Effect of Lighting Methods on the Production, Behavior and Meat Quality Parameters of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Mortality
2.3. Examination of Behavioral Characteristics
- −
- Eating time: the activity of standing next to the feeder and putting the head inside.
- −
- Drinking time: the activity of standing under the drinker and raising the head to a nipple.
- −
- Resting time: the activity when the animal was lying in one place.
- −
- Interaction: defined as the activity of one or two birds jumping on each other.
2.4. Slaughter Procedure
2.5. Meat Quality Analysis
2.6. Statistical Analysis
3. Results
3.1. Production Parameters
3.2. Behavior Parameters
3.3. Meat Quality Parameters
3.4. Results of Correlations between Meat Quality and Meat Composition Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gregory, F.B.; Ellen, D.K. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 2008, 363, 231–246. [Google Scholar]
- Chemineau, P.; Malpaux, B.; Brillard, J.P.; Fostier, A. Seasonality of reproduction and production in farm fishes, birds and mammals. Animal 2007, 1, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Hajrasouliha, A.R.; Kaplan, H.J. Light and ocular immunity. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 504–509. [Google Scholar] [CrossRef]
- Parvin, R.; Mushtaq, M.M.H.; Kim, M.J.; Choi, H.C. Light emitting diode (LED) as a source of monochromatic light: A novel lighting approach for behaviour, physiology and welfare of poultry. Worlds Poult. Sci. J. 2014, 70, 543–556. [Google Scholar] [CrossRef]
- Riber, A.B. Effects of color of light on preferences, performance, and welfare in broilers. Poult. Sci. 2015, 94, 1767–1775. [Google Scholar] [CrossRef]
- De, O.; Lara, L.J.C. Lighting programmes and its implications for broiler chickens. Worlds Poult. Sci. 2016, 72, 735–741. [Google Scholar]
- Olanrewaju, H.A.; Purswell, J.L.; Collier, S.D.; Branton, S.L. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights. Poult. Sci. 2013, 92, 1029–1039. [Google Scholar] [CrossRef]
- Farghly, M.F.A.; Makled, M.N. Application of intermittent feeding and flash lighting regimes in broiler chickens management. Egypt. J. Nutr. Feeds 2015, 18, 261–276. [Google Scholar] [CrossRef]
- Farghly, M.F.; Mahrose, K.M.; Ahmad, E.A.M.; Rehman, Z.U.; Yu, S. Implementaion of different feeding regimes and flashing light in broiler chicks. Poult. Sci. 2019, 98, 2034–2042. [Google Scholar] [CrossRef]
- Perry, G.C. Lighting. In Welfare of the Laying Hen; Perry, G.C., Ed.; CABI: Wallingford, UK, 2003; pp. 299–311. [Google Scholar]
- Lewis, P.D. Lighting, ventilation and temperature. Br. Poult. Sci. 2010, 51, 35–43. [Google Scholar] [CrossRef]
- Ma, H.; Xin, H.; Zhao, Y.; Li, B.; Shepherd, T.A.; Alvarez, I. Assessment of lighting needs by W-36 laying hens via preference test. Animal 2015, 10, 671–680. [Google Scholar] [CrossRef]
- Franco, B.R.; Shynkaruk, T.; Crowe, T.; Fancher, B.; French, N.; Gillingham, S.; Lardner, K.S. Light color and the commercial broiler: Effect on behavior, fear, and stress. Poult. Sci. 2022, 101, 102052. [Google Scholar] [CrossRef]
- Kim, M.J.; Parvin, R.; Mushtaq, M.M.H.; Hwangbo, J.; Kim, J.H.; Na, J.C.; Kim, D.W.; Kang, H.K.; Kim, C.D.; Cho, K.O.; et al. Influence of monochromatic light on quality trails, nutritional, fatty acid, and amino acid profiles of broiler chicken meat. Poult. Sci. 2013, 92, 2844–2852. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, J.; Wang, Z.; Dong, Y.; Chen, Y. Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks. Acta Histochem. 2016, 118, 286–292. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Martino, C.; Grotta, L.; Martino, G. Evaluation of Chemical Composition and Meat Quality of Breast Muscle in Broilers Reared under Light-Emitting Diode. Animals 2021, 11, 1505. [Google Scholar] [CrossRef]
