Estimation of Genetic Parameters for Growth and WSSV Resistance Traits in Litopenaeus vannamei
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Shrimp and Data Collection
2.1.1. Shrimp
2.1.2. Growth Traits Test
2.1.3. WSSV Challenge
2.1.4. Genotyping
2.2. Data Analysis
2.2.1. Data and Matrix Construction
2.2.2. Variance Components and Heritability Estimates
2.2.3. Z-Test
2.2.4. Genetic Correlation
2.2.5. Prediction Accuracy and Bias
3. Results
3.1. Descriptive Statistics
3.2. Molecular Genetic Correlation Analysis
3.3. Heritability
3.4. Genetic Correlation
3.5. Prediction Accuracy and Bias Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. FishStat Database. 2024. Available online: https://www.fao.org/fishery/statistics-query/en/global_production/global_production_quantity (accessed on 26 March 2024).
- MOA (Ministry of Agriculture and Rural of the People’s Republic of China). China Fishery Statistical Yearbook; Department of fishery of the Ministry of Agriculture and Rural, China Agricultural Press: Beijing, China, 2023.
- Gitterle, T.; Salte, R.; Gjerde, B.; Cock, J.; Johansen, H.; Salazar, M.; Lozano, C.; Rye, M. Genetic (co) variation in resistance to white spot syndrome virus (WSSV) and harvest weight in Penaeus (Litopenaeus) vannamei. Aquaculture 2005, 246, 139–149. [Google Scholar] [CrossRef]
- Bhoomaiah, D.; Krishnan, P.; Kantharajan, G.; Sangeeta, B.; Rajendran, K.V. A scientometric assessment of research on white spot syndrome virus (WSSV) in India vis-a-vis the world (1998–2017). Aquaculture 2020, 520, 734672. [Google Scholar] [CrossRef]
- Li, C.; Weng, S.; He, J. WSSV–host interaction: Host response and immune evasion. Fish Shellfish Immunol. 2019, 84, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Moss, S.M.; Moss, D.R.; Arce, S.M.; Lightner, D.V.; Lotz, J.M. The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. J. Invertebr. Pathol. 2012, 110, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Gjedrem, T. Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture 2012, 344–349, 12–22. [Google Scholar] [CrossRef]
- De Donato, M.; Manrique, R.; Ramirez, R.; Mayer, L.; Howell, C. Mass selection and inbreeding effects on a cultivated strain of Penaeus (Litopenaeus) vannamei in Venezuela. Aquaculture 2005, 247, 159–167. [Google Scholar] [CrossRef]
- Lu, X.; Luan, S.; Luo, K.; Meng, X.H.; Li, W.J.; Sui, J.; Cao, B.X.; Kong, J. Genetic analysis of the Pacific white shrimp (Litopenaeus vannamei): Heterosis and heritability for harvest body weight. Aquac. Res. 2015, 47, 3365–3375. [Google Scholar] [CrossRef]
- Luan, S.; Luo, K.; Chai, Z.; Cao, B.; Meng, X.; Lu, X.; Liu, N.; Xu, S.; Kong, J. An analysis of indirect genetic effects on adult body weight of the Pacific white shrimp Litopenaeus vannamei at low rearing density. Genet. Sel. Evol. 2015, 47, 95. [Google Scholar] [CrossRef]
- Trang, T.T.; Hung, N.H.; Ninh, N.H.; Knibb, W.; Nguyen, N.H. Genetic variation in disease resistance against white spot syndrome virus (WSSV) in Litopenaeus vannamei. Front. Genet. 2019, 10, 264. [Google Scholar] [CrossRef]
- Campos-Montes, G.R.; Caballero-Zamora, A.; Montaldo, H.H.; Montoya-Rodríguez, L.; G’omez-Gil, B.; Soto, S.A.; Martínez-Ortega, A.; Quintana-Casares, J.C.; Castillo-Ju´arez, H. Genetic (co)variation in resistance of Pacific white shrimp Litopenaeus vannamei to acute hepatopancreatic necrosis disease (AHPND) and white spot syndrome virus (WSSV) in challenge tests. Aquaculture 2020, 520, 734994. [Google Scholar] [CrossRef]
- Lillehammer, M.; Bangera, R.; Salazar, M.; Vela, S.; Erazo, E.C.; Suarez, A.; Cock James Rye Morten Robinson, N.A. Genomic selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under an experimental challenge test. Sci. Rep. 2020, 10, 20571. [Google Scholar] [CrossRef] [PubMed]
- Campos-Monte, G.R.; Garcia, B.F.; Medrano-Mendoza, T.; Caballero-Zamora, A.; Montoya-Rodríguez, L.; Quintana-Casares, J.C.; Yáñez, J.M. Genetic and genomic evaluation for resistance to white spot syndrome virus in post-larvae of Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2023, 575, 739745. [Google Scholar] [CrossRef]
