Genome-Wide Association Study as an Efficacious Approach to Discover Candidate Genes Associated with Body Linear Type Traits in Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Importance of Body Linear Type Traits
2.1. Body Linear Type Traits as Feed Efficiency Indicators
2.2. Body Linear Type Traits and Longevity
2.3. Predicting Milk Production Using Body Linear Type Features
2.4. The Effect of Body Linear Type Traits on Reproduction
2.5. Movement and Health of Feet and Legs
2.6. Health of Mammary System in Dairy Cattle
2.7. Effects of Environmental Factors on Body Size Linear Traits
2.8. Heritability of Linear Body Traits
3. Importance of GWASs in Dairy Cattle Breeding Programs
3.1. How to Conduct a GWAS
3.2. GWAS SNP Chips
3.3. Genomic Databases and Software for GWAS Analysis
3.4. Post GWAS
3.5. GWAS Studies Screening Genetic Markers for Body Linear Type Traits
3.6. Future Applications of the GWAS Strategy for Improving Body Conformation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef] [PubMed]
- Getu, A.; Misganaw, G. The role of conformational traits on dairy cattle production and their longevities. Open Access Libr. J. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Amirpour Najafabadi, H.; Ansari Mahyari, S.; Edriss, M.A.; Strapakova, E. Genetic analysis of productive life length in Holstein dairy cows using Weibull proportional risk model. Arch. Anim. Breed. 2016, 59, 387–393. [Google Scholar] [CrossRef]
- Wu, J.; Wathes, D.; Brickell, J.; Yang, L.; Cheng, Z.; Zhao, H.; Xu, Y.; Zhang, S. Reproductive performance and survival of Chinese Holstein dairy cows in central China. Anim. Prod. Sci. 2012, 52, 11–19. [Google Scholar] [CrossRef]
- Hu, H.; Mu, T.; Ma, Y.; Wang, X.; Ma, Y. Analysis of longevity traits in Holstein cattle: A review. Front. Genet. 2021, 12, 695543. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, S.; Misztal, I.; Lawlor, T. Changing definition of productive life in US Holsteins: Effect on genetic correlations. J. Dairy Sci. 2005, 88, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Morek-Kopeć, M.; Zarnecki, A.J.L.S. Relationship between conformation traits and longevity in Polish Holstein Friesian cattle. Livest. Sci. 2012, 149, 53–61. [Google Scholar] [CrossRef]
- Kharrati-Koopaee, H.; Esmailizadeh, A. SNPs Genotyping technologies and their applications in farm animals breeding programs. Braz. Arch. Biol. Technol. 2014, 57, 87–95. [Google Scholar] [CrossRef]
- Edwards, D.; Forster, J.; Chagné, D.; Batley, J. What Are SNPs? In Association Mapping in Plants; Springer: New York, NY, USA, 2007. [Google Scholar]
- Ku, C.S.; Loy, E.Y.; Pawitan, Y.; Chia, K.S. The pursuit of genome-wide association studies: Where are we now? J. Hum. Genet. 2010, 55, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Lee, J.S.; Dang, C.G.; Sudrajad, P.; Kim, H.C.; Yeon, S.H.; Kang, H.S.; Lee, S.-H. Stories and challenges of genome wide association studies in livestock—A review. Asian-Australas. J. Anim. Sci. 2015, 28, 1371. [Google Scholar] [CrossRef] [PubMed]
- Jairath, L.; Dekkers, J.; Schaeffer, L.; Liu, Z.; Burnside, E.; Kolstad, B. Genetic evaluation for herd life in Canada. J. Dairy Sci. 1998, 81, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Egger-Danner, C.; Cole, J.; Pryce, J.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K.F. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2015, 9, 191–207. [Google Scholar] [CrossRef]
- Olechnowicz, J.; Kneblewski, P.; Jaśkowski, J.; Włodarek, J. Effect of selected factors on longevity in cattle: A review. J. Anim. Plant Sci. 2016, 26. [Google Scholar]
- Berry, D.; Crowley, J.J. Cell biology symposium: Genetics of feed efficiency in dairy and beef cattle. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef] [PubMed]