- Colapietro, M.; Ianni, A.; Bennato, F.; Martino, G. Evaluation of Commercial Meat Products of Red Chicken Reared under LED Lights. Foods 2022, 11, 370. [Google Scholar] [CrossRef]
- Lewis, P.D. A review of lighting for broiler breeders. Br. Poult. Sci. 2006, 47, 393–404. [Google Scholar] [CrossRef]
- Lewis, P.D.; Gous, R.M. Responses of poultry to ultraviolet radiation. Worlds Poult. Sci. Assoc. 2009, 65, 499–510. [Google Scholar] [CrossRef]
- James, C.; Asher, L.; Herborn, K.; Wi, J. The effect of supplementary ultraviolet wavelengths on broiler chicken welfare indicators. Appli. Anim. Behav. Sci. 2018, 209, 55–64. [Google Scholar] [CrossRef]
- Soliman, F.N.K.; El-Sabrout, K. Light wavelengths/colors: Future prospectsfor broiler behavior and production. J. Vet. Behav. 2020, 36, 34–39. [Google Scholar] [CrossRef]
- Prescott, N.B.; Wathes, C.M.; Jarvis, J.R. Light, vision and welfare of poultry. Anim. Welf. 2003, 12, 269–288. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, J.; Wang, Z.; Dong, Y.; Chen, Y. Effect of a combination of green and blue monochromatic light on broiler immune response. J. Photochem. Photobiol. 2014, 138, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, M.; Parlat, S.S.; Yilmaz, M.T.; Yildirim, I.; Ozalp, B. Growth performance and quality properties of meat from broiler chickens reared under different monochromatic light sources. Br. Poult. Sci. 2009, 50, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pan, C.; Zhong, R.; Pan, J. The quantitative models for broiler chicken response to monochromatic, combined, and mixed light-emitting diode light: A meta-analysis. Poult. Sci. 2018, 97, 1980–1989. [Google Scholar] [CrossRef] [PubMed]
- Lisanne, M.S.T.; Bas, R.; Bart, A.; Bert, R.; Frank, T.A.M. An automated positioning system for monitoring chickens’ location: Effects of wearing a backpack on behaviour, leg health and production. Appl. Anim. Behav. Sci. 2018, 198, 83–88. [Google Scholar]
- Kristensen, H.H.; Prescott, N.B.; Perry, G.C.; Ladewig, J.; Ersboll, A.K.; Overvad, K.C.; Wathes, C.M. The behaviour of broiler chickens in different light sources and illuminances. Appl. Anim. Behav. Sci. 2007, 103, 75–89. [Google Scholar] [CrossRef]
- Widowski, T.M.; Keeling, L.J.; Duncan, I.J.H. The preferences of hens for compact fluorescent over incandescent lighting. Can. J. Anim. Sci. 1992, 72, 203–211. [Google Scholar] [CrossRef]
- Hubert-Eicher, B.; Suter, A.; Spring-Stähli, P. Effects of colored light-emitting diode illumination on behavior and performance of laying hens. Poult. Sci. 2013, 92, 869–873. [Google Scholar] [CrossRef]
- Sultana, S.; Hassan, M.R.; Choe, H.S.; Ryu, K.S. The effect of monochromatic and mixed LED light colour ont he behaviour and fear responses of broiler chicken. Avian Biol. Res. 2013, 6, 207–214. [Google Scholar] [CrossRef]
- European Commission. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Decree 32/1999 (31.III.) FVM, On Animal Welfare Rules for the Keeping of Farm Animals. Available online: https://net.jogtar.hu/jogszabaly?docid=99900032.fvm (accessed on 10 April 2024).
- Cobb Broiler Management Guide. 2018. Available online: https://www.cobb-vantress.com/assets/5c7576a214/Broiler-guide-R1.pdf (accessed on 3 February 2024).
