Nutritional Evaluation of Milk Thistle Meal as a Protein Feedstuff for Diets of Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Sampling and Chemical Composition
2.2. Protein and Carbohydrate Fractions
2.3. In Situ Rumen Degradation
2.4. Intestinal Digestion
2.5. Molecular Structural Characteristics of Milk Thistle Protein Spectra
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Amino Acid Profile
3.3. Protein and Carbohydrate Fraction
3.4. In Situ Rumen Degradation and Small Intestinal Digestibility
3.5. Spectral Molecular Structure Characteristics of Milk Thistle Meal and Seven Conventional Protein Feedstuffs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duguma, B.; Janssens, G.P.J. Assessment of Feed Resources, Feeding Practices and Coping Strategies to Feed Scarcity by Smallholder Urban Dairy Producers in Jimma Town, Ethiopia. SpringerPlus 2016, 5, 717. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.L.; Swanson, K.C. Review: Nutritional Regulation of Intestinal Starch and Protein Assimilation in Ruminants. Animal 2020, 14, s17–s28. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism. Molecules 2017, 22, 1942. [Google Scholar] [CrossRef] [PubMed]
- Marceddu, R.; Dinolfo, L.; Carrubba, A.; Sarno, M.; Di Miceli, G. Milk Thistle (Silybum marianum L.) as a Novel Multipurpose Crop for Agriculture in Marginal Environments: A Review. Agronomy 2022, 12, 729. [Google Scholar] [CrossRef]
- Elhassaneen, Y.A.; Nasef, A.Z.; Arafa, R.S.; Bayomi, A.I. Bioactive Compounds and Antioxidant Activities of Milk Thistle (Silybum marianum) Extract and Their Potential Roles in the Prevention of Diet-Induced Obesity Complications. AJFST 2023, 11, 70–85. [Google Scholar] [CrossRef]
- Abenavoli, L.; Capasso, R.; Milic, N.; Capasso, F. Milk Thistle in Liver Diseases: Past, Present, Future. Phytother. Res. 2010, 24, 1423–1432. [Google Scholar] [CrossRef]
- Rayni, P.M.; Dayani, O.; Shahrbabak, M.S.; Hosseini, M.M.S. Growth Performance, Carcass Traits, and Physicochemical Characteristics of Longissimus Thoracis of Fattening Lambs Feeding Milk Thistle (Silybum mariamum) Seed Powder. Small Rumin. Res. 2023, 227, 107082. [Google Scholar] [CrossRef]
- Grela, E.R.; Świątkiewicz, M.; Florek, M.; Wojtaszewska, I. Impact of Milk Thistle (Silybum marianum L.) Seeds in Fattener Diets on Pig Performance and Carcass Traits and Fatty Acid Profile and Cholesterol of Meat, Backfat and Liver. Livest. Sci. 2020, 239, 104180. [Google Scholar] [CrossRef]
- Karaiskou, C.; Kasapidou, E.; Michailidis, G.; Markantonatos, X.; Basdagianni, Z. Effect of Dietary Milk Thistle (Silybum marianum L.) Oil Supplementation on Animal Performance and Milk Fatty Acid Composition in Dairy Ewes. Small Rumin. Res. 2021, 203, 106493. [Google Scholar] [CrossRef]
- Gholamalian, R.; Mahdavi, A.H.; Riasi, A. Hepatic Fatty Acids Profile, Oxidative Stability and Egg Quality Traits Ameliorated by Supplementation of Alternative Lipid Sources and Milk Thistle Meal. Anim. Physiol. Nutr. 2022, 106, 860–871. [Google Scholar] [CrossRef]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S. Milk Thistle Seed Oil Constituents from Different Varieties Grown in Iran. J. Am. Oil Chem. Soc. 2009, 86, 643–649. [Google Scholar] [CrossRef]
- Abascal, K.; Yarnell, E. The Many Faces of Silybum marianum (Milk Thistle): Part 2—Clinical Uses, Safety, and Types of Preparations. Altern. Complement. Ther. 2003, 9, 251–256. [Google Scholar] [CrossRef]
- Murray, M.T. Silybum marianum (Milk Thistle). In Textbook of Natural Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 851–855.e1. ISBN 978-0-323-52342-4. [Google Scholar]
- Porwal, O.; Mohammed Ameen, M.S.; Anwer, E.T.; Uthirapathy, S.; Ahamad, J.; Tahsin, A. Silybum marianum (Milk Thistle): Review on Its Chemistry, Morphology, Ethno Medical Uses, Phytochemistry and Pharmacological Activities. J. Drug Deliv. Ther. 2019, 9, 199–206. [Google Scholar] [CrossRef]