- Mehtiö, T.; Pitkänen, T.; Leino, A.-M.; Mäntysaari, E.; Kempe, R.; Negussie, E.; Lidauer, M. Genetic analyses of metabolic body weight, carcass weight and body conformation traits in Nordic dairy cattle. Animal 2021, 15, 100398. [Google Scholar] [CrossRef]
- Manafiazar, G.; Goonewardene, L.; Miglior, F.; Crews, D.; Basarab, J.; Okine, E.; Wang, Z. Genetic and phenotypic correlations among feed efficiency, production and selected conformation traits in dairy cows. Animal 2016, 10, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Alphonsus, C.; Akpa, G.N.; Oni, O.O.; Rekwot, P.I.; Barje, P.P.; Yashim, M.S. Relationship of linear conformation traits with bodyweight, body condition score and milk yield in Friesian× Bunaji cows. J. Appl. Anim. Res. 2010, 38, 97–100. [Google Scholar] [CrossRef]
- Dorji, J.; MacLeod, I.M.; Chamberlain, A.J.; Vander Jagt, C.J.; Ho, P.N.; Khansefid, M.; Mason, B.A.; Prowse-Wilkins, C.P.; Marett, L.C.; Wales, W.J. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle. J. Dairy Sci. 2021, 104, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cabal, M.; Alenda, R. Lifetime profit as an individual trait and prediction of its breeding values in Spanish Holstein cows. J. Dairy Sci. 2003, 86, 4115–4122. [Google Scholar] [CrossRef] [PubMed]
- Dallago, G.M.; Wade, K.M.; Cue, R.I.; McClure, J.T.; Lacroix, R.; Pellerin, D.; Vasseur, E. Keeping dairy cows for longer: A critical literature review on dairy cow longevity in high milk-producing countries. Animals 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Kern, E.L.; Cobuci, J.A.; Costa, C.N.; McManus, C.M.; Braccini, J. Genetic association between longevity and linear type traits of Holstein cows. Sci. Agric. 2015, 72, 203–209. [Google Scholar] [CrossRef]
- Yeman, G.; Kassa, T.; Getu, A. The role of conformational traits on dairy cattle production in Gondar town, Ethiopia. J. Agric. Biotechnol. Res. 2015, 1, 64–69. [Google Scholar]
- Kazancoglu, Y.; Ozkan-Ozen, Y.D.; Ozbiltekin, M. Minimizing losses in milk supply chain with sustainability: An example from an emerging economy. Resour. Conserv. Recycl. 2018, 139, 270–279. [Google Scholar] [CrossRef]
- Abo-Ismail, M.K.; Brito, L.F.; Miller, S.P.; Sargolzaei, M.; Grossi, D.A.; Moore, S.S.; Plastow, G.; Stothard, P.; Nayeri, S.; Schenkel, F.S. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genet. Sel. Evol. 2017, 49, 82. [Google Scholar] [CrossRef] [PubMed]
- Bohlouli, M.; Alijani, S.; Varposhti, M.R. Genetic relationships among linear type traits and milk production traits of Holstein dairy cattle. Ann. Anim. Sci. 2015, 15, 903–917. [Google Scholar] [CrossRef]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, J.; McDaniel, B. Genetic parameters and trends of milk, fat, days open, and body weight after calving in North Carolina experimental herds. J. Dairy Sci. 2000, 83, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World 2018, 11, 562. [Google Scholar] [CrossRef]
- Vrdoljak, J.; Ugarković, N.K.; Konjačić, M.; Vnučec, I.; Samaržija, D.; Prpić, Z. Udder morphology, milk production and udder health in small ruminants. Mljekarstvo 2020, 70, 75–84. [Google Scholar] [CrossRef]
- Hayes, B. Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol. Biol. 2013, 1019, 149–169. [Google Scholar] [PubMed]
- Hossein-Zadeh, N. Effects of main reproductive and health problems on the performance of dairy cows: A review. Span. J. Agric. Res. 2013, 11, 718–735. [Google Scholar] [CrossRef]
- Mahnani, A.; Sadeghi-Sefidmazgi, A.; Ansari-Mahyari, S.; Ghorbani, G.-R. Assessing the consequences and economic impact of retained placenta in Holstein dairy cattle. Theriogenology 2021, 175, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Atkins, G.; The Importance of Functional Conformation in the Longevity of Holstein Cattle. Frisona Española 2009, 1–12. Available online: https://www.researchgate.net/publication/228398013_The_Importance_of_Functional_Conformation_in_the_Longevity_of_Holstein_Cattle (accessed on 1 May 2024).