- Hungarian Feed Codex. Laboratory methods and operations. Magy. Közlöny 2003, 42, 3388–3436. (In Hungarian) [Google Scholar]
- Government Decree 40/2013 (II. 14.) On Animal Experiments. Available online: https://net.jogtar.hu/jogszabaly?docid=a1300040.kor (accessed on 10 April 2024).
- Lukács, G. Colour Measurement; Műszaki Kiadó: Budapest, Hungary, 1982; 341p. (In Hungarian) [Google Scholar]
- Honikel, K.O. Wasserbindungsvermogen von Fleisch. Fleischwirtschaft 1987, 67, 418–428. [Google Scholar]
- AMSA—American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; American Meat Science Association: Champaign, IL, USA, 2015. [Google Scholar]
- Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 12 October 2023).
- Mendes, A.S.; Paixao, S.J.; Restelatto, R.; Morello, G.M.; Moura, D.J.; Possenti, J.C. Performance and preference exposed to different light sources. J. Appl. Poult. Res. 2013, 22, 62–70. [Google Scholar] [CrossRef]
- Archer, G.S. Comparison of incandescent, CFL, LED and bird level LED lighting: Growth, fear and stress. Int. J. Poult. Sci. 2015, 14, 449–455. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Collier, W.R.; Purswell, J.L.; Branton, S.L. Effects of light sources and intensity on broilers grown to heavy weights. Part 1: Growth performance, carcass characteristics, and welfare indices. Poult. Sci. 2016, 95, 727–735. [Google Scholar] [CrossRef]
- Rogers, A.G.; Pritchett, E.M.; Alphin, R.L.; Brannick, E.M.; Benson, E.R. II. Evaluation of the impact of alternative light technology on male broiler chicken stress. Poult. Sci. 2015, 94, 331–337. [Google Scholar] [CrossRef]
- Rogers, A.G.; Pritchett, E.M.; Alphin, R.L.; Brannick, E.M.; Benson, E.R. I. Evaluation of the impact of alternative light technology on male broiler chicken growth, feed conversion, and allometric characteristics. Poult. Sci. 2015, 94, 408–414. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Clark, D.; Harding, R. Myogenesis Muscle Growth and Structure. In Poultry Quality Evaluation, Quality Attributes and Consumer Values; Petracci, M., Berri, C., Eds.; Series in Food Science; Woodhead Publishing: Sawston, UK, 2017; pp. 29–49. [Google Scholar]
- Duclos, M.J.; Berri, C.; Bihan-Duval, E.L. Muscle Growth and Meat Quality. J. Appl. Poult. Res. 2007, 16, 107–112. [Google Scholar] [CrossRef]
- Wilhelm, A.E.; Maganhini, M.B.; Hernández-Blazquez, F.J.; Ida, E.I.; Shimokomaki, M. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 2010, 119, 1201–1204. [Google Scholar] [CrossRef]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 4, 828–836. [Google Scholar] [CrossRef]