- Aristides, L.G.A.; Venancio, E.J.; Alfieri, A.A.; Otonel, R.A.A.; Frank, W.J.; Oba, A. Carcass Characteristics and Meat Quality of Broilers Fed with Different Levels of Saccharomyces cerevisiae Fermentation Product. Poult. Sci. 2018, 97, 3337–3342. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zeng, N.; Jiang, S.; Wang, X.; Yan, H.; Gao, C. Dietary Replacement of Soybean Meal by Fermented Feedstuffs for Aged Laying Hens: Effects on Laying Performance, Egg Quality, Nutrient Digestibility, Intestinal Health, Follicle Development, and Biological Parameters in a Long-Term Feeding Period. Poult. Sci. 2023, 102, 102478. [Google Scholar] [CrossRef] [PubMed]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and Novel Feeds for Ruminants: Nutritive Value, Product Quality and Environmental Aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed]
- Hashemi Jabali, N.S.; Mahdavi, A.H.; Ansari Mahyari, S.; Sedghi, M.; Akbari Moghaddam Kakhki, R. Effects of Milk Thistle Meal on Performance, Ileal Bacterial Enumeration, Jejunal Morphology and Blood Lipid Peroxidation in Laying Hens Fed Diets with Different Levels of Metabolizable Energy. Anim. Physiol. Nutr. 2018, 102, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Higgs, R.J.; Chase, L.E.; Ross, D.A.; Van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein System Feed Library and Analyzing Model Sensitivity to Feed Inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef]
- Fox, D.G.; Barry, M.C.; Pitt, R.E.; Roseler, D.K.; Stone, W.C. Application of the Cornell Net Carbohydrate and Protein Model for Cattle Consuming Forages. J. Anim. Sci. 1995, 73, 267. [Google Scholar] [CrossRef]
- Wang, E.; Wang, J.; Lv, J.; Sun, X.; Kong, F.; Wang, S.; Wang, Y.; Yang, H.; Cao, Z.; Li, S.; et al. Comparison of Ruminal Degradability, Indigestible Neutral Detergent Fiber, and Total-Tract Digestibility of Three Main Crop Straws with Alfalfa Hay and Corn Silage. Animals 2021, 11, 3218. [Google Scholar] [CrossRef] [PubMed]
- Theodoridou, K.; Yu, P. Application Potential of ATR-FT/IR Molecular Spectroscopy in Animal Nutrition: Revelation of Protein Molecular Structures of Canola Meal and Presscake, As Affected by Heat-Processing Methods, in Relationship with Their Protein Digestive Behavior and Utilization for Dairy Cattle. J. Agric. Food Chem. 2013, 61, 5449–5458. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Q.; Yuan, X.; Yang, H.; Qin, S.; Hong, L.; Pu, L.; Li, L.; Zhang, P.; Zhang, J. Study of the Molecular Structure of Proteins in Fermented Maize-Soybean Meal-Based Rations Based on FTIR Spectroscopy. Food Chem. 2024, 441, 138310. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysts, 17th ed.; AOAC International: Arlington, VA, USA, 2000; Volume 1. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Cheng, C.; Lv, J.; Lambo, M.T.; Zhang, G.; Li, Y.; Zhang, Y. Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle. Animals 2022, 12, 3488. [Google Scholar] [CrossRef] [PubMed]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: II. Carbohydrate and Protein Availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Nuez-Ortín, W.G.; Yu, P. Estimation of Ruminal and Intestinal Digestion Profiles, Hourly Effective Degradation Ratio and Potential N to Energy Synchronization of Co-Products from Bioethanol Processing: Ruminal and Intestinal Digestion Profiles of Co-Products of Bioethanol Production. J. Sci. Food Agric. 2010, 90, 2058–2067. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Stern, M.D. A Three-Step in Vitro Procedure for Estimating Intestinal Digestion of Protein in Ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef]
- Stastnik, O.; Pavlata, L.; Mrkvicova, E. The Milk Thistle Seed Cakes and Hempseed Cakes Are Potential Feed for Poultry. Animals 2020, 10, 1384. [Google Scholar] [CrossRef]
- Šťastní k, O.; Jůzl, M.; Karásek, F.; Štenclová, H.; Nedomová, Š.; Pavlata, L.; Mrkvicová, E.; Doležal, P.; Jarošová, A. The Effect of Feeding Milk Thistle Seed Cakes on Quality Indicators of Broiler Chickens Meat. Potravin. Slovak J. Food Sci. 2016, 10, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A. Using ADF and NDF in Dairy Cattle Diet Formulation—A Western Canadian Perspective. Anim. Feed Sci. Technol. 1996, 58, 101–111. [Google Scholar] [CrossRef]
- Shi, R.; Dong, S.; Mao, J.; Wang, J.; Cao, Z.; Wang, Y.; Li, S.; Zhao, G. Dietary Neutral Detergent Fiber Levels Impacting Dairy Cows’ Feeding Behavior, Rumen Fermentation, and Production Performance during the Period of Peak-Lactation. Animals 2023, 13, 2876. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition (7 Revised); National Academies Press: Washington, DC, USA, 2001; p. 25806. ISBN 978-0-309-67777-6.