- Van Dorp, T.; Dekkers, J.; Martin, S.; Noordhuizen, J. Genetic parameters of health disorders, and relationships with 305-day milk yield and conformation traits of registered Holstein cows. J. Dairy Sci. 1998, 81, 2264–2270. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.; Coffey, M.; Brotherstone, S. The genetic relationship between calving interval, body condition score and linear type and management traits in registered Holsteins. J. Dairy Sci. 2000, 83, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Melendez, P.; Bartolome, J.; Archbald, L.; Donovan, A. The association between lameness, ovarian cysts and fertility in lactating dairy cows. Theriogenology 2003, 59, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.; Wall, E.; Pryce, J. Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 2014, 8, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Oltenacu, P.A.; Broom, D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar] [CrossRef]
- Heringstad, B.; Egger-Danner, C.; Charfeddine, N.; Pryce, J.; Stock, K.; Kofler, J.; Sogstad, A.; Holzhauer, M.; Fiedler, A.; Müller, K. Invited review: Genetics and claw health: Opportunities to enhance claw health by genetic selection. J. Dairy Sci. 2018, 101, 4801–4821. [Google Scholar] [PubMed]
- Hogeveen, H.; Huijps, K.; Lam, T. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [PubMed]
- Mark, T.; Sullivan, P. Multiple-trait multiple-country genetic evaluations for udder health traits. J. Dairy Sci. 2006, 89, 4874–4885. [Google Scholar] [CrossRef] [PubMed]
- Lund, T.; Miglior, F.; Dekkers, J.; Burnside, E. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest. Prod. Sci. 1994, 39, 243–251. [Google Scholar] [CrossRef]
- Bharti, P.; Bhakat, C.; Pankaj, P.K.; Bhat, S.A.; Prakash, M.A.; Thul, M.R.; Japheth, K.P. Relationship of udder and teat conformation with intra-mammary infection in crossbred cows under hot-humid climate. Vet. World 2015, 8, 898. [Google Scholar] [CrossRef] [PubMed]
- Angel, S.; Amitha, J.; Rashamol, V.; Vandana, G.; Savitha, S.; Afsal, A.; Bagath, M.; Krishnan, G.; Sejian, V. Climate Change and Cattle Production—Impact and Adaptation. J. Vet. Med. Res. 2018, 5, 1134. [Google Scholar]
- Zhang, G.; Wang, Z.; Chen, W.; Wu, C.; Han, X.; Chang, H.; Zan, L.; Li, R.; Wang, J.; Song, W. Genetic diversity and population structure of indigenous yellow cattle breeds of China using 30 microsatellite markers. Anim. Genet. 2007, 38, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Braz, C.U.; Rowan, T.N.; Schnabel, R.D.; Decker, J.E. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci. Rep. 2021, 11, 13335. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Hu, H.; Zhang, J.; Ma, Y.; Han, L.; Hao, F.; Jiang, Y.; Ma, Y. Estimation of genetic parameters for conformation traits and milk production traits in Chinese Holsteins. Animals 2022, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Júnior, G.A.; Rosa, G.J.; Valente, B.D.; Carvalheiro, R.; Baldi, F.; Garcia, D.A.; Gordo, D.G.; Espigolan, R.; Takada, L.; Tonussi, R.L.; et al. Genomic prediction of breeding values for carcass traits in Nellore cattle. Genet. Sel. Evol. 2016, 48, 7. [Google Scholar] [CrossRef] [PubMed]
- Roveglia, C.; Niero, G.; Bobbo, T.; Penasa, M.; Finocchiaro, R.; Visentin, G.; Lopez-Villalobos, N.; Cassandro, M. Genetic parameters for linear type traits including locomotion in Italian Jersey cattle breed. Livest. Sci. 2019, 229, 131–136. [Google Scholar] [CrossRef]
- Olasege, B.; Zhang, S.; Zhao, Q.; Liu, D.; Sun, H.; Wang, Q.; Ma, P.; Pan, Y. Genetic parameter estimates for body conformation traits using composite index, principal component, and factor analysis. J. Dairy Sci. 2019, 102, 5219–5229. [Google Scholar] [CrossRef]
- Ismael, H.; Janković, D.; Stanojević, D.; Bogdanović, V.; Trivunović, S.; Djedović, R. Estimation of heritability and genetic correlations between milk yield and linear type traits in primiparous Holstein-Friesian cows. Rev. Bras. Zootec. 2021, 50, e20200121. [Google Scholar] [CrossRef]
- Djedović, R.; Vukasinovic, N.; Stanojević, D.; Bogdanović, V.; Ismael, H.; Janković, D.; Gligović, N.; Brka, M.; Štrbac, L. Genetic parameters for functional longevity, type traits, and production in the Serbian Holstein. Animals 2023, 13, 534. [Google Scholar] [CrossRef] [PubMed]
