Effects of Steviol Glycosides on Growth Performance, Ruminal Fermentation and Microbial Diversity of Hu Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Basic Diet and Nutrition Level
2.3. Feeding and Management
2.4. Sample Collection and Processing
2.5. Indexes and Measurement Methods
2.5.1. Measurement of Production Performance Index
2.5.2. Determination of Serum Biochemical Indexes
2.5.3. Rumen Fermentation Index Determination
2.5.4. Ruminal Microbial Determination
2.6. Statistical Analysis
3. Results
3.1. Effect of Steviol Glycosides on Growth Performance of Hu Sheep
3.2. Effect of Steviol Glycosides on Serum Biochemical Indices of Hu Sheep
3.3. Effect of Steviol Glycosides on Hu Sheep Rumen Fermentation
3.4. Effect of Steviol Glycosides on Hu Sheep Rumen Microorganism
3.4.1. Alpha Diversity Analysis
3.4.2. Beta Diversity Analysis
3.4.3. Effect of Dietary Steviol Glycosides on Rumen Bacterial Taxonomic Composition and Community Structure (Phylum Level) on Hu Sheep
3.4.4. Effect of Dietary Steviol Glycosides on Rumen Bacterial Taxonomic Composition and Community Structure (Genus Level) on Hu Sheep
3.4.5. Analysis on Significant Differences of Rumen Flora
3.4.6. Correlation Analysis between Rumen Microbial Flora and VFAs
4. Discussion
4.1. Effect of Steviol Glycosides on Growth Performance of Hu Sheep
4.2. Effect of Steviol Glycosides on Serum Biochemical Indexes of Hu Sheep
4.3. Effect of Steviol Glycosides on Hu Sheep Rumen Fermentation
4.4. Effect of Steviol Glycosides on Microbial Diversity of Hu Sheep
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.B.; Gao, Q.S.; Li, G.H.; Zhang, k.; Cui, L.H.; Hou, L.N. Effects of Chinese Herbal Medicine Feed Additives on Meat Quality and Flavor Substances in Yanbian Yellow Cattle. China Anim. Husb. Vet. Med. 2023, 50, 531–542. [Google Scholar]
- Zhang, X. Distribution Characteristics and Transmission Mechanism of Antibiotic Resistance Genes in Silage. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2024. [Google Scholar]
- Xu, J.; Xu, J.H.; Shi, S.M. Effects of feed additives on production performance and health of livestock and poultry. Anim. Sci. Abroad (Pigs Poult.) 2023, 43, 93–95. [Google Scholar]
- Ahmad, J.; Khan, I.; Blundell, R.; Azzopardi, J.; Mahomoodally, M.F. Stevia rebaudiana Bertoni.: An updated review of its health benefits, industrial applications and safety. Trends Food Sci. Technol. 2020, 100, 177–189. [Google Scholar] [CrossRef]
- Orellana-Paucar, A.M. Steviol glycosides from Stevia rebaudiana: An updated overview of their sweetening activity, pharmacological properties, and safety aspects. Molecules 2023, 28, 1258. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.D. Effects of Four Plant Extracts on Methane Emission, Nutrients Metabolism and Rumen Microflora in Mutton Sheep. Ph.D. Thesis, Xinjiang Agricultural University, Urumqi, China, 2014. [Google Scholar]
- Han, Y.T. Current Status of Research on the Properties, Extraction, Separation and Structure Identification of Stevioside. Mod. Food 2023, 29, 39–41+52. [Google Scholar]
- Wang, L.S.; Shi, Z.; Shi, B.M.; Shan, A.S. Effects of dietary stevioside/rebaudioside A on the growth performance and diarrhea incidence of weaned piglets. Anim. Feed Sci. Technol. 2014, 187, 104–109. [Google Scholar] [CrossRef]