- Arora, D.S.; Sharma, R.K. Enhancement in in Vitro Digestibility of Wheat Straw Obtained from Different Geographical Regions during Solid State Fermentation by White Rot Fungi. BioResources 2009, 4, 909–920. [Google Scholar] [CrossRef]
- Van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. Fungal Treated Lignocellulosic Biomass as Ruminant Feed Ingredient: A Review. Biotechnol. Adv. 2015, 33, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra-Hijar, G.; Peyraud, J.L.; Lemosquet, S.; Molina-Alcaide, E.; Boudra, H.; Nozière, P.; Ortigues-Marty, I. Dietary Carbohydrate Composition Modifies the Milk N Efficiency in Late Lactation Cows Fed Low Crude Protein Diets. Animal 2014, 8, 275–285. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Q.; Lv, J.; Jia, X.; Gao, J.; Zhang, Y.; Wang, L. Associations of Protein Molecular Structures with Their Nutrient Supply and Biodegradation Characteristics in Different Byproducts of Seed-Used Pumpkin. Animals 2022, 12, 956. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.G.; Broderick, G.A. A 100-Year Review: Protein and Amino Acid Nutrition in Dairy Cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Calsamiglia, S.; Stern, M.D. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 2005, 88, E9–E21. [Google Scholar] [CrossRef]
- Storm, E.; Ørskov, E.R. The Nutritive Value of Rumen Micro-Organisms in Ruminants: 1. Large-Scale Isolation and Chemical Composition of Rumen Micro-Organisms. Br. J. Nutr. 1983, 50, 463–470. [Google Scholar] [CrossRef]
- Broderick, G.A.; Wallace, R.J.; Ørskov, E.R. Control of Rate and Extent of Protein Degradation. In Physiological Aspects of Digestion and Metabolism in Ruminants; Elsevier: Amsterdam, The Netherlands, 1991; pp. 541–592. ISBN 978-0-12-702290-1. [Google Scholar]
- Jung, H.G.; Deetz, D.A. Cell Wall Lignification and Degradability. In ASA, CSSA, and SSSA Books; Jung, H.G., Buxton, D.R., Hatfield, R.D., Ralph, J., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2015; pp. 315–346. ISBN 978-0-89118-238-2. [Google Scholar]
- Chalupa, W.; Sniffen, C.J. Protein and Amino Acid Nutrition of Lactating Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 1991, 7, 353–372. [Google Scholar] [CrossRef]
- Elbaz, A.M.; El-sheikh, S.E.; Abdel-Maksoud, A. Growth Performance, Nutrient Digestibility, Antioxidant State, Ileal Histomorphometry, and Cecal Ecology of Broilers Fed on Fermented Canola Meal with and without Exogenous Enzymes. Trop. Anim. Health Prod. 2023, 55, 46. [Google Scholar] [CrossRef] [PubMed]
