dev. 2011, 23, 527–533. [Google Scholar] [CrossRef]
- Pohler, K.G.; Reese, S.T.; Franco, G.A.; Oliveira, R.V.; Paiva, R.; Fernandez, L.; de Melo, G.; Vasconcelos, J.L.M.; Cooke, R.; Poole, R.K. New approaches to diagnose and target reproductive failure in cattle. Anim. Reprod. 2020, 17, e20200057. [Google Scholar] [CrossRef]
- Franco, G.A.; Peres, R.F.G.; Martins, C.F.G.; Reese, S.T.; Jose Luiz Moraes Vasconcelos, J.L.M.; Pohler, K.J. Sire contribution to pregnancy loss and pregnancy-associated glycoprotein production in Nelore cows. J. Anim. Sci. 2018, 96, 632–640. [Google Scholar] [CrossRef]
- Niswender, G.D. Molecular control of luteal secretion of progesterone. Reproduction 2002, 123, 1470–1626. [Google Scholar] [CrossRef]
- Antoniazzi, A.Q.; Webb, B.T.; Romero, J.J.; Ashley, R.L. Endocrine delivery of interferonmtau protects the corpus luteum from prostaglandin F2 alpha induced luteolysis in ewes. Biol. Reprod. 2013, 88, 144. [Google Scholar] [CrossRef]
- Kazemi, M.; Malathy, P.V.; Keisler, D.H.; Robetrs, R.M. Ovine trophoblast protein-1 and bovine trophoblast protein-1 are present as specific components of uterine flushing of pregnant ewes and cows. Biol. Reprod. 1998, 39, 457–463. [Google Scholar] [CrossRef]
- Del Vecchio, R.P.; Sutherland, W.D.; Sasser, R.G. Effect of pregnancy-specific protein on luteal cell progesterone, prostaglandin, and oxytocin production estrous cycle. J. Anim. Sci. 1995, 73, 2662–2668. [Google Scholar] [CrossRef]
- Weems, Y.S.; Kim, L.; Humphreys, V.; Tsuda, V.; Weems, C.W. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E2 (PGE2) and Fealpha (PGF2alpha) and progesterone in vitro. Prostaglandins Other Lipid Mediat. 2003, 71, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Kerbler, T.L.; Buhr, M.M.; Jordan, L.T.; Leslie, K.E.; Walton, J.S. Relationship between maternal plasma progesterone concentration and interferon-tau synthesis by the conceptus in cattle. Theriogenology 1997, 47, 703–714. [Google Scholar] [CrossRef] [PubMed]
Dependent Variable | Day | Unstandardized Coefficients | p Value | R2 | |
---|---|---|---|---|---|
B | Std. Error | ||||
PAG * | 14 | 0.093 | 0.063 | 0.158 | 0.10 |
18 | 0.140 | 0.035 | <0.001 | 0.46 | |
28 | 0.224 | 0.068 | 0.004 | 0.35 | |
40 | 0.725 | 0.189 | 0.001 | 0.44 | |
P4 | 14 | 0.421 | 0.409 | 0.318 | 0.06 |
18 | 0.728 | 0.451 | 0.122 | 0.12 | |
28 | 0.979 | 0.413 | 0.028 | 0.22 | |
40 | 1.020 | 0.433 | 0.029 | 0.22 |
Parameter | Group | CVintra | CVinter | Index of Individuality (II) |
---|---|---|---|---|
PAG | Entire sample | 94.3 | 127.0 | 0.742 |
Pregnant | 134.3 | 138.2 | 0.972 | |
Non-pregnant | 70.1 | 66.2 | 1.059 | |
Embryo mortality | 64.2 | 64.3 | 0.998 | |
P4 | Entire sample | 52.5 | 42.2 | 1.242 |
Pregnant | 24.7 | 25.0 | 0.990 | |
Non-pregnant | 70.8 | 65.4 | 1.083 | |
Embryo mortality | 75.1 | 65.6 | 1.144 | |
IFNt | Entire sample | 27.8 | 34.2 | 0.812 |
Pregnant | 30.3 | 36.3 | 0.837 | |
Non-pregnant | 20.9 | 23.8 | 0.881 | |
Embryo mortality | 30.4 | 31.0 | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbato, O.; Menchetti, L.; Casano, A.B.; Ricci, G.; De Matteis, G.; Agradi, S.; Curone, G.; Brecchia, G.; Achihaei, E.L.; Barile, V.L. Interferon-Tau in Maternal Peripheral Blood and Its Relationship with Progesterone and Pregnancy-Associated Glycoproteins in the Early Phases of Gestation in Water Buffalo. Animals 2024, 14, 1658. https://doi.org/10.3390/ani14111658
Barbato O, Menchetti L, Casano AB, Ricci G, De Matteis G, Agradi S, Curone G, Brecchia G, Achihaei EL, Barile VL. Interferon-Tau in Maternal Peripheral Blood and Its Relationship with Progesterone and Pregnancy-Associated Glycoproteins in the Early Phases of Gestation in Water Buffalo. Animals. 2024; 14(11):1658. https://doi.org/10.3390/ani14111658
Chicago/Turabian StyleBarbato, Olimpia, Laura Menchetti, Anna Beatrice Casano, Giovanni Ricci, Giovanna De Matteis, Stella Agradi, Giulio Curone, Gabriele Brecchia, Emilia Larisa Achihaei, and Vittoria Lucia Barile. 2024. "Interferon-Tau in Maternal Peripheral Blood and Its Relationship with Progesterone and Pregnancy-Associated Glycoproteins in the Early Phases of Gestation in Water Buffalo" Animals 14, no. 11: 1658. https://doi.org/10.3390/ani14111658
APA StyleBarbato, O., Menchetti, L., Casano, A. B., Ricci, G., De Matteis, G., Agradi, S., Curone, G., Brecchia, G., Achihaei, E. L., & Barile, V. L. (2024). Interferon-Tau in Maternal Peripheral Blood and Its Relationship with Progesterone and Pregnancy-Associated Glycoproteins in the Early Phases of Gestation in Water Buffalo. Animals, 14(11), 1658. https://doi.org/10.3390/ani14111658