- Vaskoska, R.; Ha, M.; Ong, L.; Chen, G.; White, J.; Gras, S.; Warner, R. Myosin sensitivity to thermal denaturation explains differences in water loss and shrinkage during cooking in muscles of district fibre types. Meat Sci. 2021, 179, 108521. [Google Scholar] [CrossRef]
- Mundalal, S.; Lorenzi, M.; Soglia, F.; Cavani, C.; Petracci, M. Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animal 2015, 9, 1670–1675. [Google Scholar]
- Ke, Y.Y.; Liu, W.J.; Wang, Z.X.; Chen, Y.X. Effects of monochromatic light on quality properties and antioxidation of meat in broilers. Poult. Sci. 2011, 90, 2632–2637. [Google Scholar] [CrossRef]
- Kannan, G.; Heath, J.H.; Wabeck, C.J.; Owens, S.L.; Mench, J.A. Elevated plasma corticosterone concentrations influence the onset of rigor mortis and meat color in broilers. Poult. Sci. 1998, 77, 322–328. [Google Scholar] [CrossRef]
- McKee, S.R.; Sams, A.R. Rigor mortis development at elevated temperatures induces pale exudative turkey meat characteristics. Poult. Sci. 1998, 77, 169–174. [Google Scholar] [CrossRef]
Age—Days | Temperature °C Recommended [35] | Temperature °C Real |
---|---|---|
0 | 33 | 33 |
7 | 30 | 30 |
14 | 27 | 27 |
21 | 24 | 24 |
28 | 21 | 22 |
35 | 19 | 22 |
42 | 18 | 26 |
Dietary Composition | |||
---|---|---|---|
Starter (1–14 d) | Grower (15–28 d) | Finisher (29–42 d) | |
Ingredient (%) | |||
Corn | 34.00 | 38.00 | 41.00 |
Wheat | 19.00 | 16.00 | 18.00 |
Extracted soy (46%) | 31.00 | 23.00 | 16.00 |
Extracted sunflower (37%) (unhulled) | 4.00 | 10.00 | 11.00 |
Corn gluten (60%) | 4.00 | 4.00 | 5.00 |
Sunflower oil | 3.50 | 5.00 | 5.30 |
Premix * | 0.40 | 0.40 | 0.40 |
Limestone | 1.20 | 1.10 | 0.90 |
L-lysine | 0.50 | 0.40 | 0.40 |
DL-Methionine | 0.30 | 0.25 | 0.20 |
L-Threonine | 0.15 | - | - |
MCP | 1.70 | 1.60 | 1.55 |
NaCl | 0.25 | 0.25 | 0.25 |
∑ | 100.00 | 100.00 | 100.00 |
Nutrient % | |||
Dry matter | 88.301 | 88.344 | 88.166 |
Metabolizable energy (AMEn) MJ/kg | 12.585 | 13.095 | 13.412 |
Crude protein | 22.805 | 21.200 | 19.455 |
Crude fat | 6.679 | 8.493 | 8.721 |
Crude fiber | 3.784 | 4.635 | 4.631 |
Lysine | 1.453 | 1.275 | 1.126 |
Av lysine | 1.399 | 1.217 | 1.120 |
D lysine | 1.255 | 1.110 | 0.999 |
Methionine | 0.712 | 0.634 | 0.611 |
Methionine + Cysteine | 1.023 | 0.961 | 0.873 |
D-Methionine + Cysteine | 0.963 | 0.885 | 0.811 |
Threonine | 1.028 | 0.824 | 0.756 |
D-Threonine | 0.846 | 0.756 | 0.685 |
Tryptophan | 0.286 | 0.265 | 0.233 |
D-Tryptophan | 0.215 | 0.182 | 0.155 |
Arginine | 1.312 | 1.243 | 1.062 |
Valine | 1.078 | 0.998 | 0.876 |
