Proteomic Identification and Quantification of Basal Endogenous Proteins in the Ileal Digesta of Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Collection of Digesta Samples
2.2. Proteomic Analysis of the Ileal Digesta
2.3. Statistical and Bioinformatic Analysis
3. Results
3.1. Proteomic Characterization of Endogenous Proteins in the Ileal Digesta
3.2. Analysis of DAPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.A.; Jo, H.; Kong, C.; Kim, B.G. Use of Digestible Rather than Total Amino Acid in Diet Formulation Increases Nitrogen Retention and Reduces Nitrogen Excretion from Pigs. Livest. Sci. 2017, 197, 8–11. [Google Scholar] [CrossRef]
- Pomar, C.; Andretta, I.; Remus, A. Feeding Strategies to Reduce Nutrient Losses and Improve the Sustainability of Growing Pigs. Front. Vet. Sci. 2021, 8, 742220. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; de Lange, C.F.M. Invited Review: Amino Acid Bioavailability and Digestibility in Pig Feed Ingredients: Terminology and Application. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Miner-Williams, W.; Deglaire, A.; Benamouzig, R.; Fuller, M.F.; Tomé, D.; Moughan, P.J. Endogenous Proteins in the Ileal Digesta of Adult Humans Given Casein-, Enzyme-Hydrolyzed Casein-or Crystalline Amino-Acid-Based Diets in an Acute Feeding Study. Eur. J. Clin. Nutr. 2014, 68, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Nyachoti, C.; de Lange, C.; McBride, B.; Schulze, H. Significance of Endogenous Gut Nitrogen Losses in the Nutrition of Growing Pigs: A Review. Can. J. Anim. Sci. 1997, 77, 149–163. [Google Scholar] [CrossRef]
- Adeola, O.; Xue, P.C.; Cowieson, A.J.; Ajuwon, K.M. Basal Endogenous Losses of Amino Acids in Protein Nutrition Research for Swine and Poultry. Anim. Feed Sci. Technol. 2016, 221, 274–283. [Google Scholar] [CrossRef]
- Nasset, E.S.; Ju, J.S. Mixture of Endogenous and Exogenous Protein in the Alimentary Tract. J. Nutr. 1961, 74, 461–465. [Google Scholar] [CrossRef]
- Souffrant, W.; Rérat, A.; Laplace, J.; Darcy-Vrillon, B.; Köhler, R.; Corring, T.; Gebhardt, G.; Bernard, F.; Jähnichen, M.; Schneider, B.; et al. Exogenous and Endogenous Contributions to Nitrogen Fluxes in the Digestive Tract of Pigs Fed a Casein Diet. III. Recycling of Endogenous Nitrogen. Reprod. Nutr. Dev. 1993, 33, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V. Feed-Induced Specific Ileal Endogenous Amino Acid Losses: Measurement and Significance in the Protein Nutrition of Monogastric Animals. Anim. Feed Sci. Technol. 2016, 221, 304–313. [Google Scholar] [CrossRef]
- Kong, C.; Ragland, D.; Adeola, O. Ileal Endogenous Amino Acid Flow Response to Nitrogen-Free Diets with Differing Ratios of Corn Starch to Dextrose in Pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1124–1130. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Dong, K.; Harmon, D.L. Evaluating the Effects of Adaptation Length, Dietary Electrolyte Balance, and Energy Source on Ileal Endogenous Amino Acid Losses in Pigs Fed Nitrogen-Free Diets. Can. J. Anim. Sci. 2019, 99, 532–541. [Google Scholar] [CrossRef]
