Impact of Parenteral Maternal Supplementation with Trace Minerals and Vitamins on Neonatal Calf Antioxidant System and Growth in a Dairy Herd
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Maternal Treatments
2.2. Management of Cows and Calves
2.3. Measurements and Sample Collection
2.4. Blood Metabolites and Oxidative Stress Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. Fecal Score, Onset, Duration, and Severity of Diarrhea
3.3. Milk, Calf Starter, and Total Intake
3.4. Body Weight, Average Daily Gain (ADG), Feed Efficiency, and Growth Measures
3.5. Serum Metabolites, Antioxidant Capacity, and Lipid Peroxidation Biomarkers in Cows and Calves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Sundrum, A. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals 2015, 5, 978–1020. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Alves-Nores, V.; Hernandez, J.; Muino, R.; Benedito, J.L.; Castillo, C. Effect of Parenteral Antioxidant Supplementation During the Dry Period on Postpartum Glucose Tolerance in Dairy Cows. J. Vet. Intern. Med. 2016, 30, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Soldá, N.M.; Glombowsky, P.; Campigotto, G.; Bottari, N.B.; Schetinger, M.R. Injectable mineral supplementation to transition period dairy cows and its effects on animal health. Comp. Clin. Pathol. 2017, 26, 335–342. [Google Scholar] [CrossRef]
- Folnožić, I.; Samardžija, M.; Đuričić, D.; Vince, S.; Perkov, S.; Jelušić, S.; Valpotić, H.; Ljubić, B.B.; Lojkić, M.; Gračner, D.; et al. Effects of infeed clinoptilolite treatment on serum metabolic and antioxidative biomarkers and acute phase response in dairy cows during pregnancy and early lactation. Res. Vet. Sci. 2018, 127, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Folnozic, I.; Turk, R.; Duricic, D.; Vince, S.; Pleadin, J.; Flegar-Mestric, Z.; Valpotic, H.; Dobranic, T.; Gracner, D.; Samardzija, M. Influence of body condition on serum metabolic indicators of lipid mobilization and oxidative stress in dairy cows during the transition period. Reprod. Domest. Anim. 2015, 50, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Szenci, O.; Abdelmegeid, M.K.; Solymosi, N.; Brydl, E.; Bajcsy, C.; Biksi, I.; Kulcsár, M. Prediction of stillbirth in Holstein-Friesian dairy cattle by measuring metabolic and endocrine parameters during the peripartal period. Reprod. Domest. Anim. 2018, 53, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef] [PubMed]
- Gaal, T.; Ribiczeyne-Szabo, P.; Stadler, K.; Jakus, J.; Reiczigel, J.; Kover, P.; Mezes, M.; Sumeghy, L. Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 143, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Yang, J.Y.; Upadhaya, S.D.; Lee, H.J.; Yun, C.H.; Ha, J.K. The stress of weaning influences serum levels of acute-phase proteins, iron-binding proteins, inflammatory cytokines, cortisol, and leukocyte subsets in Holstein calves. J. Vet. Sci. 2011, 12, 151–157. [Google Scholar] [CrossRef]
- Renade, R.; Talukder, S.; Muscatello, G.; Celi, P. Assessment of oxidative stress biomarkers in exhaled breath condensate and blood of dairy heifer calves from birth to weaning. Vet. J. 2014, 202, 583–587. [Google Scholar] [CrossRef]
- Spears, J.W.; Weiss, W.P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 2008, 176, 70–76. [Google Scholar] [CrossRef]
- Jacometo, C.B.; Zhou, Z.; Luchini, D.; Trevisi, E.; Correa, M.N.; Loor, J.J. Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. J. Dairy Sci. 2016, 99, 6753–6763. [Google Scholar] [CrossRef]