- Battagin, M.; Sartori, C.; Biffani, S.; Penasa, M.; Cassandro, M. Genetic parameters for body condition score, locomotion, angularity, and production traits in Italian Holstein cattle. J. Dairy Sci. 2013, 96, 5344–5351. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, I.M.; Hui, J.; Nazar, M.; Arbab, A.A.I.; Xu, T.; Abdu, S.M.N.; Mao, Y.; Yang, Z.; Lu, X. Identification of Candidate Genes and Functional Pathways Associated with Body Size Traits in Chinese Holstein Cattle Based on GWAS Analysis. Animals 2023, 13, 992. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Luo, H.; Zhang, X.; Lu, H.; Zhang, M.; Ge, J.; Zhang, T.; Yan, M.; Tan, X.; Huang, X. Factor analysis of genetic parameters for body conformation traits in dual-purpose Simmental cattle. Animals 2022, 12, 2433. [Google Scholar] [CrossRef]
- Abdalla, I.M.; Lu, X.; Nazar, M.; Arbab, A.A.I.; Xu, T.; Yousif, M.H.; Mao, Y.; Yang, Z. Genome-wide association study identifies candidate genes associated with feet and leg conformation traits in Chinese Holstein cattle. Animals 2021, 11, 2259. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Abdalla, I.M.; Nazar, M.; Fan, Y.; Zhang, Z.; Wu, X.; Xu, T.; Yang, Z. Genome-wide association study on reproduction-related body-shape traits of Chinese Holstein cows. Animals 2021, 11, 1927. [Google Scholar] [CrossRef] [PubMed]
- Nazar, M.; Abdalla, I.M.; Chen, Z.; Ullah, N.; Liang, Y.; Chu, S.; Xu, T.; Mao, Y.; Yang, Z.; Lu, X. Genome-wide association study for udder conformation traits in Chinese Holstein cattle. Animals 2022, 12, 2542. [Google Scholar] [CrossRef] [PubMed]
- Mrode, R.; Ojango, J.M.K.; Okeyo, A.; Mwacharo, J.M. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Front. Genet. 2019, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Etter, P.D.; Bassham, S.; Hohenlohe, P.A.; Johnson, E.A.; Cresko, W.A. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol. Biol. 2011, 772, 157–178. [Google Scholar] [PubMed]
- Alqudah, A.M.; Sallam, A.; Baenziger, P.S.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate cereals: Lessons from barley—A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Freebern, E.; Santos, D.J.; Fang, L.; Jiang, J.; Parker Gaddis, K.L.; Liu, G.E.; VanRaden, P.M.; Maltecca, C.; Cole, J.B.; Ma, L. GWAS and fine-mapping of livability and six disease traits in Holstein cattle. BMC Genom. 2020, 21, 41. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla-Pech, C.; Veerkamp, R.; Tempelman, R.; Van Pelt, M.; Weigel, K.; VandeHaar, M.; Lawlor, T.; Spurlock, D.; Armentano, L.; Staples, C. Genetic parameters between feed-intake-related traits and conformation in 2 separate dairy populations—The Netherlands and United States. J. Dairy Sci. 2016, 99, 443–457. [Google Scholar] [CrossRef]
- Jiang, J.; Cao, Y.; Shan, H.; Wu, J.; Song, X.; Jiang, Y. The GWAS analysis of body size and population verification of related SNPs in Hu sheep. Front. Genet. 2021, 12, 642552. [Google Scholar] [CrossRef] [PubMed]
- Nazari-Ghadikolaei, A.; Mehrabani-Yeganeh, H.; Miarei-Aashtiani, S.R.; Staiger, E.A.; Rashidi, A.; Huson, H.J. Genome-wide association studies identify candidate genes for coat color and mohair traits in the Iranian Markhoz goat. Front. Genet. 2018, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Munyaneza, J.P.; Ediriweera, T.K.; Kim, M.; Cho, E.; Jang, A.; Choo, H.J.; Lee, J.H. Genome-wide association studies of meat quality traits in chickens: A review. Korean J. Agric. Sci. 2022, 49, 407–420. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genom. Inform. 2012, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Mkize, N.; Maiwashe, A.; Dzama, K.; Dube, B.; Mapholi, N. Suitability of gwas as a tool to discover Snps associated with tick resistance in cattle: A review. Pathogens 2021, 10, 1604. [Google Scholar] [CrossRef]