- Park, C.S.; Adeola, O. Basal Ileal Endogenous Losses of Amino Acids in Pigs Determined by Feeding Nitrogen-Free Diet or Low-Casein Diet or by Regression Analysis. Anim. Feed Sci. Technol. 2020, 267, 114550. [Google Scholar] [CrossRef]
- Deglaire, A.; Moughan, P.J.; Tomé, D. A Casein Hydrolysate Does Not Enhance Ileal Endogenous Protein Flows Compared with the Parent Intact Casein When Fed to Growing Pigs. Curr. Dev. Nutr. 2019, 3, nzy083. [Google Scholar] [CrossRef]
- Brestenský, M.; Nitrayová, S.; Patráš, P. Ileal Endogenous Losses in Pigs Feeding a Protein-Free Diet or Diets with Different Contents of Casein or Crystalline Amino Acids. Arch. Anim. Nutr. 2017, 71, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Mariscal-Landín, G.; Reis de Souza, T.C. Endogenous Ileal Losses of Nitrogen and Amino Acids in Pigs and Piglets Fed Graded Levels of Casein. Arch. Anim. Nutr. 2006, 60, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Jansman, A.J.M.; Smink, W.; Van Leeuwen, P.; Rademacher, M. Evaluation through Literature Data of the Amount and Amino Acid Composition of Basal Endogenous Crude Protein at the Terminal Ileum of Pigs. Anim. Feed Sci. Technol. 2002, 98, 49–60. [Google Scholar] [CrossRef]
- Corring, T.; Souffrant, W.B.; Darcy-Vrillon, B.; Gebhartd, G.; Laplace, J.P.; Rerat, A. Exogenous and Endogenous Contribution to Nitrogen Fluxes in the Digestive Tract of Pigs Fed a Casein Diet. I. Contributions of Nitrogen from the Exocrine Pancreatic Secretion and the Bile. Reprod. Nutr. Dev. 1990, 30, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Duvaux, C.; Guilloteau, P.; Toullec, R.; Sissons, J.; Duvaux, C.; Sissons, J.W. A New Method of Estimating the Proportions of Different Proteins in a Mixture Using Amino Acid Profiles: Application to Undigested Proteins in the Preruminant Calf. Ann. Zootech. 1990, 39, 9–18. [Google Scholar] [CrossRef]
- Ravindran, V. Progress in Ileal Endogenous Amino Acid Flow Research in Poultry. J. Anim. Sci. Biotechnol. 2021, 12, 5. [Google Scholar] [CrossRef]
- Verberkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; et al. Shotgun Metaproteomics of the Human Distal Gut Microbiota. ISME J. 2009, 3, 179–189. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio. Norma Oficial Mexicana: Mexico City, Mexico, 2001.
- CIOMS. International Guiding Principles for Biomedical Research Involving Animals. In The Development of Science-Based Guide-Lines for Laboratory Animal Care; NCBI Bookshelf: Geneva, Switzerland, 2012. [Google Scholar]
- Reis de Souza, T.C.; Mar-Botello, B.; Mariscal-Landín, G. Canulación de Cerdos Posdestete Para Pruebas de Digestibilidad Ileal: Desarrollo de Una Metodología. Técnica Pecu. México 2000, 38, 143–150. [Google Scholar]
- NRC. Nutrient Requirements of Swine; Eleventh Revised; National Academy Press: Washington, DC, USA, 2012.
- INRA. L’alimentation Des Animaux Monogastriques: Porc, Lapin, Volaille; Institut National de la Recherche Agronomique: Paris, France, 1984. [Google Scholar]
- Reis de Souza, T.C.; Ávila Árres, I.E.; Ramírez Rodríguez, E.; Mariscal-Landín, G. Effects of Kafirins and Tannins Concentrations in Sorghum on the Ileal Digestibility of Amino Acids and Starch, and on the Glucose and Plasma Urea Nitrogen Levels in Growing Pigs. Livest. Sci. 2019, 227, 29–36. [Google Scholar] [CrossRef]