- Monteiro, A.P.A.; Tao, S.; Thompson, I.M.T.; Dahl, G.E. In utero heat stress decreases calf survival and performance through the first lactation. J. Dairy Sci. 2016, 99, 8443–8450. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Hernandez-Jover, M.; Sordillo, L.M.; Abuelo, A. Maternal late-gestation metabolic stress is associated with changes in immune and metabolic responses of dairy calves. J. Dairy Sci. 2018, 101, 6568–6580. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Raphael, W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. N. Am. Food A 2013, 29, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernandez, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2014, 99, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Mavangira, V. The nexus between nutrient metabolism, oxidative stress, and inflammation in transition cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Osorio, J.S.; Trevisi, E.; Ballou, M.A.; Bertoni, G.; Drackley, J.K.; Loor, J.J. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves. J. Dairy Sci. 2013, 96, 3573–3587. [Google Scholar] [CrossRef] [PubMed]
- Lay, D.C.; Randel, R.D.; Friend, T.H.; Jenkins, O.C.; Neuendorff, D.A.; Bushong, D.M.; Lanier, E.K.; Bjorge, M.K. Effect on prenatal stress on suckling calves. J. Anim. Sci. 1997, 75, 3143–3151. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Moisa, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- Vautier, A.N.; Cadaret, C.N. Long-term consequences of adaptive fetal programming in ruminant livestock. Front. Anim. Sci. 2022, 3, 778440. [Google Scholar] [CrossRef]
- Mutinati, M.; Pantaleo, M.; Roncetti, M.; Piccinno, M.; Rizzo, A.; Sciorsci, R.L. Oxidative stress in neonatology: A review. Reprod. Domest. Anim. 2014, 49, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Parreño, V.; Bejar, C.; Vagnozzi, A.; Barrandeguy, M.; Costantini, V.; Craig, M.I.; Yuan, L.; Hodgins, D.; Saif, L.; Fernandez, F. Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 2004, 100, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Auad, J.; Cerutti, J.; Cooper, L.G.; Lozano, N.A.; Deltrozzo, J.; Trezza, C.A.; Ponzio, M.F.; Lozano, A. Structure of the placenta and its impact on the transfer of maternal-fetal immunity: A review in domestic mammals. Rev. Methodo 2019, 4, 52–62. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Tiwari, S.; Panda, B.S.K.; Pandey, Y.; Lathwal, S.S.; Dang, A.K. Supplementation of antioxidant micronutrients reduces stress and improves immune function/response in periparturient dairy cows and their calves. J. Trace Elem. Med. Biol. 2021, 65, 126718. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: From Clinical Application. Am. J. Med. 1991, 91, 31–38. [Google Scholar] [CrossRef]
- Teixeira, A.G.; Lima, F.S.; Bicalho, M.L.; Kussler, A.; Lima, S.F.; Felippe, M.J.; Bicalho, R.C. Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. J. Dairy Sci. 2014, 97, 4216–4226. [Google Scholar] [CrossRef] [PubMed]
- Blaner, W.S.; Shmarakov, I.O.; Traber, M.G. Vitamin A and Vitamin E: Will the Real Antioxidant Please Stand Up? Annu. Rev. Nutr. 2021, 41, 105–131. [Google Scholar] [CrossRef] [PubMed]
- Jacometo, C.B.; Osorio, J.; Socha, M.; Correa, M.N.; Piccioli-Cappelli, F.; Trevisi, E.; Loor, J.J. Maternal consumtion of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress. J. Dairy Sci. 2015, 98, 7717–7729. [Google Scholar] [CrossRef]
- Ogilvie, L.; Van Winters, B.; Mion, B.; King, K.; Spricigo, J.F.W.; Karrow, N.A.; Steele, M.A.; Ribeiro, E.S. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the diet of prepartum cows on quality of colostrum and immunity of newborn calves. J. Dairy Sci. 2023, 106, 3493–3508. [Google Scholar] [CrossRef]
- Stokes, R.S.; Volk, M.J.; Ireland, F.A.; Gunn, P.J.; Shike, D.W. Effect of repeated trace mineral injections on beef heifer development and reproductive performance. J. Anim. Sci. 2018, 96, 3943–3954. [Google Scholar] [CrossRef] [PubMed]
- Stokes, R.S.; Ireland, F.A.; Shike, D.W. Influence of repeated trace mineral injections during gestation on beef heifer and subsequent calf performance. Transl. Anim. Sci. 2019, 3, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Waterman, D.F.; Hemken, R.W.; Harmon, R.J. Copper status and requirement during the dry period and early lactation in multiparous Holstein cows. J. Dairy Sci. 1993, 76, 2711–2716. [Google Scholar] [CrossRef] [PubMed]
- Calf Health Scoring Chart. Available online: https://fyi.extension.wisc.edu/heifermgmt/files/2015/02/calf_health_scoring_chart.pdf (accessed on 12 December 2020).