- Gitterle, T.; Gjerde, B.; Cock, J.H.; Salazar, M.; Rye, M.; Vidal, O.; Lozano, C.; Erazo, E.C.; Salte, R. Optimization of experimental infection protocols for the estimation of genetic parameters of resistance to white spot syndrome virus (WSSV) in Penaeus (Litopenaeus) vannamei. Aquaculture 2006, 261, 501–509. [Google Scholar] [CrossRef]
- Caballero-Zamora, A.; Montaldo, H.H.; Campos-Montes, G.R.; Cienfuegos-Rivas, E.G.; Martínez-Ortega, A.; Castillo-Juárez, H. Genetic parameters for body weight and survival in the Pacific White Shrimp Penaeus (Litopenaeus) vannamei affected by a white spot syndrome virus (WSSV) natural outbreak. Aquaculture 2015, 447, 102–107. [Google Scholar] [CrossRef]
- Fu, Q.; Sun, K.; Sui, J.; Li, X.P.; Cao, J.W.; Tan, J.; Chen, B.L.; Luo, K.; Luan, S.; Kong, J.; et al. Comparisons and genetic assessments of WSSV resistance and growth in strain cross of Litopenaeus vannamei. Aquacult. Rep. 2023, 30, 101572. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Kang, H.; Liu, H.; Zhao, G. The difference of genetic parameters for carcass and meat quality traits by BLUP and GBLUP methods in Beijing You Chicken. Acta Vet. Zootech. Sin. 2020, 51, 35–42. [Google Scholar]
- Sanders, K.; Bennewitz, J.; Kalm, E. Wrong and missing sire information affects genetic gain in the angeln dairy cattle population. J. Dairy Sci. 2006, 89, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Nirea, K.G.; Sonesson, A.K.; Woolliams, J.A.; Meuwissen, T.H. Strategies for implementing genomic selection in family-based aquaculture breeding schemes: Double haploid sib test populations. Genet. Sel. Evol. 2012, 44, 30. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Goddard, M.E. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet. Sel. Evol. 2004, 36, 261–279. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Christensen, O.F.; Lund, M.S. Genomic prediction when some animals are not genotyped. Sel. Evol. 2010, 42, 2. [Google Scholar] [CrossRef] [PubMed]
- Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef] [PubMed]
- Forni, S.; Aguilar, I.; Misztal, I.; Deeb, N. Genomic relationships and biases in the evaluation of sow litter size. In Proceeding of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, 1–6 August 2010. [Google Scholar]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, Y.; Zhang, Q.; Zhang, X.; Huang, H.; Xiang, J.; Li, F. Evaluation on the genomic selection in Litopenaeus vannamei for the resistance against Vibrio parahaemolyticus. Aquaculture 2019, 505, 212–216. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Phuthaworn, C.; Knibb, W. Genomic prediction for disease resistance to Hepatopancreatic parvovirus and growth, carcass and quality traits in Banana shrimp Fenneropenaeus merguiensis. Genomics 2020, 112, 2021–2027. [Google Scholar] [CrossRef]
- Liu, J.; Yang, G.; Kong, J.; Xia, Z.; Sui, J.; Tang, Q.; Luo, K.; Dai, P.; Lu, X.; Meng, X.; et al. Using single-step genomic best linear unbiased prediction to improve the efficiency of genetic evaluation on body weight in Macrobrachium rosenbergii. Aquaculture 2020, 528, 735577. [Google Scholar] [CrossRef]
- Dai, P.; Kong, J.; Liu, J.; Lu, X.; Sui, J.; Meng, X.; Luan, S. Evaluation of the utility of genomic information to improve genetic evaluation of feed efficiency traits of the Pacific white shrimp Litopenaeus vannamei. Aquaculture 2020, 527, 735421. [Google Scholar] [CrossRef]
- Sui, J.; Luan, S.; Luo, K.; Meng, X.; Lu, X.; Cao, B.; Li, W.; Chai, Z.; Liu, N.; Xu, S.; et al. Genetic parameters and response to selection for harvest body weight of pacific white shrimp, Litopenaeus vannamei. Aquacult. Res. 2016, 47, 2795–2803. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, J.; Sun, Y.; Li, S.; Gao, Y.; Yu, Y.; Liu, C.; Wang, Q.; Lv, X.; Zhang, X.; et al. Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat. Commun. 2019, 10, 356. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Butler, D.; Cullis, B.; Gilmour, A.; Gogel, B.; Thompson, R. ASReml-R Reference Manual, Version 4.1.0.130; VSN International Ltd.: Hemel Hempstead, UK, 2020. Available online: https://asreml.kb.vsni.co.uk(accessed on 1 September 2020).