- Qin, C.; Qiu, K.; Sun, W.; Jiao, N.; Zhang, X.; Che, L.; Zhao, H.; Shen, H.; Yin, J. A Proteomic Adaptation of Small Intestinal Mucosa in Response to Dietary Protein Limitation. Sci. Rep. 2016, 6, 36888. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Castro, E.; Souza, G.H.M.F.; Delgadillo-Álvarez, D.M.; Ramírez-Reyes, L.; Torres-Huerta, A.L.; Velasco-Suárez, A.; Cruz-Cruz, C.; Hernández-Hernández, J.M.; Tapia-Ramírez, J. Quantitative Proteomic Analysis of MARC-145 Cells Infected with a Mexican Porcine Reproductive and Respiratory Syndrome Virus Strain Using a Label-Free Based DIA Approach. J. Am. Soc. Mass Spectrom. 2020, 31, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.; Gorenstein, M.V.; Li, G.-Z.; Vissers, J.P.C.; Geromanos, S.J. Absolute Quantification of Proteins by LCMSE. Mol. Cell. Proteom. 2006, 5, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Klausen, M.; Pontoppidan, K.; Faruk, M.U.; Roos, F.F.; Giessing, A.M.B. Identification of Peptides in the Terminal Ileum of Broiler Chickens Fed Diets Based on Maize and Soybean Meal Using Proteomics. In Proceedings of the Animal Production Science; CSIRO: Pullenvale, QLD, Australia, 2017; Volume 57, pp. 1738–1750. [Google Scholar]
- Le Gall, M.; Quillien, L.; Guéguen, J.; Rogniaux, H.; Sève, B. Identification of Dietary and Endogenous Ileal Protein Losses in Pigs by Immunoblotting and Mass Spectrometry. J. Nutr. 2005, 135, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Recoules, E.; Sabboh-Jourdan, H.; Narcy, A.; Lessire, M.; Harichaux, G.; Labas, V.; Duclos, M.J.; Réhault-Godbert, S. Exploring the in Vivo Digestion of Plant Proteins in Broiler Chickens. Poult. Sci. 2017, 96, 1735–1747. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, B.; Tang, Y.; Liao, P.; Yao, K.; Ji, P.; Yin, Y. Extraction and Identification of the Chyme Proteins in the Digestive Tract of Growing Pigs. Sci. China Life Sci. 2018, 61, 1396–1406. [Google Scholar] [CrossRef]
- Tröscher-Mußotter, J.; Tilocca, B.; Stefanski, V.; Seifert, J. Analysis of the Bacterial and Host Proteins along and across the Porcine Gastrointestinal Tract. Proteomes 2019, 7, 4. [Google Scholar] [CrossRef]
- Haber, A.L.; Biton, M.; Rogel, N.; Herbst, R.H.; Shekhar, K.; Smillie, C.; Burgin, G.; Delorey, T.M.; Howitt, M.R.; Katz, Y.; et al. A Single-Cell Survey of the Small Intestinal Epithelium. Nature 2017, 551, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Gelberg, H.B. Comparative Anatomy, Physiology, and Mechanisms of Disease Production of the Esophagus, Stomach, and Small Intestine. Toxicol. Pathol. 2014, 42, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Gieryńska, M.; Szulc-Dąbrowska, L.; Struzik, J.; Mielcarska, M.B.; Gregorczyk-Zboroch, K.P. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota—A Mutual Relationship. Animals 2022, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, Z.; Zhang, A.; Liu, C.; Sun, Y.; Peng, Z.; Liu, Y. Membrane-Cytoplasm Translocation of Annexin A4 Is Involved in the Metastasis of Colorectal Carcinoma. Aging 2021, 13, 10312–10325. [Google Scholar] [CrossRef] [PubMed]