- Hamazaki, K.; Kajiya-Kanegae, H.; Yamasaki, M.; Ebana, K.; Yabe, S.; Nakagawa, H.; Iwata, H. Choosing the optimal population for a genome-wide association study: A simulation of whole-genome sequences from rice. Plant Genome 2020, 13, e20005. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Wellmann, R.; Bennewitz, J. Power and precision of QTL mapping in simulated multiple porcine F2 crosses using whole-genome sequence information. BMC Genet. 2018, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Ledur, M.; Navarro, N.; Pérez-Enciso, M. Large-scale SNP genotyping in crosses between outbred lines: How useful is it? Heredity 2010, 105, 173–182. [Google Scholar] [CrossRef]
- Schmidt, S.A.; Lo, S.; Hollestein, L.M. Research techniques made simple: Sample size estimation and power calculation. J. Investig. Dermatol. 2018, 138, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Marees, A.T.; De Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef] [PubMed]
- Vilhjálmsson, B.J.; Nordborg, M. The nature of confounding in genome-wide association studies. Nat. Rev. Genet. 2013, 14, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Astle, W.; Balding, D.J. Population structure and cryptic relatedness in genetic association studies. Stat. Sci. 2009, 24, 451–471. [Google Scholar] [CrossRef]
- Eu-Ahsunthornwattana, J.; Miller, E.N.; Fakiola, M.; Wellcome Trust Case Control Consortium; Jeronimo, S.M.B.; Blackwell, J.M.; Cordell, H.J. Comparison of methods to account for relatedness in genome-wide association studies with family-based data. PLoS Genet. 2014, 10, e1004445. [Google Scholar] [CrossRef] [PubMed]
- Segura, V.; Vilhjálmsson, B.J.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012, 44, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.H.; Bilow, M.; Yang, W.-Y.; Kostem, E.; Furlotte, N.; He, D.; Eskin, E. Accounting for population structure in gene-by-environment interactions in genome-wide association studies using mixed models. PLoS Genet. 2016, 12, e1005849. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, Y.; Stang, P.; Berlin, J.A.; Wilcox, M.A.; Li, Q. Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: Principal-component analysis versus multidimensional scaling. BMC Proc. 2009, 3, S109. [Google Scholar] [CrossRef] [PubMed]
- Qanbari, S. On the extent of linkage disequilibrium in the genome of farm animals. Front. Genet. 2020, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- Kaeuffer, R.; Réale, D.; Coltman, D.; Pontier, D. Detecting population structure using STRUCTURE software: Effect of background linkage disequilibrium. Heredity 2007, 99, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Bennewitz, J. Invited review: Genome-wide association analysis for quantitative traits in livestock—A selective review of statistical models and experimental designs. Arch. Anim. Breed. 2017, 60, 335–346. [Google Scholar] [CrossRef]
- Li, C.; Fu, Y.; Sun, R.; Wang, Y.; Wang, Q. Single-locus and multi-locus genome-wide association studies in the genetic dissection of fiber quality traits in upland cotton (Gossypium hirsutum L.). Front. Plant Sci. 2018, 9, 1083. [Google Scholar] [CrossRef] [PubMed]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 years of GWAS discovery: Biology, function, and translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef]
- Cooley, P.C.; Clark, R.F.; Folsom, R.E. Assessing Gene-Environment Interactions in Genome-Wide Association Studies: Statistical Approaches; RTI Press: Research Triangle Park, NC, USA, 2014. [Google Scholar]
- Kaler, A.S.; Purcell, L.C. Estimation of a significance threshold for genome-wide association studies. BMC Genom. 2019, 20, 618. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. When to use the B onferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Fernandes Júnior, G.A.; Carvalheiro, R.; de Oliveira, H.N.; Sargolzaei, M.; Costilla, R.; Ventura, R.V.; Fonseca, L.F.; Neves, H.H.; Hayes, B.J.; de Albuquerque, L.G. Imputation accuracy to whole-genome sequence in Nellore cattle. Genet. Sel. Evol. 2021, 53, 27. [Google Scholar] [CrossRef] [PubMed]
- Yoosefzadeh-Najafabadi, M.; Eskandari, M.; Belzile, F.; Torkamaneh, D. Genome-wide association study statistical models: A review. Methods Mol. Biol. 2022, 2481, 43–62. [Google Scholar] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; Van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.E.; Kinnaird, P.; Xing, E.P. GenAMap: Visualization strategies for structured association mapping. In Proceedings of the 2011 IEEE Symposium on Biological Data Visualization (BioVis), Providence, RI, USA, 23–24 October 2011; pp. 87–94. [Google Scholar]