- Larson, L.L.; Owen, F.G.; Albright, J.L.; Appleman, R.D.; Lamb, R.C.; Muller, L.D. Guidelines Toward More Uniformity in Measuring and Reporting Calf Experimental Data. J. Dairy Sci. 1977, 60, 989–991. [Google Scholar] [CrossRef]
- Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; et al. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 2020, 103, 7611–7624. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Galarza, E.M.; Lizarraga, R.M.; Mattioli, G.A.; Parker, A.J.; Relling, A.E. Effect of preshipment preconditioning and injectable anti-oxidant trace elements (Cu, Mn, Se, Zn) and vitamins (A, E) on plasma metabolite and hormone concentrations and growth in weaned beef cattle. Transl. Anim. Sci. 2021, 5, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Juliano, N.; Palladino, R.A.; Colombatto, D.; Bargo, F. Suplementación con Fuentes Contrastantes de Energía Durante el período de Transición en Vacas Lecheras. PhD Thesis, Facultad de Agronomia, Universidad de Buenos Aires, Buenos Aires, Argentina, 2012. Available online: http://ri.agro.uba.ar/files/download/tesis/doctorado/2023julianonicolas.pdf (accessed on 12 December 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Batistel, F.; Alharthi, A.S.; Yambao, R.R.C.; Elolimy, A.A.; Pan, Y.X.; Parys, C.; Loor, J.J. Methionine Supply During Late-Gestation Triggers Offspring Sex-Specific Divergent Changes in Metabolic and Epigenetic Signatures in Bovine Placenta. J. Nutr. 2019, 149, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Tong, J.; Zhao, J.; Underwood, K.R.; Zhu, M.; Ford, S.P.; Nathanielsz, P.W. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci. 2010, 88, E51–E60. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S. Gut health, stress, and immunity in neonatal dairy calves: The host side of host-pathogen interactions. J. Anim. Sci. Biotechnol. 2020, 11, 105. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.C.; Zhang, Z.H.; Zhang, C.Z.; Su, H.W.; Li, S.L. Effect of prepartum maternal energy density on the growth performance, immunity, and antioxidation capability of neonatal calves. J. Dairy Sci. 2012, 95, 4510–4518. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum management for dairy calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef] [PubMed]
- Miqueo, E.; Fazzio, L.; Mattioli, G.; Moore, D.; Relling, A. Cryptosporidiosis treatments in naturally infected dairy calves. J. Dairy Sci. 2022, 105, 386. [Google Scholar]
- Richeson, J.T.; Kegley, E.B. Effect of supplemental trace minerals from injection on health and performance of highly stressed, newly received beef heifers. Prof. Anim. Sci. 2011, 27, 461–466. [Google Scholar] [CrossRef]
- Clark, J.H.; Olson, K.C.; Schmidt, T.B.; Larson, R.L.; Ellersieck, M.R.; Alkire, D.O.; Meyer, D.L.; Rentfrow, G.K.; Carr, C.C. Effects of Respiratory Disease Risk and a Bolus Injection of Trace Minerals at Receiving on Growing and Finishing Performance by Beef Steers. Prof. Anim. Sci. 2006, 22, 245–251. [Google Scholar] [CrossRef]
