Cytokine-Supplemented Maturation Medium Enhances Cytoplasmic and Nuclear Maturation in Bovine Oocytes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oocyte Collection and In Vitro Maturation
2.2. Nuclear Maturation
Immature Oocyte Nuclear Staining
2.3. Meiotic Spindle Staining
2.4. Cytoplasmic Maturation
2.4.1. Mitochondrial Distribution and Mass
2.4.2. Mitochondrial Membrane Potential (MMP)
2.4.3. Mitochondrial DNA Content
2.4.4. Cortical Granule Distribution
2.5. Statistical Analysis
3. Results
3.1. Nuclear Maturation
3.1.1. Immature Oocyte Nuclear Staining
3.1.2. Meiotic Spindle Staining
3.2. Cytoplasmic Maturation
3.2.1. Mitochondrial Distribution and Mass
3.2.2. Mitochondrial Membrane Potential (MMP)
3.2.3. Mitochondrial DNA Content
3.2.4. Cortical Granule Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leibfried-Rutledge, M.L.; Critser, E.S.; Eyestone, W.H.; Northey, D.L.; First, N.L. Development potential of bovine oocytes matured in vitro or in vivo. Biol. Reprod. 1987, 36, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Caetano, L.C.; Verruma, C.G.; Pinaffi, F.L.; Jardim, I.B.; Furtado, G.P.; Silva, L.A.; Furtado, C.L.; de Sá Rosa, A.C.J. In vivo and in vitro matured bovine oocytes present a distinct pattern of single-cell gene expression. Zygote 2023, 31, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Naspinska, R.; Moreira da Silva, M.H.; Moreira da Silva, F. Current Advances in Bovine In Vitro Maturation and Embryo Production Using Different Antioxidants: A Review. J. Dev. Biol. 2023, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.S.; Canha-Gouveia, A.; París-Oller, E.; Coy, P. Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number. Theriogenology 2019, 126, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, Y.; Hao, H.; Du, W.; Pang, Y.; Zhao, S.; Zou, H.; Zhu, H.; Zhang, P.; Zhao, X. Supplementation of EGF, IGF-1, and Connexin 37 in IVM Medium Significantly Improved the Maturation of Bovine Oocytes and Vitrification of Their IVF Blastocysts. Genes 2022, 13, 805. [Google Scholar] [CrossRef] [PubMed]
- Field, S.L.; Dasgupta, T.; Cummings, M.; Orsi, N.M. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol. Reprod. Dev. 2014, 81, 284–314. [Google Scholar] [CrossRef]
- Du, C.; Davis, J.S.; Chen, C.; Li, Z.; Cao, Y.; Sun, H.; Shao, B.S.; Lin, Y.X.; Wang, Y.S.; Yang, L.G.; et al. FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro. Reproduction 2021, 161, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Wu, G.; Yuan, D.; Jia, B.; Liu, C.; Zhu, S.; Hou, Y. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 2014, 81, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Kordowitzki, P.; Krajnik, K.; Skowronska, A.; Skowronski, M.T. Pleiotropic Effects of IGF1 on the Oocyte. Cells 2022, 11, 1610. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Sairkaya, H.; Misirliolu, M.; Gümen, A.; Parrish, J.J.; Memili, E. Leptin and IGF-I improve bovine embryo quality in vitro. Anim. Reprod. 2017, 14, 1151–1160. [Google Scholar] [CrossRef]
- Yuan, Y.; Spate, L.D.; Redel, B.K.; Tian, Y.; Zhou, J.; Prather, R.S.; Roberts, R.M. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proc. Natl. Acad. Sci. USA 2017, 114, E5796–E5804. [Google Scholar] [CrossRef] [PubMed]