Calcium | 0.959 | 0.885 | 0.802 |
Phosphorus | 0.889 | 0.798 | 0.761 |
Coccidiostats | + | + | - |
Day 1 | Day 7 | Day 14 | Day 21 | Day 28 | Day 35 | Day 42 | |
---|---|---|---|---|---|---|---|
Mortality in the Group % (Piece) | |||||||
LED | 0 (0) | 0.5 (1) | 3 (5) | 3.5 (1) | 4 (1) | 4 (0) | 7 (6) |
IL | 0 (0) | 0.5 (1) | 3 (5) | 4.5 (3) | 4.5 (0) | 4.5 (0) | 7.5 (6) |
SEM | ±0.022 | ±0.043 | ±0.062 | ±0.067 | ±0.067 | ±0.068 | |
p-value | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |
Day 1 | Day 7 | Day 14 | Day 21 | Day 28 | Day 35 | Day 42 | |
---|---|---|---|---|---|---|---|
LED | 40.4 | 149.9 | 422.4 | 848.0 | 1403.0 | 2085.6 | 2560.0 |
IL | 40.7 | 142.9 | 399.3 | 823.5 | 1362.5 | 1978.7 | 2517.0 |
+LED-IL | 0.3 | 7.0 | 23.1 | 24.5 | 40.5 | 106.9 | 43.0 |
SEM | 0.11 | 0.97 | 3.01 | 5.19 | 8.20 | 11.50 | 14.35 |
p-value | N.S. | <0.001 | <0.001 | <0.05 | <0.05 | <0.001 | N.S. |
Days 1–7 | Days 8–14 | Days 15–21 | Days 22–28 | Days 29–35 | Days 36–42 | |
---|---|---|---|---|---|---|
Average daily weight gain (g) | ||||||
LED | 21.41 | 30.17 | 40.38 | 50.11 | 59.59 | 60.95 |
IL | 20.41 | 28.52 | 39.21 | 48.66 | 56.53 | 59.93 |
SEM | 0.44 | 1.35 | 2.34 | 3.71 | 5.21 | 6.48 |
p-value | <0.001 | <0.001 | <0.05 | <0.05 | <0.001 | N.S. |
Feed consumption (g/bird) | ||||||
LED | 123.7 | 335.1 | 626.9 | 975.2 | 1292.4 | 920.4 |
IL | 121.2 | 326.4 | 641.4 | 965.6 | 1193.2 | 1087.9 |
SEM | 0.10 | 0.42 | 1.19 | 1.75 | 3.50 | 3.37 |
p-value | N.S. | N.S. | N.S. | N.S. | N.S. | <0.01 |
Average daily feed consumption (g/bird) | ||||||
LED | 17.7 | 47.9 | 89.6 | 139.3 | 184.6 | 131.5 |
IL | 17.3 | 46.6 | 91.6 | 137.9 | 170.5 | 155.4 |
SEM | 0.05 | 0.21 | 0.53 | 0.76 | 1.89 | 2.44 |
p-value | N.S. | N.S. | N.S. | N.S. | N.S. | <0.01 |
Feed conversion ratio (kg/kg) | ||||||
LED | 0.83 | 1.09 | 1.29 | 1.48 | 1.61 | 1.72 |
IL | 0.85 | 1.13 | 1.33 | 1.52 | 1.65 | 1.77 |
SEM | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 |
p-value | N.S. | <0.05 | <0.05 | N.S. | N.S. | N.S. |
LED | IL | SEM | p-Value | ||
---|---|---|---|---|---|
Yield % | 76.41 | 72.72 | 1.38 | N.S. | |
Relative breast % | 24.46 | 23.76 | 0.58 | N.S. | |
Relative thigh % | 24.09 | 23.19 | 0.43 | N.S. | |
pH45 | 6.49 | 6.51 | 0.03 | N.S. | |
pH24 | 5.88 | 5.89 | 0.04 | N.S. | |
Drip loss % | 3.49 | 2.79 | 0.28 | N.S. | |
Thawing loss % | 3.05 | 3.41 | 0.35 | N.S. | |
Cooking loss % | 25.27 | 26.89 | 0.83 | N.S. | |
Cooling loss % | 8.96 | 9.03 | 0.20 | N.S. | |
Total kitchen losses % | 37.27 | 39.32 | 0.91 | N.S. | |
Shear force (g/s) | 1781.95 | 2098.82 | 0.08 | <0.001 | |