- Toledo-Silva, B.; Henklein, A.; de Sousa Marques, R.; de Oliveira, P.L.; Leite, S.B.P.; Fontes, S.M.; Baccili, C.C.; Reis, J.F.; Gomes, V. Vital parameters of Holstein calves from birth to weaning. Rev. Bras. Med. Vet. 2016, 38, 299–304. [Google Scholar]
- Spears, J.W. Micronutrients and immune function in cattle. Proc. Nutr. Soc. 2000, 59, 587–594. [Google Scholar] [CrossRef]
- Weiss, W.P. Selenium sources for dairy cattle. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 1–3 May 2005; pp. 61–72. [Google Scholar]
- Shao, T.; Brattain, R.S.; Shike, D.W. Effects of Maternal Supplementation with an Injectable Trace Mineral Containing Copper, Manganese, Zinc, and Selenium on Subsequent Steer Finishing Phase Performance and Carcass Characteristics. Animals 2020, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Moriel, P.; Bohnert, D.W. Impacts of cow body condition score during gestation on weaning performance of the offspring. Livest. Sci. 2016, 191, 174–178. [Google Scholar] [CrossRef]
- Eitam, H.; Vaya, J.; Brosh, A.; Orlov, A.; Khatib, S.; Izhaki, I.; Shabtay, A. Differential stress responses among newly received calves: Variations in reductant capacity and Hsp gene expression. Cell Stress Chaperones 2010, 15, 865–876. [Google Scholar] [CrossRef]
- Enríquez, D.; Hötzel, M.J.; Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta Vet. Scand. 2011, 53, 28. [Google Scholar] [CrossRef]
- Abuelo, A.; Havrlant, P.; Wood, N.; Hernandez-Jover, M. An investigation of dairy calf management practices, colostrum quality, failure of transfer of passive immunity, and occurrence of enteropathogens among Australian dairy farms. J. Dairy Sci. 2019, 102, 8352–8366. [Google Scholar] [CrossRef] [PubMed]
- Albera, E.; Kankofer, M. The Comparison of Antioxidative⁄Oxidative Profile in Blood, Colostrum and Milk of Early Post-partum Cows and Their Newborns. Reprod. Dom. Anim. 2011, 46, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Drackley, J.K. The Development, Nutrition, and Management of the Young Calf; Iowa State University Press: Ames, IA, USA, 1998; pp. 303–312. [Google Scholar]
- Seppä-Lassila, L.; Orro, T.; Lassen, B.; Lasonen, R.; Autio, T.; Pelkonen, S.; Soveri, T. Intestinal pathogens, diarrhea, and acute phase proteins in naturally infected dairy calves. Comp. Immunol. Microbiol. Infect. Dis. 2015, 41, 10–16. [Google Scholar] [CrossRef] [PubMed]
- di Filippo, P.A.; Lannes, S.T.; Meireles, M.A.D.; Nogueira, A.F.S.; Quirino, C.R. Concentrations of acute-phase proteins and immunoglobulins in serum and synovial fluid in clinically healthy heifers and steers. Pesq. Vet. Bras. 2019, 39, 388–392. [Google Scholar] [CrossRef]
- Skinner, J.G.; Brown, R.A.; Roberts, L. Bovine haptoglobin response in clinically defined field conditions. Vet. Rec. 1991, 128, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Erling, D. The Dynamics of Cryptosporidium spp. during First Three Week of Calves’ Life and the Effect on the General Inflammatory Response. Master’s Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2022. [Google Scholar]