- Damiran, D.; Yu, P. Molecular Basis of Structural Makeup of Hulless Barley in Relation to Rumen Degradation Kinetics and Intestinal Availability in Dairy Cattle: A Novel Approach. J. Dairy Sci. 2011, 94, 5151–5159. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Yu, P. Protein Secondary Structures (α-Helix and β-Sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach. Br. J. Nutr. 2005, 94, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Nuez-Ortín, W.G.; Yu, P. Effects of Bioethanol Plant and Coproduct Type on the Metabolic Characteristics of the Proteins in Dairy Cattle. J. Dairy Sci. 2010, 93, 3775–3783. [Google Scholar] [CrossRef] [PubMed]
- Samadi; Theodoridou, K.; Yu, P. Detect the Sensitivity and Response of Protein Molecular Structure of Whole Canola Seed (Yellow and Brown) to Different Heat Processing Methods and Relation to Protein Utilization and Availability Using ATR-FT/IR Molecular Spectroscopy with Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 105, 304–313. [Google Scholar] [CrossRef]
- Xin, H.; Yu, P. Chemical Profile, Energy Values, and Protein Molecular Structure Characteristics of Biofuel/Bio-Oil Co-Products (Carinata Meal) in Comparison with Canola Meal. J. Agric. Food Chem. 2013, 61, 3926–3933. [Google Scholar] [CrossRef]
Items | Content |
---|---|
Ingredients | |
Chinese wildrye | 42.69 |
Corn silage | 15.77 |
Corn | 13.27 |
Wheat bran | 3.75 |
Molasses | 0.99 |
Soybean meal | 3.18 |
Dried distillers’ grain | 5.38 |
Cottonseed meal | 2.08 |
Corn fiber feed | 7.45 |
Corn germ meal | 4.96 |
Premix 1 | 0.50 |
Nutrient composition 2 | |
NEL/(Mcal/kg) | 1.30 |
CP | 14.87 |
NDF | 50.81 |
ADF | 31.60 |
Ca | 0.62 |
P | 0.41 |
Items | Soybean Meal | Canola Meal | Cottonseed Meal | Palm Kernel Meal | Rice Bran Meal | Corn Germ Meal | Sesame Meal | Milk Thistle Meal | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
DM | 88.77 d | 90.78 a | 90.43 ab | 90.09 bc | 88.63 d | 89.60 c | 88.77 d | 89.62 c | 0.148 | <0.0001 |
Ash | 7.31 cd | 6.94 cd | 6.62 d | 4.72 e | 11.27 b | 1.25 f | 19.50 a | 7.97 c | 0.248 | <0.0001 |
EE | 2.29 cd | 3.29 b | 2.80 bcd | 7.86 a | 2.03 d | 2.92 bc | 2.34 cd | 0.20 e | 0.179 | <0.0001 |
CP | 44.54 c | 40.28 d | 48.16 a | 16.42 g | 16.72 g | 20.90 f | 46.09 b | 25.57 e | 0.328 | <0.0001 |
SP | 8.40 b | 9.01 b | 4.76 d | 0.39 e | 3.42 d | 4.32 d | 10.65 a | 6.74 c | 0.348 | <0.0001 |
NDICP | 12.71 b | 5.62 e | 5.71 e | 10.23 c | 5.57 e | 8.26 d | 15.36 a | 6.13 e | 0.416 | <0.0001 |
ADICP | 0.58 e | 1.95 c | 1.02 d | 1.31 d | 0.46 e | 0.37 e | 4.01 a | 2.61 b | 0.0759 | <0.0001 |
NPN | 0.59 d | 4.98 b | 2.84 c | 0.00 d | 2.20 c | 2.49 c | 8.61 a | 4.34 b | 0.258 | <0.0001 |
NDF | 29.19 b | 33.05 b | 35.57 b | 61.64 a | 31.69 b | 56.93 a | 35.72 b | 59.19 a | 1.564 | <0.0001 |
ADF | 8.90 f | 20.97 c | 17.88 cd | 34.27 b | 12.75 e | 15.11 ed | 17.92 cd | 43.15 a | 0.697 | <0.0001 |
ADL | 1.65 e | 8.17 bc | 7.00 c | 9.28 b | 4.53 d | 1.82 e | 7.10 c | 16.83 a | 0.294 | <0.0001 |