- Keim, J.; Liu, Y.; Regouski, M.; Stott, R.; Singina, G.N.; White, K.L.; Polejaeva, I.A. Cytokine supplemented maturation medium improved development to term following somatic cell nuclear transfer (SCNT) in cattle. Reprod. Fertil. Dev. 2023, 35, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Nahar, A.; Becker, J.; Pasquariello, R.; Herrick, J.; Rogers, H.; Zhang, M.; Schoolcraft, W.; Krisher, R.L.; Yuan, Y. FGF2, LIF, and IGF-1 (FLI) supplementation improves mouse oocyte in vitro maturation via increased glucose metabolism. Biol. Reprod. 2024, 110, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Amargant, F.; Zhou, L.T.; Yuan, Y.; Nahar, A.; Krisher, R.L.; Spate, L.D.; Roberts, R.M.; Prather, R.S.; Rowell, E.E.; Laronda, M.M.; et al. FGF2, LIF, and IGF1 (FLI) supplementation during human in vitro maturation enhances markers of gamete competence. Hum. Reprod. 2023, 38, 1938–1951. [Google Scholar] [CrossRef] [PubMed]
- Strączyńska, P.; Papis, K.; Morawiec, E.; Czerwiński, M.; Gajewski, Z.; Olejek, A.; Bednarska-Czerwińska, A. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. Reprod. Biol. Endocrinol. 2022, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Eichenlaub-Ritter, U.; Schmiady, H.; Kentenich, H.; Soewarto, D. Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: Indicators of asynchrony in nuclear and cytoplasmic maturation. Hum. Reprod. 1995, 10, 2343–2349. [Google Scholar] [CrossRef] [PubMed]
- Combelles, C.M.H.; Cekleniak, N.A.; Racowsky, C.; Albertini, D.F. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum. Reprod. 2002, 17, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Tollner, T.L.; Hu, Z.; Dai, M.; Li, X.; Guan, H.; Shan, D.; Zhang, X.; Lv, J.; Huang, C.; et al. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol. Reprod. Dev. 2012, 79, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Bavister, B.D.; Squirrell, J.M. Mitochondrial distribution and function in oocytes and early embryos. Hum. Reprod. 2000, 15, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, M.; Machado, S.A.; Stojkovic, P.; Zakhartchenko, V.; Hutzler, P.; Gonçalves, P.B.; Wolf, E. Mitochondrial Distribution and Adenosine Triphosphate Content of Bovine Oocytes Before and After In Vitro Maturation: Correlation with Morphological Criteria and Developmental Capacity After In Vitro Fertilization and Culture. Biol. Reprod. 2001, 64, 904–909. [Google Scholar] [CrossRef]
- Jeseta, M.; Ctvrtlikova Knitlova, D.; Hanzalova, K.; Hulinska, P.; Hanulakova, S.; Milakovic, I.; Nemcova, L.; Kanka, J.; Machatkova, M. Mitochondrial Patterns in Bovine Oocytes with Different Meiotic Competence Related to Their in vitro Maturation. Reprod. Domest. Anim. 2014, 49, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Niimura, S.; Hosoe, M. Changes in Cortical Granule Distribution within Bovine Oocytes during Maturation and Fertilization In Vitro. J. Reprod. Dev. 1995, 41, 103–108. [Google Scholar] [CrossRef]
- Bauld, R.; Sutherland, G.R.; Bain, A.D. Chromosome studies in investigation of stillbirths and neonatal deaths. Arch. Dis. Child. 1974, 49, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Eppig, J.J. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod. Fertil. Dev. 1996, 8, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Meiyu, Q.; Liu, D.; Roth, Z. IGF-I slightly improves nuclear maturation and cleavage rate of bovine oocytes exposed to acute heat shock in vitro. Zygote 2015, 23, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, M.G.; Malvezzi, H.; Paz, C.C.P.; Ferriani, R.A.; Navarro, P.A.A.S. Follicular fluid from infertile women with mild endometriosis may compromise the meiotic spindles of bovine metaphase II oocytes. Hum. Reprod. 2014, 29, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Lodde, V.; Luciano, A.M.; Musmeci, G.; Miclea, I.; Tessaro, I.; Aru, M.; Albertini, D.F.; Franciosi, F. A Nuclear and Cytoplasmic Characterization of Bovine Oocytes Reveals That Cysteamine Partially Rescues the Embryo Development in a Model of Low Ovarian Reserve. Animals 2021, 11, 1936. [Google Scholar] [CrossRef] [PubMed]