- Peetsalu, K.; Niine, T.; Loch, M.; Dorbek-Kolin, E.; Tummeleht, L.; Orro, T. Effect of colostrum on the acute-phase response in neonatal dairy calves. J. Dairy Sci. 2022, 105, 6207–6219. [Google Scholar] [CrossRef] [PubMed]
- Schroedl, W.; Jaekel, L.; Krueger, M. C-Reactive Protein and Antibacterial Activity in Blood Plasma of Colostrum-Fed Calves and the Effect of Lactulose. J. Dairy Sci. 2003, 86, 3313–3320. [Google Scholar] [CrossRef] [PubMed]
- Arthington, J.D.; Eichert, S.D.; Kunkle, W.E.; Martin, F.G. Effect of transportation and commingling on the acute-phase protein response, growth, and feed intake of newly weaned beef calves. J. Anim. Sci. 2003, 81, 1120–1125. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Cobb, C.J.; Carroll, J.A.; Ballou, M.A. The effects of early weaning on innate immune responses of Holstein calves. J. Dairy Sci. 2011, 94, 2545–2556. [Google Scholar] [CrossRef]
- Seibt, K.D.; Ghaffari, M.H.; Scheu, T.; Koch, C.; Sauerwein, H. Characteristics of the Oxidative Status in Dairy Calves Fed at Different Milk Replacer Levels and Weaned at 14 Weeks of Age. Antioxidants 2021, 10, 260. [Google Scholar] [CrossRef]
- Belli, A.L.; Reis, R.B.; Veronese, A.; Moreira, R.; Flanagan, K.; Driver, J.; Nelson, C.D.; Clapper, J.A.; Ballou, M.A.; Jeong, K.C.; et al. Effects of treatment of preweaning dairy calves with recombinant bovine somatotropin on immune responses and somatotropic axis. J. Dairy Sci. 2018, 101, 6602–6615. [Google Scholar] [CrossRef] [PubMed]
Prepartum 1 1 | Prepartum 2 2 | Ruter® 3 | Mamon 4 | |
---|---|---|---|---|
Dry matter, % | 32.7 | 40.85 | 92.48 | 90.55 |
Crude protein | 18.15 | 9.39 | 29.6 | 22.77 |
ADF | 32.17 | 28.46 | 08.01 | 09.09 |
aNDF | 52.68 | 39.18 | 17.33 | 19.53 |
aNDFmo | 49.29 | 34.7 | 14.25 | 16.45 |
Crude fat, %DM | 3.21 | 2.30 | 6.63 | 5.35 |
Ash | 10.85 | 11.84 | 8.29 | 08.03 |
Starch | 3.19 | 12.96 | 24.26 | 29.77 |
NDT | 65.46 | 58.1 | 77.36 | 76.20 |
McalME/KgDM 5 | 2.497 | 2.24 | 3.227 | 3.083 |
Treatments 1 | SEM | p-Values 2 | ||||
---|---|---|---|---|---|---|
TG | CG | T | A | T*A | ||
Diarrhea | ||||||
Fecal score | 1.76 | 1.81 | 0.01 | 0.01 | <0.01 | 0.96 |
Onset of diarrhea, d | 8.90 | 8.61 | 0.36 | 0.58 | ||
Duration of diarrhea, d | 11.1 | 9.6 | 1.15 | 0.13 | ||
Number of episodes | 1.61 | 1.70 | 0.19 | 0.25 | ||
Intensity of diarrhea 3 | 6.75 | 6.28 | 1.29 | 0.98 | ||
Rectal temperature, °C | 37.3 | 37.4 | 0.25 | 0.38 | <0.01 | 0.88 |
Heart rate, beat/min | 118 | 118 | 0.71 | 0.97 | <0.01 | 0.22 |
Respiratory rate 4 | 35.1 | 34.9 | 1.31 | 0.61 | <0.01 | 0.27 |
Treatments 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|
TG | CG | T | A | T*A | ||
Intake, g DM/d | ||||||
Whole milk | 668 | 670 | 1.07 | 0.14 | <0.01 | 0.47 |
Average starter intake | 540 | 522 | 37.9 | 0.04 | <0.01 | 0.48 |