Starch | 2.29 c | 0.23 e | 0.22 e | 0.00 f | 6.51 b | 6.73 a | 0.00 f | 0.82 d | 0.0186 | <0.0001 |
NFC | 16.67 b | 16.46 b | 6.84 cd | 9.36 c | 38.29 a | 18.00 b | 2.47 d | 7.08 cd | 1.225 | <0.0001 |
Items | Soybean Meal | Canola Meal | Cottonseed Meal | Palm Kernel Meal | Rice Bran Meal | Corn Germ Meal | Sesame Meal | Milk Thistle Meal | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Aspartate | 5.45 a | 2.49 d | 4.36 b | 1.22 g | 1.33 f | 1.35 f | 2.59 c | 1.79 e | 0.017 | <0.0001 |
Threonine | 1.68 a | 0.70b bc | 1.01 b | 0.32 c | 0.39 c | 0.56 bc | 0.68 bc | 0.78 bc | 0.120 | <0.0001 |
Serine | 2.59 a | 0.56 d | 0.83 c | 0.28 f | 0.28 f | 0.42 e | 0.40 e | 1.12 b | 0.006 | <0.0001 |
Glutamic acid | 8.84 b | 6.66 d | 10.35 a | 3.21 f | 2.00 h | 2.90 g | 7.08 c | 3.93 e | 0.013 | <0.0001 |
Glycine | 2.07 a | 1.92 c | 2.02 b | 0.71 g | 0.80 f | 1.07 e | 1.87 d | 1.10 e | 0.008 | <0.0001 |
Alanine | 2.05 a | 1.61 d | 1.80 c | 0.63 h | 0.89 f | 1.21 e | 1.87 b | 0.82 g | 0.008 | <0.0001 |
Cysteine | 0.68 a | 0.31 d | 0.55 c | 0.11 g | 0.20 e | 0.14 f | 0.30 d | 0.61 b | 0.005 | <0.0001 |
Valine | 2.00 c | 2.01 c | 2.23 b | 1.02 f | 0.96 f | 1.35 d | 2.57 a | 1.22 e | 0.012 | <0.0001 |
Methionine | 0.62 d | 0.67 c | 0.61 d | 0.30 f | 0.15 g | 0.39 e | 1.71 a | 0.77 b | 0.005 | <0.0001 |
Isoleucine | 1.81 a | 1.50 c | 1.55 b | 0.59 g | 0.58 g | 0.75 f | 1.45 d | 0.93 e | 0.007 | <0.0001 |
Leucine | 2.92 a | 2.62 a | 2.80 a | 1.05 c | 1.07 c | 1.71 b | 2.58 a | 1.39 b | 0.007 | <0.0001 |
Tyrosine | 1.43 a | 0.97 d | 1.20 c | 0.37 h | 0.43 g | 0.56 f | 1.39 b | 0.72 e | 0.007 | <0.0001 |
Phenylalanine | 2.23 b | 1.53 c | 2.67 a | 0.77 e | 0.77 e | 0.93 d | 2.23 b | 0.90 d | 0.007 | <0.0001 |
Lysine | 2.66 a | 2.09 b | 2.03 c | 0.44 h | 0.72 f | 0.85 e | 0.59 g | 0.97 d | 0.008 | <0.0001 |
Histidine | 1.09 b | 1.01 c | 1.36 a | 0.28 h | 0.38 g | 0.66 e | 0.83 d | 0.44 f | 0.005 | <0.0001 |
Arginine | 3.18 b | 2.15 d | 5.71 a | 1.74 e | 1.02 h | 1.22 g | 2.51 c | 1.65 f | 0.009 | <0.0001 |
Proline | 2.41 a | 2.18 b | 1.80 d | 0.80 h | 0.92 g | 1.34 e | 1.99 c | 1.03 f | 0.006 | <0.0001 |
Total Amino Acid | 43.69 a | 30.98 d | 42.88 b | 13.84 g | 12.89 h | 17.41 f | 32.64 c | 20.16 e | 0.155 | <0.0001 |
Items | Soybean Meal | Canola Meal | Cottonseed Meal | Palm Kernel Meal | Rice Bran Meal | Corn Germ Meal | Sesame Meal | Milk Thistle Meal | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
PA (%CP) | 7.64 c | 12.35 b | 5.92 c | 0.00 d | 13.14 b | 11.96 b | 18.71 a | 16.83 a | 0.79 | <0.0001 |
PB1 (%CP) | 11.56 a | 10.02 ab | 3.95 ab | 2.34 b | 7.34 ab | 9.02 ab | 4.43 ab | 9.79 ab | 1.803 | 0.0071 |
PB2 (%CP) | 54.54 bc | 63.72 b | 78.29 a | 35.35 e | 43.84 de | 39.46 de | 43.52 de | 49.28 cd | 2.276 | <0.0001 |