- Agnello, M.; Morici, G.; Rinaldi, A.M. A method for measuring mitochondrial mass and activity. Cytotechnology 2008, 56, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Hartig, S.M. Basic Image Analysis and Manipulation in ImageJ. Curr. Protoc. Mol. Biol. 2013, 102, 14.15.1–14.15.12. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, S.; Liu, W.; Wang, Y.; Huang, G. Effect of vitrification on mitochondrial membrane potential in human metaphase II oocytes. J. Assist. Reprod. Genet. 2012, 29, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.L.; Russell, D.L.; Wong, S.L.; Chen, M.; Tsai, T.S.; St John, J.C.; Norman, R.J.; Febbraio, M.A.; Carroll, J.; Robker, R.L. Mitochondrial dysfunction in oocytes of obese mothers: Transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 2015, 142, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Vázquez, C.; López-Gatius, F.; García-Ispierto, I.; Maya-Soriano, M.J.; Hunter, R.H.F.; López-Béjar, M. Does heat stress provoke the loss of a continuous layer of cortical granules beneath the plasma membrane during oocyte maturation? Zygote 2010, 18, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Hosoe, M.; Shioya, Y. Distribution of cortical granules in bovine oocytes classified by cumulus complex. Zygote 1997, 5, 371–376. [Google Scholar] [CrossRef] [PubMed]
- King, W.A.; Bousquet, D.; Greve, T.; Goff, A.Κ. Meiosis in bovine oocytes matured in vitro and in vivo. Acta Vet. Scand. 1986, 27, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Tani, T.; Kato, Y.; Tsunoda, Y. Aberrant spindle assembly checkpoint in bovine somatic cell nuclear transfer oocytes. Front. Biosci. 2007, 12, 2693–2705. [Google Scholar] [CrossRef] [PubMed]
- Wasielak-Politowska, M.; Kordowitzki, P. Chromosome Segregation in the Oocyte: What Goes Wrong during Aging. Int. J. Mol. Sci. 2022, 23, 2880. [Google Scholar] [CrossRef]
- Pasquariello, R.; Ermisch, A.F.; Silva, E.; McCormick, S.; Logsdon, D.; Barfield, J.P.; Schoolcraft, W.B.; Krisher, R.L. Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans. Biol. Reprod. 2019, 100, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Van Blerkom, J. Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc. Natl. Acad. Sci. USA 1991, 88, 5031–5035. [Google Scholar] [CrossRef] [PubMed]
- Aghanoori, M.-R.; Smith, D.R.; Shariati-Ievari, S.; Ajisebutu, A.; Nguyen, A.; Desmond, F.; Jesus, C.H.; Zhou, X.; Calcutt, N.A.; Aliani, M.; et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol. Metab. 2019, 20, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, A.I.; Ng, S.Y.; Mattina, S.R.; Ljubicic, V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol. Med. 2023, 29, 512–529. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial Fusion and Fission: The fine-tune balance for cellular homeostasis. FASEB J. 2022, 35, e21620. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.R.; Burke, N.; Dongworth, R.K.; Hausenloy, D.J. Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease. Br. J. Pharmacol. 2014, 171, 1890–1906. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Whitworth, K.; Spate, L.; Walters, E.; Zhao, J.; Prather, R. Regulation of oocyte mitochondrial DNA copy number by follicular fluid, EGF, and neuregulin 1 during in vitro maturation affects embryo development in pigs. Theriogenology 2012, 78, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, A.; Smitz, J.E.J.; Sukhikh, G.T.; Mazunin, I. The Role of Mitochondria in Oocyte Maturation. Cells 2021, 10, 2484. [Google Scholar] [CrossRef] [PubMed]
- Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods Mol. Biol. 2018, 1782, 357–381. [Google Scholar] [PubMed]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hosoe, M.; Li, R.; Shioya, Y. Development of the competence of bovine oocytes to release cortical granules and block polyspermy after meiotic maturation. Dev. Growth Differ. 1997, 39, 607–615. [Google Scholar] [CrossRef]
- Kishimoto, T. Cell-cycle control during meiotic maturation. Curr. Opin. Cell Biol. 2003, 15, 654–663. [Google Scholar] [CrossRef]
- Khan, M.Z.; Khan, A.; Xiao, J.; Ma, Y.; Ma, J.; Gao, J.; Cao, Z. Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Animals 2020, 10, 2107. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, M.; Mesalam, A.; Khalil, A.A.K.; Idrees, M.; Ahn, M.-J.; Mesalam, A.A.; Kong, I.-K. Downregulation of PI3K/AKT/mTOR Pathway in Juglone-Treated Bovine Oocytes. Antioxidants 2023, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Kalous, J.; Aleshkina, D.; Anger, M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023, 12, 1830. [Google Scholar] [CrossRef] [PubMed]
Group | Nuclear Stage | ||||
---|---|---|---|---|---|
GV | GVBD | Metaphase I | Anaphase I | Telophase I | |
FLI | 4/133 (2.16 ± 1.39%) a | 29/133 (21.5 ± 2.43%) a | 31/133 (23.0 ± 2.13%) a | 23/133 (17.1 ± 2.48%) a | 46/133 (36.2 ± 3.76%) a |
BMM | 21/153 (12.5 ± 3.13%) b | 36/153 (24.2 ± 2.20%) a | 36/153 (23.2 ± 2.97%) a | 33/153 (21.6 ± 1.29%) a | 27/153 (18.6 ± 2.73%) b |
Group | Mitochondrial Distribution | ||
---|---|---|---|
Diffuse | Aggregates | Cortical | |
FM | 121/138 (88.3 ± 3.77%) a | 1/138 (0.69 ± 0.69%) a | 16/138 (11.0 ± 3.23%) a |
FNM | 37/60 (59.3 ± 6.34%) b | 10/60 (17.4 ± 6.27%) a | 13/60 (23.3 ± 3.19%) b |
CM | 107/138 (76.7 ± 3.96%) c | 7/138 (5.04 ± 1.33%) a | 24/138 (18.3 ± 3.81%) c |
CNM | 49/64 (77.0 ± 4.94%) ac | 3/64 (4.03 ± 2.88%) a | 12/64 (19.0 ± 3.63%) ac |
Group | Cortical Granule Distribution | ||
---|---|---|---|
Pattern I | Pattern II | Pattern III | |
FLI | 34/76 (44.3 ± 7.20%) a | 34/76 (42.1 ± 8.51%) a | 8/76 (13.6 ± 5.70%) a |
BMM | 23/84 (25.9 ± 4.63%) b | 46/84 (54.6 ± 3.37%) a | 15/84 (19.5 ± 4.79%) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blocher, R.; Liu, Y.; Patrick, T.; Polejaeva, I.A. Cytokine-Supplemented Maturation Medium Enhances Cytoplasmic and Nuclear Maturation in Bovine Oocytes. Animals 2024, 14, 1837. https://doi.org/10.3390/ani14121837
Blocher R, Liu Y, Patrick T, Polejaeva IA. Cytokine-Supplemented Maturation Medium Enhances Cytoplasmic and Nuclear Maturation in Bovine Oocytes. Animals. 2024; 14(12):1837. https://doi.org/10.3390/ani14121837
Chicago/Turabian StyleBlocher, Renata, Ying Liu, Tayler Patrick, and Irina A. Polejaeva. 2024. "Cytokine-Supplemented Maturation Medium Enhances Cytoplasmic and Nuclear Maturation in Bovine Oocytes" Animals 14, no. 12: 1837. https://doi.org/10.3390/ani14121837
APA StyleBlocher, R., Liu, Y., Patrick, T., & Polejaeva, I. A. (2024). Cytokine-Supplemented Maturation Medium Enhances Cytoplasmic and Nuclear Maturation in Bovine Oocytes. Animals, 14(12), 1837. https://doi.org/10.3390/ani14121837