- Wang, P.; Li, X.; Zhu, Y.; Wei, J.; Zhang, C.; Kong, Q.; Nie, X.; Zhang, Q.; Wang, Z. Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Front. Vet. Sci. 2022, 9, 932034. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.-H.; Pausch, H. Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss cattle. BMC Genom. 2019, 20, 695. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fang, M.; Liu, L.; Wang, S.; Liu, J.; Ding, X.; Zhang, S.; Zhang, Q.; Zhang, Y.; Qiao, L.; et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genom. 2013, 14, 897. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Alam, M.Z.; Iqbal, A.; Lee, Y.-M.; Dang, C.-G.; Kim, J.-J. Genome-wide Association studies for body conformation traits in Korean Holstein Population. Animals 2023, 13, 2964. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Wang, Z.; Zhang, Q.; Yue, S.; Yin, B.; Jiang, Y.; Shi, K. Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with body conformation traits in Chinese Holstein cattle. Anim. Genet. 2020, 51, 141. [Google Scholar] [CrossRef]
Trait | Heritability | Breed | Number | Country | Ref. |
---|---|---|---|---|---|
ANG | 0.10 ± 0.02 | Holstein-Friesian | 10,860 | Serbia | [53] |
ANG | 0.22 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
ANG | 0.08 ± 0.01 | Italian Jersey | 6853 | Italy | [51] |
ANG | 0.10 ± 0.08 | Italian Holstein | 253,602 | Italy | [55] |
ANG | 0.48 ± 0.03 | Chinese Holstein | 1000 | China | [56] |
ANG | 0.26 ± 0.02 | Holstein | 4841 | Canada | [26] |
BH | 0.32 ± 0.03 | Serbian Holstein | 32,512 | Serbia | [54] |
BH | 0.32 ± 0.03 | Italian Jersey | 6853 | Italy | [51] |
BH | 0.30 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
BH | 0.56 ± 0.12 | Dual-Purpose Simmental | 1000 | China | [57] |
BH | 0.33 ± 0.02 | Chinese Holstein | 45,517 | China | [52] |
BH | 0.53 ± 0.12 | Holstein | 4841 | Canada | [26] |
CW | 0.15 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
CW | 0.12 ± 0.02 | Italian Jersey | 6853 | Italy | [51] |
CW | 0.24 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
CW | 0.13 ± 0.08 | Dual-Purpose Simmental | 1000 | China | [57] |
CW | 0.08 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
CW | 0.17 ± 0.01 | Chinese Holstein | 1000 | China | [56] |
CW | 0.22 ± 0.02 | Holstein | 4841 | Canada | [26] |
BD | 0.17 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
BD | 0.12 ± 0.02 | Italian Jersey | 6853 | Italy | [51] |
BD | 0.12 ± 0.02 | Chinese Holstein | 7923 | China | [49] |
BD | 0.17 ± 0.08 | Dual-Purpose Simmental | 1000 | China | [57] |
BD | 0.14 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
BD | 0.10 ± 0.01 | Chinese Holstein | 1000 | China | [56] |
BD | 0.32 ± 0.02 | Holstein | 4841 | Canada | [26] |
Trait | Heritability | Breed | Number | Country | Ref. |
---|---|---|---|---|---|
HD | 0.15 ± 0.01 | Chinese Holstein | 1000 | China | [58] |
HD | 0.37 ± 0.05 | Chinese Holstein | 7923 | China | [49] |
HD | 0.05 ± 0.05 | Dual-Purpose Simmental | 1000 | China | [57] |
HD | 0.02 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
HD | 0.08 ± 0.00 | Holstein | 4841 | Canada | [26] |
BQ | 0.05 ± 0.00 | Chinese Holstein | 1000 | China | [58] |
BQ | 0.37 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
BQ | 0.07 ± 0.05 | Dual-Purpose Simmental | 1000 | China | [57] |
BQ | 0.05 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
BQ | 0.30 ± 0.03 | Holstein | 4841 | Canada | [26] |
RLSV | 0.17 ± 0.01 | Chinese Holstein | 1000 | China | [58] |
RLSV | 0.10 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
RLSV | 0.04 ± 0.00 | Italian Jersey | 6853 | Italy | [51] |
RLSV | 0.09 ± 0.06 | Dual-Purpose Simmental | 1000 | China | [57] |
RLSV | 0.04 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
RLSV | 0.24 ± 0.03 | Holstein | 4841 | Canada | [26] |
RLRV | 0.15 ± 0.01 | Chinese Holstein | 1000 | China | [58] |
RLRV | 0.16 ± 0.02 | Serbian Holstein | 10,860 | Serbia | [53] |
RLRV | 0.13 ± 0.01 | Holstein | 4841 | Canada | [26] |