- Vergnolle, N. Protease Inhibition as New Therapeutic Strategy for GI Diseases. Gut 2016, 65, 1215–1224. [Google Scholar] [CrossRef]
- Bond, J.S.; Matters, G.L.; Banerjee, S.; Dusheck, R.E. Meprin Metalloprotease Expression and Regulation in Kidney, Intestine, Urinary Tract Infections and Cancer. FEBS Lett. 2005, 579, 3317–3322. [Google Scholar] [CrossRef]
- Werny, L.; Colmorgen, C.; Becker-Pauly, C. Regulation of Meprin Metalloproteases in Mucosal Homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119158. [Google Scholar] [CrossRef] [PubMed]
- Paone, P.; Cani, P.D. Mucus Barrier, Mucins and Gut Microbiota: The Expected Slimy Partners? Gut 2020, 69, 2232–2243. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, W.; Mahmood, T.; Chen, Y.; Xu, Y.; Wang, Y.; Yuan, J. Comparison of Endogenous Amino Acid Losses in Broilers When Offered Nitrogen-Free Diets with Differing Ratios of Dextrose to Corn Starch. Sci. Rep. 2022, 12, 5689. [Google Scholar] [CrossRef]
- Vandooren, J.; Itoh, Y. Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Front. Immunol. 2021, 12, 803244. [Google Scholar] [CrossRef]
- Parsons, B.W.; Drysdale, R.L.; Cvengros, J.E.; Utterback, P.L.; Rochell, S.J.; Parsons, C.M.; Emmert, J.L. Quantification of Secretory IgA and Mucin Excretion and Their Contributions to Total Endogenous Amino Acid Losses in Roosters That Were Fasted or Precision-Fed a Nitrogen-Free Diet or Various Highly Digestible Protein Sources. Poult. Sci. 2023, 102, 102554. [Google Scholar] [CrossRef] [PubMed]
- Kurz, A.; Seifert, J. Factors Influencing Proteolysis and Protein Utilization in the Intestine of Pigs: A Review. Animals 2021, 11, 3551. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wu, L.; Xu, Z.; Li, T.; Yao, K.; Cui, Z.; Yin, Y.; Wu, G. Low-Protein Diets Affect Ileal Amino Acid Digestibility and Gene Expression of Digestive Enzymes in Growing and Finishing Pigs. Amino Acids 2016, 48, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Vitko, N.P.; Spahich, N.A.; Richardson, A.R. Glycolytic Dependency of High-Level Nitric Oxide Resistance and Virulence in Staphylococcus Aureus. mBio 2015, 6, e00045-15. [Google Scholar] [CrossRef] [PubMed]
- Prossomariti, A.; Sokol, H.; Ricciardiello, L. Nucleotide-Binding Domain Leucine-Rich Repeat Containing Proteins and Intestinal Microbiota: Pivotal Players in Colitis and Colitis-Associated Cancer Development. Front. Immunol. 2018, 9, 1039. [Google Scholar] [CrossRef] [PubMed]
- Drouin, M.; Saenz, J.; Chiffoleau, E. C-Type Lectin-Like Receptors: Head or Tail in Cell Death Immunity. Front. Immunol. 2020, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Lynch, N.J.; Roscher, S.; Hartung, T.; Morath, S.; Matsushita, M.; Maennel, D.N.; Kuraya, M.; Fujita, T.; Schwaeble, W.J. L-Ficolin Specifically Binds to Lipoteichoic Acid, a Cell Wall Constituent of Gram-Positive Bacteria, and Activates the Lectin Pathway of Complement. J. Immunol. 2004, 172, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Nakatogawa, H. Mechanisms Governing Autophagosome Biogenesis. Nat. Rev. Mol. Cell Biol. 2020, 21, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Gebert, N.; Cheng, C.-W.; Kirkpatrick, J.M.; Di Fraia, D.; Yun, J.; Schädel, P.; Pace, S.; Garside, G.B.; Werz, O.; Rudolph, K.L.; et al. Region-Specific Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction. Cell Rep. 2020, 31, 107565. [Google Scholar] [CrossRef]