- Misztal, I.; Tsuruta, S.; Lourenco, D.A.L.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs; University of Georgia: Athens, GA, USA, 2014. [Google Scholar]
- Lu, S.; Liu, Y.; Yu, X.; Li, Y.; Yang, Y.; Wei, M.; Zhou, Q.; Wang, J.; Zhang, Y.; Zheng, W.; et al. Prediction of genomic breeding values based on pre-selected SNPs using ssGBLUP, WssGBLUP and BayesB for Edwardsiellosis resistance in Japanese flounder. Genet. Sel. Evol. 2020, 52, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.Z.; Wei, C.; Zhang, X.X.; Guan, X.M.; Zhao, X.; Peng, X.; Huang, X.X.; Ma, G.H. Estimation of genetic parameters of main economic characters of simmental cattle by DMU Software. Chin. J. Anim. Sci. 2018, 54, 43–46. [Google Scholar]
- Xu, R.W.; Qian, Z.Y.; Liu, X.L.; Lu z Ren, J.D.; Yang, F.S. Genetic parameter estimation for growth traits of Pacific white shrimp (Litopenaeus vannamei). J. Fish. China 2013, 37, 672–678. [Google Scholar] [CrossRef]
- Luan, S.; Luo, K.; Ruan, X.H.; Cao, B.X.; Wang, H.; Du, X.F.; Zhang, K.; Kong, J. Genetic parameters and genotype by environment interaction for body weight and survival of Pacific white shrimp Litopenaeus vannamei. Oceanol. Limnol. Sin./Haiyang Yu Huzhao. 2013, 44, 445–452. [Google Scholar]
- Hernandez-Ruiz, H.; Montaldo, H.H.; Bustos-Martínez, J.; Campos-Montes, G.R.; Castillo-Juárez, H. Heritability and genetic correlations for infectious hypodermal and hematopoietic necrosis virus load, body weight at harvest, and survival rate in Pacific white shrimp (Litopenaeus vannamei). J. World Aquacult. Soc. 2019, 51, 312–323. [Google Scholar] [CrossRef]
- Forni, S.; Aguilar, I.; Misztal, I. Different genomic relationship matrices for singlestep analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 2011, 43, 1. [Google Scholar] [CrossRef]
- Robledo, D.; Matika, O.; Hamilton, A.; Houston, R.D. Genome-wide association and genomic selection for resistance to Amoebic gill disease in Atlantic salmon. G3: Genes Genomes Genet. 2018, 8, 1195–1203. [Google Scholar] [CrossRef]
- Sukhavachana, S.; Tongyoo, P.; Massault, C.; McMillan, N.; Leungnaruemitchai, A.; Poompuang, S. Genome-wide association study and genomic prediction for resistance against Streptococcus agalactiae in hybrid red tilapia (Oreochromis spp.). Aquaculture 2020, 525, 735297. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Hamilton, A.; Tinch, A.E.; Guy, D.R.; Bron, J.E.; Taggart, J.B.; Gharbi, K.; Stear, M.; Matika, O.; Pong-Wong, R.; et al. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet. Sel. Evol. 2016, 48, 47. [Google Scholar] [CrossRef]