RLRV | 0.04 ± 0.00 | Italian Jersey | 6853 | Italy | [51] |
RLRV | 0.37 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
RLRV | 0.12 ± 0.07 | Dual-Purpose Simmental | 1000 | China | [57] |
RLRV | 0.06 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
FA | 0.14 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
FA | 0.07 ± 0.01 | Italian Jersey | 6853 | Italy | [51] |
FA | 0.14 ± 0.03 | Chinese Holstein | 7923 | China | [49] |
FA | 0.11 ± 0.06 | Dual-Purpose Simmental | 1000 | China | [57] |
FA | 0.04 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
FA | 0.11 ± 0.01 | Holstein | 4841 | Canada | [26] |
Trait | Heritability | Breed | Number | Country | Ref. |
---|---|---|---|---|---|
RP | 0.16 ± 0.02 | Serbian Holstein | 10,860 | Serbia | [53] |
RW | 0.18 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
RW | 0.06 ± 0.00 | Italian Jersey | 6853 | Italy | [51] |
RW | 0.28 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
RW | 0.22 ± 0.09 | Dual-Purpose Simmental | 1000 | China | [57] |
RW | 0.08 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
RW | 0.20 ± 0.02 | Chinese Holstein | 1000 | China | [59] |
RW | 0.34 ± 0.03 | Holstein | 4841 | Canada | [26] |
RA | 0.14 ± 0.02 | Italian Jersey | 6853 | Italy | [51] |
RA | 0.15 ± 0.07 | Dual-Purpose Simmental | 1000 | China | [57] |
RA | 0.11 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
RA | 0.22 ± 0.02 | Chinese Holstein | 1000 | China | [59] |
RA | 0.37 ± 0.03 | Holstein | 4841 | Canada | [26] |
LS | 0.32 ± 0.04 | Chinese Holstein | 1000 | China | [49] |
LS | 0.38 ± 0.05 | Chinese Holstein | 1000 | China | [59] |
LS | 0.25 ± 0.02 | Holstein | 4841 | Canada | [26] |
PS | 0.18 ± 0.03 | Chinese Holstein | 7923 | China | [49] |
PS | 0.09 ± 0.01 | Holstein | 4841 | Canada | [26] |
RL | 0.29 ± 0.11 | Dual-Purpose Simmental | 1000 | China | [57] |
Trait | Heritability | Breed | Number | Country | Ref. |
---|---|---|---|---|---|
FUA | 0.11 ± 0.02 | Holstein-Friesian | 10,860 | Serbia | [53] |
FUA | 0.18 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
FUA | 0.16 ± 0.02 | Italian Jersey | 6853 | Italy | [51] |
FUA | 0.19 ± 0.08 | Dual-Purpose Simmental | 1000 | China | [57] |
FUA | 0.11 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
FUA | 0.04 ± 0.00 | Chinese Holstein | 1000 | China | [60] |
FUA | 0.28 ± 0.02 | Holstein | 4841 | Canada | [26] |
AUA | 0.24 ± 0.02 | Chinese Holstein | 1000 | China | [60] |
FTP | 0.07 ± 0.01 | Holstein-Friesian | 10,860 | Serbia | [53] |
FTP | 0.13 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
FTP | 0.08 ± 0.01 | Italian Jersey | 6853 | Italy | [51] |
FTP | 0.14 ± 0.03 | Chinese Holstein | 7923 | China | [49] |
FTP | 0.20 ± 0.08 | Dual-Purpose Simmental | 1000 | China | [57] |
FTP | 0.37 ± 0.04 | Chinese Holstein | 1000 | China | [58] |
FTP | 0.31 ± 0.03 | Holstein | 4841 | Canada | [26] |
FTP | 0.07 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
FTL | 0.16 ± 0.02 | Serbian Holstein | 32,512 | Serbia | [54] |
FTL | 0.10 ± 0.02 | Italian Jersey | 6853 | Italy | [51] |
FTL | 0.28 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
FTL | 0.12 ± 0.06 | Dual-Purpose Simmental | 1000 | China | [57] |
FTL | 0.05 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
TL | 0.06 ± 0.01 | Holstein-Friesian | 10,860 | Serbia | [1] |
TL | 0.29 ± 0.02 | Holstein | 4841 | Canada | [26] |
FTL | 0.13 ± 0.01 | Chinese Holstein | 1000 | China | [58] |
UD | 0.08 ± 0.01 | Holstein-Friesian | 10,860 | Serbia | [53] |
UD | 0.22 ± 0.02 | Italian Jersey | 6853 | Italy | [51] |
UD | 0.21 ± 0.03 | Chinese Holstein | 7923 | China | [49] |
UD | 0.22 ± 0.09 | Dual-Purpose Simmental | 1000 | China | [57] |
UD | 0.12 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
UD | 0.49 ± 0.03 | Chinese Holstein | 1000 | China | [60] |
UD | 0.46 ± 0.03 | Holstein | 4841 | Canada | [26] |
RUH | 0.08 ± 0.01 | Holstein-Friesian | 10,860 | Serbia | [53] |
RUH | 0.17 ± 0.07 | Dual-Purpose Simmental | 1000 | China | [57] |
RUH | 0.10 ± 0.01 | Chinese Holstein | 45,517 | China | [52] |
RUH | 0.23 ± 0.02 | Holstein | 4841 | Canada | [26] |
MSL | 0.10 ± 0.04 | Chinese Holstein | 7923 | China | [49] |
CSL | 0.34 ± 0.03 | Chinese Holstein | 1000 | China | [60] |