- Qi, D.; Shi, W.; Black, A.R.; Kuss, M.A.; Pang, X.; He, Y.; Liu, B.; Duan, B. Repair and Regeneration of Small Intestine: A Review of Current Engineering Approaches. Biomaterials 2020, 240, 119832. [Google Scholar] [CrossRef]
- Modina, S.C.; Aidos, L.; Rossi, R.; Pocar, P.; Corino, C.; Di Giancamillo, A. Stages of Gut Development as a Useful Tool to Prevent Gut Alterations in Piglets. Animals 2021, 11, 1412. [Google Scholar] [CrossRef]
- Bragulla, H.H.; Homberger, D.G. Structure and Functions of Keratin Proteins in Simple, Stratified, Keratinized and Cornified Epithelia. J. Anat. 2009, 214, 516–559. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Toivola, D.M.; Feng, N.; Greenberg, H.B.; Franke, W.W.; Omary, M.B. Keratin 20 Helps Maintain Intermediate Filament Organization in Intestinal Epithelia. Mol. Biol. Cell 2003, 14, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Mun, J.; Hur, W.; Ku, N.-O. Roles of Keratins in Intestine. Int. J. Mol. Sci. 2022, 23, 8051. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuki, H.; Suda, M. Maturation of Three Kinds of Keratin Networks in the Absorptive Cells of Rabbit Duodenum. Acta Histochem. Cytochem. 2005, 38, 237–245. [Google Scholar] [CrossRef]
- Chen, C.; Gong, X.; Yang, X.; Shang, X.; Du, Q.; Liao, Q.; Xie, R.; Chen, Y.; Xu, J. The Roles of Estrogen and Estrogen Receptors in Gastrointestinal Disease. Oncol. Lett. 2019, 18, 5673–5680. [Google Scholar] [CrossRef] [PubMed]
- Soler, L.; Stella, A.; Seva, J.; Pallarés, F.J.; Lahjouji, T.; Burlet-Schiltz, O.; Oswald, I.P. Proteome Changes Induced by a Short, Non-Cytotoxic Exposure to the Mycoestrogen Zearalenone in the Pig Intestine. J. Proteom. 2020, 224, 103842. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, Y.; He, J.; Zhang, F.; Sun, X.; Yang, S.; Dong, H. Estrogen and Estrogen Receptors in the Modulation of Gastrointestinal Epithelial Secretion. Oncotarget 2017, 8, 97683–97692. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.D. The Rho Guanine Nucleotide Exchange Factor P-Rex1 as a Potential Drug Target for Cancer Metastasis and Inflammatory Diseases. Pharmacol. Res. 2020, 153, 104676. [Google Scholar] [CrossRef]
- Shao, Q.; Chen, Z.-M. Feedback Regulation between Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 and Transforming Growth Factor Β1 and Prognostic Value in Gastric Cancer. World J. Gastroenterol. 2020, 26, 21–34. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, Z.; Huang, J.; Xiao, Y.; Rehmutulla, M.; Zhang, B.; Zhang, Z.; Xiang, M.; Tong, Q.; Zhang, Y. Single-Cell Transcriptomics Reveals Intestinal Cell Heterogeneity and Identifies Ep300 as a Potential Therapeutic Target in Mice with Acute Liver Failure. Cell Discov. 2023, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, K.; Koper, M.; Ufnal, M. Gut Microbiota and Renin-Angiotensin System: A Complex Interplay at Local and Systemic Levels. Am. J. Physiol.-Gastrointest. Liver Physiol. 2021, 321, G355–G366. [Google Scholar] [CrossRef] [PubMed]