PB3 (%CP) | 23.97 d | 9.07 e | 9.72 e | 54.32 a | 32.90 c | 37.77 b | 24.63 d | 13.75 e | 1.060 | <0.0001 |
PC (%CP) | 2.30 d | 4.84 c | 2.13 d | 8.00 b | 2.78 d | 1.80 d | 8.71 b | 10.37 a | 0.265 | <0.0001 |
CA (%CHO) | 59.05 a | 44.10 abc | 29.04 cd | 27.60 cd | 53.39 ab | 26.05 d | 36.19 bcd | 18.68 d | 3.859 | <0.0001 |
CB1 (%CHO) | 5.00 c | 0.46 e | 0.51 e | 0.00 f | 9.30 a | 8.98 b | 0.00 f | 1.23 d | 0.0390 | <0.0001 |
CB2 (%CHO) | 27.33 cd | 15.77 de | 30.84 bc | 41.04 b | 21.76 cde | 59.14 a | 13.39 e | 19.14 cde | 2.739 | <0.0001 |
CC (%CHO) | 8.62 ef | 39.66 c | 39.61 c | 31.35 d | 15.55 e | 5.83 f | 53.08 b | 60.94 a | 1.589 | <0.0001 |
CHO (%DM) | 45.86 e | 49.50 d | 42.41 f | 70.99 b | 69.98 b | 74.93 a | 32.08 g | 66.27 c | 0.398 | <0.0001 |
NSC (%CHO) | 64.05 a | 44.56 b | 29.55 bc | 27.60 bc | 62.69 a | 35.03 bc | 36.19 bc | 19.92 c | 3.854 | <0.0001 |
Items | Soybean Meal | Canola Meal | Cottonseed Meal | Palm Kernel Meal | Rice Bran Meal | Corn Germ Meal | Sesame Meal | Milk Thistle Meal | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
In situ dry matter (DM) rumen degradation kinetics | ||||||||||
a (g/kg) | 357 a | 237 bc | 137 cd | 114 d | 321 ab | 136 cd | 281 ab | 132 d | 21.21 | <0.0001 |
b (g/kg) | 643 c | 682 bc | 636 cd | 886 a | 544 de | 764 b | 376 f | 464 ef | 19.03 | <0.0001 |
c (g/kg h−1) | 28.0 de | 37 cd | 41.1 cd | 16.2 e | 43 bc | 55 b | 89 a | 39 c | 3.06 | <0.0001 |
ED (g/kg) | 622 a | 571 bc | 510 d | 369 e | 602 ab | 577 bc | 541 cd | 364 e | 8.9 | <0.0001 |
In situ crude protein (CP) rumen degradation kinetics | ||||||||||
a (g/kg) | 202 b | 168 bc | 94.7 d | 119 d | 167 bc | 85 d | 212 b | 292 a | 13.01 | <0.0001 |
b (g/kg) | 798 a | 832 a | 852 a | 687 ab | 833 a | 902 a | 406 b | 708 ab | 66.20 | 0.0019 |
c (g/kg h−1) | 26.9 b | 38.3 b | 40.5 b | 19.9 b | 23.6 b | 33.2 b | 95.4 a | 27.0 b | 7.01 | <0.0001 |
ED (g/kg) | 526 abc | 571 ab | 516 abc | 282 d | 473 c | 493 c | 496 bc | 577 a | 15.90 | <0.0001 |
RUP (g/kg) | 474 bcd | 429 cd | 484 bcd | 718 a | 527 b | 507 b | 504 bc | 423 d | 15.94 | <0.0001 |
In situ neutral detergent fiber (NDF) rumen degradation kinetics | ||||||||||
a (g/kg) | 249 a | 74.7 cd | 34.8 b | 5.16 cd | 6.83 cd | 7.5 cd | 8.86 c | 1.70 d | 18.3 | <0.0001 |
b (g/kg) | 657 a | 361 bc | 633 ab | 995 a | 85.10 bc | 311 bc | 55.21 c | 304 bc | 11.8 | 0.0005 |
c (g/kg h−1) | 38.7 ab | 10.6 bc | 4.0 ab | 3.90 c | 30.8 abc | 26.7 abc | 39.8 ab | 56.2 a | 0.07 | 0.0005 |
ED (g/kg) | 562 a | 33.13 f | 53.043 e | 80.12 d | 26.34 f | 123 c | 35.61 f | 177.8 b | 2.81 | <0.0001 |
Items | Small Intestinal Dry Matter Digestibility (g/kg) | Small Intestinal Protein Degradation Rate (g/kg) |
---|---|---|