Total DMI | 1266 | 1233 | 28.6 | 0.06 | <0.01 | 0.47 |
Body weight, kg | ||||||
At birth | 37.8 | 39.5 | 1.75 | 0.08 | <0.01 | 0.99 |
Ninth week | 76.7 | 77.8 | 2.87 | 0.57 | ||
ADG, g/d | 614 | 607 | 22.6 | 0.76 | <0.01 | 0.88 |
Feed efficiency, g/g 3 | 0.47 | 0.47 | 0.003 | 0.94 | <0.01 | 0.06 |
Skeletal size, cm | ||||||
Hip width | <0.01 | <0.01 | 0.99 | |||
First week | 20.9 | 21.4 | 0.44 | 0.03 | ||
Ninth week | 26.3 | 26.5 | 0.24 | 0.48 | ||
Wither height | 0.94 | <0.01 | 0.99 | |||
First week | 71.4 | 71.7 | 0.99 | 0.65 | ||
Ninth week | 82.9 | 83.2 | 1.32 | 0.68 | ||
Heart girth | 0.11 | <0.01 | 0.95 | |||
First week | 81.4 | 82.1 | 0.59 | 0.33 | ||
Ninth week | 99.1 | 100 | 1.31 | 0.28 | ||
Skeletal growth, cm/d 4 | ||||||
Hip with | 0.20 | 0.19 | 0.01 | 0.56 | ||
Wither height | 0.08 | 0.08 | 0.01 | 0.40 | ||
Heart girth | 0.30 | 0.29 | 0.02 | 0.72 |
Treatments 1 | SEM | p-Value 2 | ||||
---|---|---|---|---|---|---|
TG | CG | T | A | T*A | ||
Cows | ||||||
TAS, mM | 4.32 | 4.23 | 0.37 | 0.86 | ||
TBARS, μM | 5.18 | 4.55 | 0.43 | 0.32 | ||
Haptoglobin, mg/dL | 21.4 | 22.0 | 0.33 | 0.23 | ||
Calves | ||||||
TAS, mM | ||||||
Birth | 3.71 | 4.56 | 0.72 | 0.11 | 0.02 | 0.17 |
Ninth week | 5.03 | 4.36 | 0.81 | 0.13 | ||
TBARS, μM | ||||||
Birth | 19.9 | 19.7 | 1.43 | 0.79 | <0.01 | 0.64 |
Ninth week | 6.52 | 7.27 | 1.710 | 0.49 | ||
Haptoglobin, mg/dL | ||||||
Birth | 19.8 | 19.6 | 0.33 | 0.44 | <0.01 | 0.67 |
Ninth week | 22.3 | 22.4 | 0.91 | 0.88 | ||
Glucose, mg/dL | 77.4 | 82.4 | 6.725 | 0.270 | 0.179 | 0.861 |
Total protein, g/dL | 4.22 | 4.32 | 0.175 | 0.445 | <0.01 | 0.556 |
Albumin, g/dL | 2.09 | 2.14 | 0.100 | 0.440 | <0.01 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miqueo, E.; Mattioli, G.A.; Moore, D.P.; Bilbao, M.G.; Moran, K.D.; Relling, A.E. Impact of Parenteral Maternal Supplementation with Trace Minerals and Vitamins on Neonatal Calf Antioxidant System and Growth in a Dairy Herd. Animals 2024, 14, 1868. https://doi.org/10.3390/ani14131868
Miqueo E, Mattioli GA, Moore DP, Bilbao MG, Moran KD, Relling AE. Impact of Parenteral Maternal Supplementation with Trace Minerals and Vitamins on Neonatal Calf Antioxidant System and Growth in a Dairy Herd. Animals. 2024; 14(13):1868. https://doi.org/10.3390/ani14131868
Chicago/Turabian StyleMiqueo, Evangelina, Guillermo A. Mattioli, Dadin P. Moore, María G. Bilbao, Karen D. Moran, and Alejandro E. Relling. 2024. "Impact of Parenteral Maternal Supplementation with Trace Minerals and Vitamins on Neonatal Calf Antioxidant System and Growth in a Dairy Herd" Animals 14, no. 13: 1868. https://doi.org/10.3390/ani14131868
APA StyleMiqueo, E., Mattioli, G. A., Moore, D. P., Bilbao, M. G., Moran, K. D., & Relling, A. E. (2024). Impact of Parenteral Maternal Supplementation with Trace Minerals and Vitamins on Neonatal Calf Antioxidant System and Growth in a Dairy Herd. Animals, 14(13), 1868. https://doi.org/10.3390/ani14131868