- Wang, J.; Li, K.F.; Wang, L.S.; Xu, Q.Y. Effects of different levels of stevioside on growth performance, digestive enzyme activity, antioxidant capacity and gene expression of juvenile mirror carp (Cyprinus carpio). Aquaculture 2021, 543, 737019. [Google Scholar] [CrossRef]
- Han, X.F.; Chen, C.X.; Zhang, X.L.; Wei, Y.Q.; Tang, S.X.; Wang, J.R.; Tan, Z.L.; Xu, L.W. Effects of dietary stevioside supplementation on feed intake, digestion, ruminal fermentation, and blood metabolites of goats. Animals 2019, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.L.; Qi, L.N.; Dai, H.J.; Hu, C.H.; Lv, Z.P.; Wei, Q.W.; Shi, F.X. Dietary stevioside supplementation improves laying performance and eggshell quality through increasing estrogen synthesis, calcium level and antioxidant capacity of reproductive organs in aged breeder hens. Anim. Feed Sci. Technol. 2020, 269, 114682. [Google Scholar] [CrossRef]
- Kamra, D.N. Rumen microbial ecosystem. Curr. Sci. 2005, 89, 124–135. [Google Scholar]
- Cholewińska, P.; Czyż, K.; Nowakowski, P.; Wyrostek, A. The microbiome of the digestive system of ruminants—A review. Anim. Health Res. Rev. 2020, 21, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Jiao, T.; Li, X.X.; Li, S.Y.; Wang, H.N.; Sha, Y.Z.; Zhao, S.G. Effect of Different Levels of Stevioside on in vitro Gas Production Parameters and Rumen Fermentation in Sheep. Pratacultural Sci. 2024, 41, 1–12. [Google Scholar] [CrossRef]
- Agricultural Industry Standard of the People’s Republic of China—Raising Standard for Meat Sheep (NY/T816-2004). Hunan Feed 2006, 6, 9–15.
- Wang, Y.C.; Wang, Q.Y.; Dai, C.P.; Li, J.Z.; Huang, P.F.; Li, Y.L.; Ding, X.Q.; Huang, J.; Hussain, T.; Yang, H.S. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.C.; Gao, M. Improvement of colorimetric method for determination of ammonia nitrogen in Rumen Fluid. Anim. Husb. Feed. Sci. 2010, 31, 37. [Google Scholar]
- Li, L.S. Effects of Rumen Protected Methionine in Diets with Different Protein Levels on Growth Performance, Serum Indices, Rumen Fermentation and Bacterial Composition of Yak. Ph.D. Thesis, Southwest Minzu Univers, Chengdu, China, 2021. [Google Scholar]
- Wu, X.Z.; Yang, P.L.; Sifa, D.; Wen, Z.G. Effect of dietary stevioside supplementation on growth performance, nutrient digestibility, serum parameters, and intestinal microflora in broilers. Food Funct. 2019, 10, 2340–2346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Wang, Q.Y.; Dai, C.P.; Li, J.Z.; Huang, P.F.; Li, Y.L.; Ding, X.Q.; Huang, J.; Hussain, T.; Yang, H.S. Effect of dietary protein level on growth, carcass characteristics, serum biochemical index, and meat quality of Hu male lambs. Small Rumin. Res. 2021, 194, 106294. [Google Scholar] [CrossRef]
- Shin, Y.G.; Rathnayake, D.; Mun, H.S.; Dilawar, M.A.; Pov, S.; Yang, C.J. Sensory attributes, microbial activity, fatty acid composition and meat quality traits of Hanwoo cattle fed a diet supplemented with stevioside and organic selenium. Foods 2021, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.M.; Zhang, K.Y.; Gao, W.; Bai, S.P.; Wang, J.P.; Song, W.G.; Zeng, Q.F.; Peng, H.W.; Lv, L.; Xuan, Y.; et al. Effects of stevia extract on production performance, serum biochemistry, antioxidant capacity, and gut health of laying hens. Poult. Sci. 2024, 103, 103188. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.C.; Wang, Q.Y.; Dai, C.P.; Li, J.Z.; Huang, P.F.; Li, Y.L.; Ding, X.Q.; Huang, J.; Hussain, T.; et al. The impact of early and mid-pregnant Hu ewes’ dietary protein and energy levels on growth performance and serum biochemical indices. J. Appl. Anim. Res. 2023, 51, 174–181. [Google Scholar] [CrossRef]