Color | L* | 60.12 | 59.80 | 0.49 | N.S. |
a* | 12.16 | 12.28 | 0.33 | N.S. | |
b* | 11.86 | 11.56 | 0.29 | N.S. |
% | LED | IL | SEM | p-Value |
---|---|---|---|---|
Moisture | 74.42 | 74.19 | 0.15 | N.S. |
Protein | 21.42 | 21.36 | 0.14 | N.S. |
Fat | 3.20 | 3.35 | 0.05 | N.S. |
Collagen | 1.18 | 1.20 | 0.01 | N.S. |
Ash | 2.38 | 2.40 | 0.02 | N.S. |
Salt | 1.23 | 1.27 | 0.02 | N.S. |
Item | Yield | R. Thigh | R. Breast | pH45 | pH24 | Drip Loss | Tha. Loss | Cook. Loss | Cool. Loss | T. kit. Loss. | S. Force | C. L* | C. a* | C. b* | Moisture | Protein | Fat | Collagen | Ash | Salt |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | - | 0.87 *** | 0.91 *** | 0.10 | −0.05 | 0.30 | 0.31 | −0.45 | 0.17 | −0.17 | −0.07 | 0.24 | −0.11 | −0.02 | −0.51 | 0.19 | 0.74 | 0.21 | −0.60 | −0.58 |
R. thigh | 0.90 *** | - | 0.82 *** | 0.12 | −0.15 | 0.32 | 0.31 | −0.41 | 0.09 | −0.16 | −0.11 | 0.08 | −0.10 | −0.09 | −0.51 | 0.18 | 0.73 | 0.16 | −0.63 | −0.58 |
R. breast | 0.93 *** | 0.69 *** | - | 0.15 | 0.05 | 0.16 | 0.17 | −0.59 | 0.16 | −0.32 | −0.07 | 0.31 | −0.24 | −0.09 | −0.50 | 0.18 | 0.73 | 0.28 | −0.54 | −0.58 |
pH45 | −0.06 | −0.13 | −0.01 | - | 0.16 | 0.65 | 0.63 * | 0.07 | 0.24 | 0.31 | 0.07 | −0.45 * | 0.40 | −0.07 | 0.06 | −0.36 | 0.63 | −0.68 | −0.95 * | −0.70 |
pH24 | 0.15 | 0.07 | 0.18 | −0.03 | - | 0.42 | 0.13 | 0.41 | −0.10 | 0.32 | −0.15 | −0.01 | −0.00 | −0.12 | −0.06 | −0.27 | −0.54 | −0.28 | 0.18 | 0.57 |
Drip loss | −0.14 | −0.26 | −0.00 | −0.03 | 0.57 | - | 0.62 | 0.34 | −0.12 | 0.45 | −0.37 | −0.54 | 0.26 | −0.08 | 0.38 | −0.58 | 0.58 | −0.83 | −0.91 * | −0.68 |
Tha. loss | 0.26 | 0.23 | 0.34 | 0.11 | 0.11 | 0.67 * | - | 0.61 | 0.37 | 0.83 ** | −0.53 | −0.67 * | 0.67 * | −0.12 | −0.17 | −0.07 | 0.34 | −0.63 | −0.78 | −0.36 |
Cook. loss | −0.15 | −0.21 | −0.16 | −0.48 | −0.09 | −0.25 | −0.49 | - | 0.19 | 0.94 * | −0.43 | −0.70 * | 0.42 | 0.10 | 0.16 | 0.05 | −0.46 | −0.42 | 0.09 | 0.45 |
Cool. loss | −0.43 | −0.32 | −0.48 | 0.48 | −0.09 | −0.04 | −0.14 | −0.40 | - | 0.40 | −0.07 | −0.12 | −0.01 | 0.31 | −0.46 | 0.36 | 0.39 | 0.03 | −0.46 | −0.15 |
T. kit. loss | −0.23 | −0.28 | −0.23 | −0.40 | −0.11 | −0.05 | −0.25 | 0.93 *** | −0.22 | - | −0.50 | −0.74 * | 0.53 | 0.07 | −0.02 | 0.06 | −0.13 | −0.55 | −0.32 | 0.14 |
S. force | 0.45 * | 0.45 * | 0.37 | 0.09 | 0.33 | −0.23 | −0.09 | 0.12 | 0.09 | 0.14 | - | 0.12 | 0.03 | −0.13 | −0.17 | 0.38 | −0.24 | 0.14 | 0.20 | 0.44 |
C. L* | 0.31 | 0.19 | 0.36 | 0.10 | 0.05 | −0.60 | −0.45 | −0.36 | 0.18 | −0.59 | 0.13 | - | −0.67 ** | 0.21 | −0.23 | 0.27 | 0.26 | 0.86 | 0.33 | −0.04 |