- Zizzo, M.G.; Serio, R. The Renin–Angiotensin System in Gastrointestinal Functions. In Angiotensin; Elsevier: Amsterdam, The Netherlands, 2023; pp. 681–697. [Google Scholar]
- Ferreira-Duarte, M.; Oliveira, L.C.G.; Quintas, C.; Esteves-Monteiro, M.; Duarte-Araújo, M.; Sousa, T.; Casarini, D.E.; Morato, M. Actividad Catalítica ACE y ACE2 en el Contenido Fecal a Lo Largo Del Intestino. Neurogastroenterol. Motil. 2023, 35, e14598. [Google Scholar] [CrossRef] [PubMed]
- Dave, L.A.; Montoya, C.A.; Rutherfurd, S.M.; Moughan, P.J. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides—An In Silico Study. PLoS ONE 2014, 9, e98922. [Google Scholar] [CrossRef] [PubMed]
NFD 1 | CAS | |
---|---|---|
Ingredients, g/kg | ||
Cornstarch | 795.4 | 615.4 |
Casein | 180 | |
Dextrose | 100 | 100 |
Soybean oil | 30 | 30 |
Cellulose | 40 | 40 |
Calcium carbonate | 5 | 5 |
Orthophosphate | 19 | 19 |
Salt | 4 | 4 |
Potassium bicarbonate | 0.5 | 0.5 |
Magnesium oxide | 0.1 | 0.1 |
Titanium dioxide | 4 | 4 |
Vitamin mineral premix 2 | 2 | 2 |
Calculated nutrient content | ||
Metabolizable energy, Kcal, Kg | 3481 | 3473 |
Crude protein, % | 0 | 16 |
Crude fiber, % | 2.86 | 2.83 |
Accession | GEN | Protein Name | TOP NFD | TOP CAS |
---|---|---|---|---|
P01846 | Ig lambda chain C region | 1 | 1 | |
P00761 | Trypsin | 2 | 2 | |
A0A287A042 | MGAM | Maltase-glucoamylase | 5 | 4 |
P09955 | CPB1 | Carboxypeptidase B | 6 | 3 |
P08419 | CELA2A | Chymotrypsin-like elastase family member 2A | 3 | 10 |
A0A5G2QEP8 | LRRIQ3 | Leucine-rich repeats and IQ motif containing 3 | 4 | 11 |
K7GMF9 | ANPEP | Aminopeptidase | 7 | 6 |
A0A5G2RGB6 | MEP1B | Meprin A subunit B | 9 | 5 |
C6L245 | try | Putative trypsinogen | 11 | 7 |
A0A287AYJ2 | ANXA4 | Annexin A4 | 10 | 14 |
A0A287B626 | IgA constant region | 12 | 13 | |
F1RRW5 | ACE | Angiotensin-converting enzyme | 16 | 8 |
P56729 | SI | Sucrase-isomaltase intestinal | 14 | 16 |
A0A287BPD6 | MME | Neprilysin | 13 | 20 |
F1SUW2 | CTRC | Chymotrypsin-C | 15 | |
A0A5G2QAG3 | LAP3 | Cytosol aminopeptidase | 8 | |
P09954 | CPA1 | Carboxypeptidase A1 | 18 | |
A0A287AT48 | LOC100153899 | Alpha-1-antichymotrypsin 2 | 12 | |
A0A5G2RDG3 | NAALADL1 | N-acetylated alpha-linked acidic dipeptidase like 1 | 17 | |
F1STN0 | SMPDL3B | Sphingomyelin phosphodiesterase acid-like 3B | 18 | |
P80310 | S100A12 | Protein S100-A12 | 15 | |
F1SCC9 | LOC106504545 | SERPIN domain-containing protein | 20 | |
I3LHI7 | LOC100621820 | Peptidase S1 domain-containing protein | 9 | |
K7GMV8 | ENPP3 | Ectonucleotide pyrophosphatase/phosphodiesterase 3 | 19 | |
I3LCF8 | CTRL | Chymotrypsin like | 17 | |
A0A286ZTL5 | WDR31 | WD repeat domain 31 | 19 |
Accession | GEN | Protein Name | log2 FC |
---|---|---|---|
F2Z5U0 | Ubiquitin-40S ribosomal protein S27a | 4.96 | |
A0A287A604 | LGALS3BP | Galectin-3-binding protein | 4.68 |
F1SC72 | NEURL2 | Neuralized E3 ubiquitin protein ligase 2 | 3.51 |
A0A287B4A9 | GFM1 | G elongation factor mitochondrial 1 | 3.27 |
A0A287A6D8 | PLXNA1 | Plexin A1 | 3.26 |
A0A2C9F351 | SLC44A4 | Choline transporter-like protein | 2.92 |
A0A286ZRF3 | SERPINB6 | Serpin family B member 6 | 2.80 |
I3LUP6 | NPM1 | Nucleophosmin | 2.42 |