- Vallejo, R.L.; Leeds, T.D.; Gao, G.; Parsons, J.E.; Martin, K.E.; Evenhuis, J.P.; Fragomeni, B.O.; Wiens, G.D.; Palti, Y. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet. Sel. Evol. 2017, 49, 17. [Google Scholar]
- Yoshida, G.M.; Bangera, R.; Carvalheiro, R.; Correa, K.; Figueroa, R.; Lhorente, J.P.; Yanez, J.M. Genomic prediction accuracy for resistance against Piscirickettsia salmonis in farmed Rainbow trout. G3: Genes Genomes Genet. 2018, 8, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Peorez-Rostro, C.I.; Lbarra, A.M. Heritabilities and genetic correlations of size traits at harvest size in sexually dimorphic Pacific white shrimp (Litopenaeus vannamei) grown in two environments. Aquacult. Res. 2003, 34, 1079–1085. [Google Scholar] [CrossRef]
- Argue, B.J.; Arce, S.M.; Lotz, J.M.; Moss, S.M. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture 2002, 204, 447–460. [Google Scholar] [CrossRef]
- Bangera, R.; Ødegård, J.; Præbel, A.K.; Mortensen, A.; Nielsen, H.M. Genetic correlations between growth rate and resistance to vibriosis and viral nervous necrosis in Atlantic cod (Gadus morhua L.). Aquaculture 2011, 317, 67–73. [Google Scholar] [CrossRef]
- Cock, J.; Gitterle, T.; Salazar, M.; Rye, M. Breeding for disease resistance of Penaeid shrimps. Aquaculture 2009, 286, 1–11. [Google Scholar] [CrossRef]
Batch | Group | Family No. | Phenotyped Individual No. | Genotyped Individual No. |
---|---|---|---|---|
1 | R1 | 2 | 98 | 49 |
2 | R2 | 5 | 262 | 1 |
3 | R3 | 3 | 162 | 49 |
4 | R4 | 1 | 50 | 0 |
5 | G1 | 3 | 154 | 28 |
6 | G2 | 3 | 151 | 37 |
7 | G3 | 2 | 105 | 67 |
8 | G4 | 1 | 51 | 62 |
Total | / | 20 | 1033 | 293 |
Parameter | Mean | Max | Min | SD | CV |
---|---|---|---|---|---|
BW (g) | 16.21 | 31.95 | 6.64 | 5.22 | 32.20% |
OL (cm) | 14.54 | 20.90 | 10.16 | 1.68 | 11.55% |
BL (cm) | 11.32 | 16.10 | 7.26 | 1.40 | 12.37% |
TL (cm) | 8.09 | 11.38 | 2.70 | 1.01 | 12.48% |
HPI (h) | 91.53 | 316.00 | 40.00 | 54.39 | 59.42% |
Matrix | Traits | C | |||
---|---|---|---|---|---|
A-matrix | BW | 13.59 | 11.073 | 0.941 | 0.810 ± 0.103 a |
OL | 1.749 | 1.144 | 1.47 × 10−5 | 0.654 ± 0.201 | |
TL | 0.747 | 0.298 | 6.20 × 10−7 | 0.399 ± 0.158 | |
BL | 0.747 | 0.298 | 6.20 × 10−7 | 0.690 ± 0.205 | |
HPI | 3990.088 | 301.038 | \ | 0.075 ± 0.074 b | |
G-matrix | BW | 8.976 | 6.395 | 1.095 | 0.712 ± 0.172 |
OL | 1.474 | 0.413 | 0.216 | 0.280 ± 0.154 b | |
TL | 0.654 | 0.208 | 0.006 | 0.318 ± 0.128 | |
BL | 0.654 | 0.208 | 0.006 | 0.419 ± 0.156 | |
HPI | 3972.164 | 348.929 | \ | 0.088 ± 0.081 b | |
H-matrix | BW | 13.482 | 6.113 | 3.491 | 0.453 ± 0.169 |
OL | 1.800 | 0.351 | 0.391 | 0.195 ± 0.146 b | |