C. a* | −0.14 | −0.25 | −0.24 | −0.20 | −0.41 | 0.53 | 0.25 | 0.43 | −0.14 | 0.61 | −0.37 | −0.65 ** | - | −0.49 * | 0.13 | −0.25 | −0.21 | −0.79 | −0.35 | −0.04 |
C. b* | −0.19 | −0.28 | −0.07 | 0.18 | −0.23 | −0.47 | 0.01 | −0.64 * | 0.31 | −0.71 * | −0.11 | 0.62 ** | −0.57 ** | - | 0.28 | −0.25 | 0.59 | −0.31 | −0.15 | −0.42 |
Moisture | −0.76 | −0.62 | −0.80 | 0.18 | −0.48 | −0.30 | −0.67 | −0.60 | 0.95 | −0.45 | −0.60 | 0.45 | −0.21 | 0.32 | - | −0.93 * | 0.16 | −0.60 | −0.20 | −0.40 |
Protein | 0.56 | 0.45 | 0.59 | −0.40 | 0.73 | −0.49 | 0.56 | 0.63 | 0.95 * | 0.51 | 0.42 | −0.54 | 0.18 | −0.48 | −0.91 * | - | −0.44 | 0.70 | 0.50 | 0.68 |
Fat | 0.63 | 0.57 | 0.70 | 0.26 | −0.30 | −0.29 | 0.40 | 0.27 | −0.64 | 0.15 | 0.61 | 0.04 | 0.13 | 0.07 | −0.39 | 0.00 | - | −0.14 | −0.82 | −0.94 |
Collagen | 0.97 ** | 0.91 * | 0.99 *** | −0.07 | 0.37 | −0.09 | 0.36 | 0.66 | −0.95 * | 0.33 | 0.92 * | −0.08 | −0.14 | −0.25 | −0.84 | 0.66 | 0.65 | - | 0.61 | 0.40 |
Ash | 0.18 | 0.06 | 0.26 | −0.66 | 0.81 | −0.80 | 0.63 | 0.65 | −0.49 | 0.70 | 0.04 | −0.80 | 0.45 | −0.69 | −0.72 | 0.91 * | −0.23 | 0.35 | - | 0.87 |
Salt | 0.27 | 0.13 | 0.34 | −0.53 | 0.71 | 0.73 | 0.69 | 0.58 | −0.59 | 0.62 | 0.10 | −0.76 | 0.45 | −0.57 | −0.81 | 0.94 * | −0.13 | 0.42 | 0.98 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pap, T.I.; Szabó, R.T.; Bodnár, Á.; Pajor, F.; Egerszegi, I.; Podmaniczky, B.; Pacz, M.; Mezőszentgyörgyi, D.; Kovács-Weber, M. Effect of Lighting Methods on the Production, Behavior and Meat Quality Parameters of Broiler Chickens. Animals 2024, 14, 1827. https://doi.org/10.3390/ani14121827
Pap TI, Szabó RT, Bodnár Á, Pajor F, Egerszegi I, Podmaniczky B, Pacz M, Mezőszentgyörgyi D, Kovács-Weber M. Effect of Lighting Methods on the Production, Behavior and Meat Quality Parameters of Broiler Chickens. Animals. 2024; 14(12):1827. https://doi.org/10.3390/ani14121827
Chicago/Turabian StylePap, Tibor István, Rubina Tünde Szabó, Ákos Bodnár, Ferenc Pajor, István Egerszegi, Béla Podmaniczky, Marcell Pacz, Dávid Mezőszentgyörgyi, and Mária Kovács-Weber. 2024. "Effect of Lighting Methods on the Production, Behavior and Meat Quality Parameters of Broiler Chickens" Animals 14, no. 12: 1827. https://doi.org/10.3390/ani14121827
APA StylePap, T. I., Szabó, R. T., Bodnár, Á., Pajor, F., Egerszegi, I., Podmaniczky, B., Pacz, M., Mezőszentgyörgyi, D., & Kovács-Weber, M. (2024). Effect of Lighting Methods on the Production, Behavior and Meat Quality Parameters of Broiler Chickens. Animals, 14(12), 1827. https://doi.org/10.3390/ani14121827