F1S1B9 | DHRS11 | Dehydrogenase/reductase 11 | 2.40 |
A0A287BGV4 | ATAD2B | ATPase family AAA domain containing 2B | 2.36 |
I3LHI7 | LOC100621820 | Peptidase S1 domain-containing protein | 2.34 |
A0A5G2QS59 | LCT | LPH hydrolase | 2.18 |
F1RGB0 | SSH1 | Protein-serine/threonine phosphatase | 2.11 |
A0A5G2R2I6 | SNCA | Alpha-synuclein | 1.96 |
A0A287B310 | STOM | Stomatin | 1.96 |
A0A5S6H025 | VIM | Vimentin | 1.95 |
A0A287AUI5 | ANK2 | Ankyrin-2 | 1.70 |
A0A286ZZ91 | OVGP1 | Oviduct-specific glycoprotein | 1.69 |
A0A5G2Q9X4 | ASAH2 | Neutral ceramidase | 1.64 |
I3LCF8 | CTRL | Chymotrypsin like | 1.63 |
A0A286ZUV2 | CDHR2 | Cadherin-related family member 2 | 1.50 |
A0A286ZTL5 | WDR31 | WD repeat domain 31 | 1.48 |
F1SFU5 | S100A7 | EF-hand domain-containing protein | 1.47 |
F1SM15 | TRPM8 | Transient receptor potential cation channel subfamily M member 8 | 1.40 |
F1S5Q6 | FLT4 | Vascular endothelial growth factor receptor 3 | 1.34 |
A0A286ZWA9 | SHPRH | SNF2 histone linker PHD RING helicase | 1.33 |
P00591 | PNLIP | Pancreatic triacylglycerol lipase | 1.33 |
P00690 | AMY2 | Pancreatic alpha-amylase | 1.31 |
A0A5G2RH22 | L1 transposable element | 1.22 | |
A0A287B9B3 | SERPINF2 | Alpha-2-antiplasmin isoform X2 | 1.22 |
F6Q1W0 | PNLIPRP1 | Triacylglycerol lipase | 1.22 |
P17630 | TCN1 | Transcobalamin-1 | 1.20 |
A0A5G2R7I6 | DPP6 | Dipeptidyl peptidase like 6 | 1.20 |
F1S1R8 | PGBD1 | PiggyBac transposable element derived 1 | 1.13 |
A0A287BIU6 | LCORL | Ligand-dependent nuclear receptor co-repressor like | 1.08 |
P80015 | AZU1 | Azurocidin | 1.07 |
I3LSA5 | AMY | Alpha-amylase | 1.04 |
A0A5G2RJR8 | PNLIP | Triacylglycerol lipase | 1.03 |
P80310 | S100A12 | Protein S100-A12 | 1.02 |
A0A287A1B4 | PZP | Pregnancy zone protein-like | 1.02 |
A0A287BQW1 | METAP1 | Methionine aminopeptidase | 0.97 |
P19130 | FTH1 | Ferritin heavy chain | 0.93 |
A0A287AP88 | TSC22D3 | TSC22 domain family protein 3 | 0.89 |
P19133 | FTL | Ferritin light chain (Fragment) | 0.87 |
F1SEL6 | GDF2 | Growth Differentiation Factor 2 | 0.83 |
A0A287BHZ2 | TUBG2 | Tubulin gamma chain | 0.76 |
F1RSU5 | FLT1 | Receptor protein-tyrosine kinase | 0.75 |
A0A287AL10 | FTH1 | Ferritin | 0.74 |
P81245 | OBP | Odorant-binding protein | 0.74 |
I3LNV9 | CLEC1B | C-type lectin domain family 1 member B | 0.73 |
K7GME6 | S100A9 | S100 binding calcium-binding protein A9 | 0.66 |
A0A287AES3 | KRBA1 | KRAB-A domain containing 1 | 0.65 |
P28768 | SOD2 | Superoxide dismutase [Mn]_ mitochondrial | 0.63 |
I3L719 | DPEP1 | Dipeptidase | 0.62 |
A0A287A4Z2 | SOD2 | Superoxide dismutase | 0.57 |
A0A287A0W9 | TCN1 | Transcobalamin-1 | 0.56 |
A0A287AIG5 | CCDC57 | Coiled-coil domain containing 57 | 0.53 |
F1S4C6 | CLCA2 | Chloride channel accessory 2 | 0.53 |
P22412 | DPEP1 | Dipeptidase 1 | 0.52 |
O77564 | FOLH1 | Glutamate carboxypeptidase 2 | 0.52 |
Accession | GEN | Protein Name | log2 FC |
---|---|---|---|
F1RN44 | LAMP1 | associated lysosomal-associated membrane protein 1 | −0.59 |
A0A286ZYN0 | KRT15 | Keratin 15 | −0.61 |
A0A5G2RBD3 | KRT18 | Keratin 18 | −0.64 |
A0A5G2QV66 | NEK9 | NIMA-related kinase 9 | −0.64 |
F1RZR1 | GGNBP1 | Ubiquitin_3 domain-containing protein | −0.67 |
A0A5G2QX93 | DUF1725 domain-containing protein | −0.70 | |