- Liang, Y.S.; Li, G.Z.; Li, X.Y.; Lv, J.Y.; Li, F.D.; Tang, D.F.; Li, F.; Deng, Y.; Zhang, H.; Wang, Z.L.; et al. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype. J. Anim. Sci. 2017, 95, 1727–1738. [Google Scholar] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Zhao, Y.X.; Ao, C.J.; Bao, Z.B.; Fan, Z.J.; Du, H.X.; Liu, W.J.; Ding, H.; Chen, H. Effects of Allium monogolium Regel and Its Extracts on Rumen Fermentation and Microflora of Sheep. Chin. J. Anim. Nutr. 2019, 31, 2313–2322. [Google Scholar]
- Zhang, X.; Jiao, T.; Ma, S.M.; Chen, X.; Wang, Z.W.; Zhao, S.G.; Ren, Y. Effects of different proportions of stevia stalk on nutrient utilization and rumen fermentation in ruminal fluid derived from sheep. PeerJ 2023, 11, e14689. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, H.T.; Wang, Y.J.; Li, S.L.; Cao, Z.J.; Ji, S.K.; He, Y.; Zhang, H.T. Effect of dietary forage to concentrate ratios on dynamic profile changes and interactions of ruminal microbiota and metabolites in Holstein heifers. Front. Microbiol. 2017, 8, 2206. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.L.; Zeng, S.Q.; Zhang, R.; Diao, Q.Y.; Tu, Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cheng, S.; Diao, Q.; Fu, T.; Bi, Y.; Wang, A.; Li, M.; Tu, Y. Effects of Diets with Different NFC/NDF Levels on the Rumen Fermentation Parameters and Bacterial Community in Male Calves. Chin. J. Anim. Vet. Sci. 2017, 48, 2347–2357. [Google Scholar]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, E.; Roos, S.; Liu, H.Y.; Lindberg, J.E. Fermentable non-starch polysaccharides increases the abundance of Bacteroides–Prevotella–Porphyromonas in ileal microbial community of growing pigs. Animals 2014, 8, 1777–1787. [Google Scholar] [CrossRef]
- Jiao, P.X.; Hu, G.H.; Liang, G.G.; Chen, M.M.; An, N.; Wang, Z.W.; Liu, H.; Xing, H.J.; Xie, X.L. Dietary supplementation with Macleaya cordata extract inclusion affects growth performance, rumen fermentation, bacterial communities, and immune responses of weaned lambs. Anim. Feed Sci. Technol. 2021, 282, 115127. [Google Scholar] [CrossRef]
- Moon, C.D.; Young, W.; Maclean, P.H.; Cookson, A.L.; Bermingham, E.N. Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. Microbiologyopen 2018, 7, e00677. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knighe, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Li, F.Y.; Li, C.X.; Chen, Y.H.; Liu, J.H.; Zhang, C.Y.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Takeshi, T.; Nishino, N. Examination of milk microbiota, fecal microbiota, and blood metabolites of Jersey cows in cool and hot seasons. Anim. Sci. J. 2020, 91, e13441. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Tu, J.; Zhu, Z.J. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr. Opin. Chem. Biol. 2018, 42, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Liu, X.L.; Chang, S.H.; Zhang, C.; Du, W.C.; Hou, F.J. Effect of Cistanche deserticola on rumen microbiota and rumen function in grazing sheep. Front. Microbiol. 2022, 13, 840725. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Katherine, E.G. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol. Ecol. 2019, 95, fiz072. [Google Scholar] [CrossRef]