TL | 0.647 | 0.167 | 0.037 | 0.258 ± 0.149 b | |
BL | 0.647 | 0.167 | 0.037 | 0.316 ± 0.162 b | |
HPI | 11,027.88 | 2180.745 | \ | 0.198 ± 0.066 |
Method | Traits | OL | TL | BL | BW | HPI |
---|---|---|---|---|---|---|
pBLUP | OL | 1 | 0.767 | 0.909 | 0.980 | −0.081 |
TL | 0.959 | 1 | 0.946 | 0.972 | −0.163 | |
BL | 0.988 | 0.831 | 1 | 0.970 | −0.198 | |
BW | 0.741 | 0.629 | 0.860 | 1 | −0.162 | |
HPI | −0.216 | −0.162 | −0.219 | −0.163 | 1 | |
GBLUP | OL | 1 | 0.978 | 0.920 | 0.955 | −0.170 |
TL | 0.958 | 1 | 0.986 | 0.971 | −0.106 | |
BL | 0.988 | 0.806 | 1 | 0.993 | −0.173 | |
BW | 0.798 | 0.548 | 0.838 | 1 | −0.096 | |
HPI | −0.186 | −0.124 | −0.191 | −0.115 | 1 | |
ssGBLUP | OL | 1 | 0.974 | 0.912 | 0.990 | −0.019 |
TL | 0.981 | 1 | 0.983 | 0.999 | −0.032 | |
BL | 0.991 | 0.909 | 1 | 0.982 | −0.057 | |
BW | 0.864 | 0.684 | 0.871 | 1 | −0.057 | |
HPI | −0.412 | −0.397 | −0.443 | −0.443 | 1 |
Traits | pBLUP | GBLUP | ssGBLUP | |||
---|---|---|---|---|---|---|
Accuracy | Bias | Accuracy | Bias | Accuracy | Bias | |
BW | 0.566 ± 0.029 | 1.431 ± 0.173 | 0.593 ± 0.041 | 1.261 ± 0.097 | 0.623 ± 0.027 | 1.093 ± 0.058 |
OL | 0.456 ± 0.043 | 1.493 ± 0.119 | 0.556 ± 0.025 | 1.217 ± 0.035 | 0.572 ± 0.017 | 1.100 ± 0.147 |
TL | 0.424 ± 0.054 | 1.532 ± 0.186 | 0.506 ± 0.018 | 1.300 ± 0.060 | 0.506 ± 0.054 | 0.979 ± 0.088 |
BL | 0.451 ± 0.025 | 1.336 ± 0.056 | 0.540 ± 0.017 | 1.123 ± 0.209 | 0.567 ± 0.013 | 1.086 ± 0.101 |
HPI | 0.186 ± 0.058 | 1.620 ± 0.215 | 0.304 ± 0.040 | 1.191 ± 0.324 | 0.414 ± 0.025 | 0.808 ± 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, J.; Sun, K.; Kong, J.; Tan, J.; Dai, P.; Cao, J.; Luo, K.; Luan, S.; Xing, Q.; Meng, X. Estimation of Genetic Parameters for Growth and WSSV Resistance Traits in Litopenaeus vannamei. Animals 2024, 14, 1817. https://doi.org/10.3390/ani14121817
Sui J, Sun K, Kong J, Tan J, Dai P, Cao J, Luo K, Luan S, Xing Q, Meng X. Estimation of Genetic Parameters for Growth and WSSV Resistance Traits in Litopenaeus vannamei. Animals. 2024; 14(12):1817. https://doi.org/10.3390/ani14121817
Chicago/Turabian StyleSui, Juan, Kun Sun, Jie Kong, Jian Tan, Ping Dai, Jiawang Cao, Kun Luo, Sheng Luan, Qun Xing, and Xianhong Meng. 2024. "Estimation of Genetic Parameters for Growth and WSSV Resistance Traits in Litopenaeus vannamei" Animals 14, no. 12: 1817. https://doi.org/10.3390/ani14121817
APA StyleSui, J., Sun, K., Kong, J., Tan, J., Dai, P., Cao, J., Luo, K., Luan, S., Xing, Q., & Meng, X. (2024). Estimation of Genetic Parameters for Growth and WSSV Resistance Traits in Litopenaeus vannamei. Animals, 14(12), 1817. https://doi.org/10.3390/ani14121817