A0A287A4P2 | LOC106507258 | IF rod domain-containing protein | −0.72 |
A0A287BQR3 | FCN2 | Ficolin-2 | −0.77 |
A0A287AZA7 | RPS27A | Ubiquitin-40S ribosomal protein S27a | −0.80 |
A0A5K1UE53 | SERPING1 | Serpin family G member 1 | −0.84 |
F1S793 | CCDC15 | Coiled-coil domain containing 15 | −0.84 |
I3L6U3 | Uncharacterized protein | −0.86 | |
P08835 | ALB | Albumin | −0.91 |
P10289 | FABP6 | Gastrotropin | −0.92 |
F1RXG2 | KRT28 | Keratin 28 | −0.95 |
F1RMN7 | HPX | Hemopexin | −0.98 |
I3L9U8 | EP300 | Histone acetyltransferase | −0.99 |
A0A5G2RAC7 | CAND1 | Cullin associated and neddylation dissociated 1 | −1.01 |
A0A5K1V9N9 | SYT5 | Synaptotagmin 5 | −1.02 |
F1SHN7 | LRRK2 | Non-specific serine/threonine protein kinase | −1.12 |
A0A287BD64 | CELA3 | Peptidase S1 domain-containing protein | −1.13 |
F1SQ67 | BCL2L14 | BCL2 like 14 | −1.23 |
A0A286ZWT0 | AP1B1 | AP complex subunit beta | −1.23 |
F1RGN9 | TEKT1 | Tektin | −1.29 |
A0A5G2RMY5 | ASH1L | ASH1-like histone lysine methyltransferase | −1.40 |
P35479 | Leukocyte cysteine proteinase inhibitor 1 | −1.40 | |
A0A287ACY3 | KCNH1 | Potassium voltage-gated channel subfamily H member 1 | −1.49 |
A0A287AHM5 | LOC100737030 | IF rod domain-containing protein | −1.49 |
A0A2C9F3C0 | GUSB | Beta-glucuronidase | −1.49 |
A0A286ZUE0 | PREX1 | Phosphatidylinositol-3_4_5-trisphosphate dependent Rac exchange factor 1 | −1.60 |
A0A5G2QPZ4 | KRT20 | Keratin_ type I cytoskeletal 20 | −1.60 |
P12067 | Lysozyme C-1 | −1.85 | |
A0A5G2QAG3 | LAP3 | Cytosol aminopeptidase | −1.93 |
P28839 | LAP3 | Cytosol aminopeptidase | −1.93 |
A0A2C9F366 | HSPB1 | Heat shock protein beta-1 | −1.96 |
B6DX84 | ASF1B | ASF1B | −2.06 |
A0A286ZM40 | EVI5 | Ecotropic viral integration site 5 | −2.09 |
A0A287A2G9 | KRT71 | Keratin 71 | −2.26 |
A0A286ZWJ1 | ACTG2 | Actin gamma 2_ smooth muscle | −2.36 |
A0A287B664 | NOPCHAP1 | NOP protein chaperone 1 | −2.40 |
A0A287ARK0 | KRT40 | Keratin 40 | −3.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Arres, I.E.; Rodríguez Hernández, E.; Gómez Rosales, S.; Reis de Souza, T.C.; Mariscal-Landín, G. Proteomic Identification and Quantification of Basal Endogenous Proteins in the Ileal Digesta of Growing Pigs. Animals 2024, 14, 2000. https://doi.org/10.3390/ani14132000
Ávila-Arres IE, Rodríguez Hernández E, Gómez Rosales S, Reis de Souza TC, Mariscal-Landín G. Proteomic Identification and Quantification of Basal Endogenous Proteins in the Ileal Digesta of Growing Pigs. Animals. 2024; 14(13):2000. https://doi.org/10.3390/ani14132000
Chicago/Turabian StyleÁvila-Arres, Iris Elisa, Elba Rodríguez Hernández, Sergio Gómez Rosales, Tércia Cesária Reis de Souza, and Gerardo Mariscal-Landín. 2024. "Proteomic Identification and Quantification of Basal Endogenous Proteins in the Ileal Digesta of Growing Pigs" Animals 14, no. 13: 2000. https://doi.org/10.3390/ani14132000
APA StyleÁvila-Arres, I. E., Rodríguez Hernández, E., Gómez Rosales, S., Reis de Souza, T. C., & Mariscal-Landín, G. (2024). Proteomic Identification and Quantification of Basal Endogenous Proteins in the Ileal Digesta of Growing Pigs. Animals, 14(13), 2000. https://doi.org/10.3390/ani14132000