- Ren, Y.; Zhaxi, Y.Z.; Ciwang, R.Z.; Wang, Z.W.; Liu, M.J. Responses of rumen microorganisms and metabolites to different roughage of domesticated Tibetan sheep. Front. Microbiol. 2023, 14, 1247609. [Google Scholar] [CrossRef]
- Kang, J.H.; Zeng, B.; Tang, S.X.; Wang, M.; Han, X.F.; Zhou, C.S.; Yan, Q.X.; Liu, J.F.; Tan, Z.L. Effects of Momordica charantia polysaccharide on in vitro ruminal fermentation and cellulolytic bacteria. Ital. J. Anim. Sci. 2017, 16, 226–233. [Google Scholar] [CrossRef]
- Omontese, B.O.; Sharma, A.K.; Davison, S.; Jacobson, E.; DiConstanzo, A.; Webb, M.J.; Gomez, A. Microbiome network traits in the rumen predict average daily gain in beef cattle under different backgrounding systems. Anim. Microbiome 2022, 4, 25. [Google Scholar] [CrossRef]
- Su, X.L.; Tian, Q.; Zhang, J.; Yuan, X.Z.; Shi, X.S.; Guo, R.B.; Qiu, Y.L. Acetobacteroides hydrogenigenes gen. nov., sp. nov., an anaerobic hydrogen-producing bacterium in the family Rikenellaceae isolated from a reed swamp. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 9, 2986–2991. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Jami, E. The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animals 2018, 12, s220–s232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, S.; Zou, X.; Ruan, S.S.; Kholif, A.E.; Hu, L.; Chen, X.Y.; Zhou, W. Effects of Neolamarckia cadamba leaves extract on methanogenesis, microbial community in the rumen and digestibility of stylo silage. J. Clean. Prod. 2022, 369, 133338. [Google Scholar] [CrossRef]
Items | Content (%) | Nutrient Level | Content |
---|---|---|---|
Corn | 65.80 | DE/(MJ/kg) | 13.81 |
Wheat bran | 4.00 | CP/% | 16.62 |
Soybean meal | 20.00 | Ca/% | 1.05 |
Flax cake | 4.00 | P/% | 0.43 |
NaCl | 0.60 | NaCl/% | 0.89 |
Baking soda | 1.40 | ||
Premix | 4.00 | ||
De-mold agent | 0.20 | ||
Total | 100.00 |
Items | CON | STE | p-Value |
---|---|---|---|
Initial weight (kg) | 17.63 ± 0.33 | 18.33 ± 0.33 | 0.157 |
Final weight (kg) | 35.83 ± 1.45 | 36.88 ± 1.36 | 0.605 |
Net gain (kg) | 18.20 ± 1.51 | 18.10 ± 1.45 | 0.962 |
ADG (kg) | 0.20 ± 0.02 | 0.20 ± 0.16 | 0.962 |
ADFI (kg) | 0.92 ± 0.05 | 0.98 ± 0.05 | 0.413 |
F/G | 4.79 ± 0.54 | 4.90 ± 0.64 | 0.600 |
Items | CON | STE | p-Value |
---|---|---|---|
ALT (U∙L−1) | 25.80 ± 2.56 | 24.74 ± 3.56 | 0.812 |
AST (U∙L−1) | 130.53 ± 11.65 | 132.26 ± 15.31 | 0.930 |
TP (g∙L−1) | 77.55 ± 2.01 | 74.81 ± 2.17 | 0.376 |
ALB (g∙L−1) | 35.40 ± 0.83 | 35.31 ± 0.94 | 0.944 |
TG (mmol∙L−1) | 0.32 ± 0.01 | 0.37 ± 0.07 | 0.486 |
CHO (mmol∙L−1) | 1.43 ± 0.79 | 1.42 ± 0.11 | 0.968 |
HDL (mmol∙L−1) | 0.81 ± 0.04 | 0.78 ± 0.65 | 0.632 |
LD (mmol∙L−1) | 0.35 ± 0.26 | 0.38 ± 0.34 | 0.484 |
BUN (mmol∙L−1) | 7.60 ± 0.60 | 8.41 ± 2.18 | 0.727 |
GLU (mmol∙L−1) | 3.07 ± 0.25 | 2.99 ± 0.36 | 0.871 |
Items | CON | STE | p-Value |
---|---|---|---|
pH | 6.77 ± 0.43 | 6.40 ± 0.44 | 0.247 |