Soybean meal | 656 a | 895 a |
Canola meal | 248 d | 483 c |
Cottonseed meal | 366 b | 702 b |
Palm kernel meal | 16.46 e | 559 c |
Rice bran meal | 327 bc | 551 c |
Corn germ meal | 95.5 f | 136 e |
Sesame meal | 299 bc | 302 d |
Milk thistle meal | 276 cd | 367 d |
SEM | 14.88 | 23.15 |
p-Value | <0.0001 | <0.0001 |
Items | Soybean Meal | Canola Meal | Cottonseed Meal | Palm Kernel Meal | Rice Bran Meal | Corn Germ Meal | Sesame Meal | Milk Thistle Meal | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Amide I | ||||||||||
A_Amide I and Amide II | 14.27 b | 10.04 c | 9.29 c | 1.41 d | 3.50 d | 2.24 d | 19.45 a | 8.33 c | 0.858 | <0.0001 |
A_Amide I | 6.74 b | 5.36 b | 4.98 b | 0.35 d | 2.66 c | 1.77 cd | 10.55 a | 4.88 b | 0.461 | <0.0001 |
A_Amide II | 2.00 a | 1.36 ab | 1.94 a | 0.77 bc | 0.50 c | 0.51 c | 1.17 bc | 0.93 bc | 0.164 | <0.0001 |
A_Amide I/Amide II ratio | 3.62 c | 4.06 c | 2.59 d | 0.46 e | 5.33 b | 3.62 c | 9.04 a | 5.27 b | 0.200 | <0.0001 |
Amide I and II | ||||||||||
H_Amide I | 0.079 b | 0.075 b | 0.068 b | 0.019 d | 0.036 cd | 0.024 d | 0.11 a | 0.057 bc | 0.006 | <0.0001 |
H_Amide II | 0.036 a | 0.043 a | 0.043 a | 0.016 b | 0.012 b | 0.011 b | 0.049 a | 0.018 b | 0.003 | <0.0001 |
H_Amide I/Amide II ratio | 2.31 b | 1.74 cd | 1.62 de | 1.20 e | 3.13 a | 2.26 b | 2.18 bc | 3.10 a | 0.103 | <0.0001 |
Protein secondary structure spectral structural characteristics | ||||||||||
H_α-helix | 0.072 b | 0.072 b | 0.064 b | 0.018 d | 0.034 cd | 0.022 d | 0.011 a | 0.052 bc | 0.006 | <0.0001 |
H_β-sheet | 0.077 ab | 0.070 bc | 0.066 bc | 0.015 e | 0.031 de | 0.023 de | 0.103 a | 0.049 cd | 0.006 | <0.0001 |
H_α-helix/β-sheet ratio | 0.95 b | 1.03 b | 0.97 b | 1.30 a | 1.08 ab | 0.97 b | 1.03 b | 1.08 ab | 0.075 | 0.0526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambo, M.T.; Liu, R.; Zhang, X.; Zhang, Y.; Li, Y.; Sun, M. Nutritional Evaluation of Milk Thistle Meal as a Protein Feedstuff for Diets of Dairy Cattle. Animals 2024, 14, 1864. https://doi.org/10.3390/ani14131864
Lambo MT, Liu R, Zhang X, Zhang Y, Li Y, Sun M. Nutritional Evaluation of Milk Thistle Meal as a Protein Feedstuff for Diets of Dairy Cattle. Animals. 2024; 14(13):1864. https://doi.org/10.3390/ani14131864
Chicago/Turabian StyleLambo, Modinat Tolani, Rui Liu, Xianglong Zhang, Yonggen Zhang, Yang Li, and Manji Sun. 2024. "Nutritional Evaluation of Milk Thistle Meal as a Protein Feedstuff for Diets of Dairy Cattle" Animals 14, no. 13: 1864. https://doi.org/10.3390/ani14131864
APA StyleLambo, M. T., Liu, R., Zhang, X., Zhang, Y., Li, Y., & Sun, M. (2024). Nutritional Evaluation of Milk Thistle Meal as a Protein Feedstuff for Diets of Dairy Cattle. Animals, 14(13), 1864. https://doi.org/10.3390/ani14131864