NH3-N (mg∙100 mL−1) | 7.21 ± 0.38 a | 5.11 ± 0.51 b | 0.002 |
Acetic acid (%) | 52.18 ± 2.46 a | 46.2 ± 3.98 b | 0.011 |
Propionic acid (%) | 36.76 ± 3.85 | 41.64 ± 5.78 | 0.116 |
Isobutyric acid (%) | 0.4 ± 0.25 | 0.44 ± 0.13 | 0.767 |
Butyric acid (%) | 7.8 ± 1.96 | 8.59 ± 2.26 | 0.531 |
Isovaleric acid (%) | 1.09 ± 0.37 | 0.97 ± 0.26 | 0.519 |
Valeric acid (%) | 1.77 ± 0.52 | 2.16 ± 0.72 | 0.305 |
TVFA (mmol∙L−1) | 56.79 ± 18.37 | 61.8 ± 12.97 | 0.597 |
A/P | 1.44 ± 0.22 | 1.14 ± 0.25 | 0.054 |
Items | CON | STE | p-Value |
---|---|---|---|
Shannon–Wiener | 7.9 ± 0.77 a | 6.6 ± 0.69 b | 0.012 |
Simpson | 0.99 ± 0.01 a | 0.97 ± 0.01 b | 0.022 |
Chao1 | 968.12 ± 245.24 a | 602.56 ± 243.20 b | 0.027 |
Ace | 975.21 ± 245.98 a | 608.15 ± 244.60 b | 0.027 |
Items | CON | STE | p-Value |
---|---|---|---|
Firmicutes | 53.861 ± 0.133 | 48.858 ± 0.059 | 0.428 |
Bacteroidetes | 39.346 ± 0.098 | 32.353 ± 0.035 | 0.15 |
Proteobacteria | 2.326 ± 0.029 b | 17.096 ± 0.066 a | 0.002 |
Actinobacteria | 0.621 ± 0.003 | 0.951 ± 0.005 | 0.195 |
Spirochaetota | 0.998 ± 0.011 | 0.094 ± 0.001 | 0.109 |
Fibrobacteres | 0.996 ± 0.015 | 0.035 ± 0.001 | 0.174 |
Patescibacteria | 0.515 ± 0.002 a | 0.156 ± 0.002 b | 0.013 |
unclassified_Bacteria | 0.417 ± 0.003 | 0.214 ± 0.002 | 0.136 |
Desulfobacterota | 0.433 ± 0.002 a | 0.116 ± 0.001 b | 0.004 |
Verrucomicrobia | 0.233 ± 0.002 | 0.009 ± 0 | 0.066 |
Items | CON | STE | p-Value |
---|---|---|---|
Prevotella_7 | 4.008 ± 0.089 b | 19.036 ± 0.1 a | 0.02 |
Prevotella | 12.669 ± 0.059 | 7.028 ± 0.069 | 0.16 |
Succinivibrionaceae_UCG_001 | 1.714 ± 0.03 b | 16.616 ± 0.064 a | 0.001 |
Selenomonas | 9.33 ± 0.075 | 4.784 ± 0.026 | 0.21 |
unclassified_Selenomonadaceae | 2.077 ± 0.008 | 8.731 ± 0.064 | 0.052 |
Succiniclasticum | 5.306 ± 0.021 | 4.776 ± 0.032 | 0.742 |
unclassified_Lachnospiraceae | 4.281 ± 0.034 | 5.048 ± 0.043 | 0.739 |
uncultured_rumen_bacterium | 7.081 ± 0.05 a | 1.78 ± 0.023 b | 0.04 |
Shuttleworthia | 2.411 ± 0.049 | 4.538 ± 0.03 | 0.39 |
Rikenellaceae_RC9_gut_group | 5.171 ± 0.029 a | 0.757 ± 0.005 b | 0.012 |
Others | 45.902 ± 0.11 a | 26.808 ± 0.063 b | 0.004 |
Unclassified | 0.05 ± 0 | 0.098 ± 0.002 | 0.483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, X.; Sha, Y.; Wang, Z.; Qi, S.; Zhang, X.; Zhao, S.; Jiao, T. Effects of Steviol Glycosides on Growth Performance, Ruminal Fermentation and Microbial Diversity of Hu Sheep. Animals 2024, 14, 1991. https://doi.org/10.3390/ani14131991
Zhang J, Li X, Sha Y, Wang Z, Qi S, Zhang X, Zhao S, Jiao T. Effects of Steviol Glycosides on Growth Performance, Ruminal Fermentation and Microbial Diversity of Hu Sheep. Animals. 2024; 14(13):1991. https://doi.org/10.3390/ani14131991
Chicago/Turabian StyleZhang, Jianeng, Xiongxiong Li, Yuzhu Sha, Zhengwen Wang, Shuai Qi, Xia Zhang, Shengguo Zhao, and Ting Jiao. 2024. "Effects of Steviol Glycosides on Growth Performance, Ruminal Fermentation and Microbial Diversity of Hu Sheep" Animals 14, no. 13: 1991. https://doi.org/10.3390/ani14131991
APA StyleZhang, J., Li, X., Sha, Y., Wang, Z., Qi, S., Zhang, X., Zhao, S., & Jiao, T. (2024). Effects of Steviol Glycosides on Growth Performance, Ruminal Fermentation and Microbial Diversity of Hu Sheep. Animals, 14(13), 1991. https://doi.org/10.3390/ani14131991