CSL | 0.14 ± 0.01 | Holstein | 4841 | Canada | [26] |
Traits | SNPs | Genes | Chr. | p Value | Genotype | Imputed | SNP Size | Sample Size | Breed | Model | Country | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BH | rs133960300 | CCND2 | 5 | 2.94 × 10−9 | Illumina 50 K/HD | HD panel | 719,200 | 3577 | Holstein | MLM | Canada | [26] |
rs109685956 | CCND2 | 5 | 2.94 × 10−9 | Illumina 50 K/HD | HD panel | 719,200 | 3577 | Holstein | MLM | Canada | [26] | |
rs109882115 | ENSBTAG00000039491 | 18 | 1.19 × 10−9 | Illumina 50 K/HD | HD panel | 719,200 | 3577 | Holstein | MLM | Canada | [26] | |
rs109478645 | ENSBTAG00000037537 | 18 | 1.22 × 10−9 | Illumina 50 K/HD | HD panel | 719,200 | 3577 | Holstein | MLM | Canada | [26] | |
ARS-BFGL-NGS-41612 | KCNS3 | 11 | 4.93 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD1100030541 | LOC789076 | 11 | 1.5 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD2300011340 | NHLRC1 | 23 | 2.39 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
Hapmap38550-BTA-98603 | LRRC3B | 27 | 1.66 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
Hapmap60794-rs29022851 | CPEB2 | 6 | 9.53 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTA-72885-no-rs | LOC782090 | 29 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs110462304 | MYH15 | 1 | 1.86 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
rs109930583 | C6H4orf17 | 6 | 2.06 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
rs109824125 | KHDRBS3 | 14 | 4.98 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
rs42188649 | AIP | 29 | 5.80 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
Hapmap60480-ss46526970 | NDUFA9, KCNA1 | 5 | 1.18 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
BD | rs109478645 | ENSBTAG00000037537 | 18 | 2.29 × 10−22 | BovineSNP50 Bead Chip/Illumina 50 K | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] |
rs110801791 | CTU1 | 18 | 9.73 × 10−20 | BovineSNP50 Bead Chip/Illumina 50 K | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] | |
rs135253383 | CTU1 | 18 | 1.03 × 10−19 | BovineSNP50 Bead Chip/Illumina 50 K | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] | |
Hapmap40339-BTA-117016 | DARC | 3 | 8.72 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs133735152 | DCC | 24 | 2.33 × 10−8 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
rs43286429 | LOC112447004 | 1 | 4.71 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
BTB-00853109 | CCDC12, PTH1R | 22 | 1.99 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
Hapmap43881-BTA-54837 | PRSS45, PRSS46 | 22 | 2.02 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
CW | rs109901274 | ARRDC3 | 7 | 1.47 × 10−9 | BovineSNP50 Bead Chip/Illumina 50 K | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] |
rs109618368 | ARRDC3 | 7 | 1.47 × 10−9 | BovineSNP50 Bead Chip/Illumina 50 K | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] | |
BovineHD1700010514 | LOC512119 | 17 | 1.34 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BTA-110160-no-rs | GAS1 | 8 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-115466 | CDH13 | 18 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTA-45515-no-rs | PTRF | 19 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTB-00922140 | POU6F2 | 4 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs110355602 | SQOR | 10 | 9.45 × 10−11 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
rs43615333 | UBAP1L | 10 | 1.17 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
rs42095998 | VTI1A | 26 | 8.22 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
BTB-00853109 | CCDC12, PTH1R | 22 | 1.52 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
ANG | rs109512265 | SLC4A4 | 6 | 1.51 × 10−8 | BovineSNP50 Bead Chip/Illumina 50 K | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] |
BTA-116883-no-rs | LOC786124 | 30 | 1.56 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD3000032546 | LOC537655 | 30 | 6.55 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD3000037672 | LOC786725 | 30 | 5.10 × 10−8 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
ARS-BFGL-NGS-14022 | SLC25A24 | 3 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-113826 | HTR2A | 12 | 9.69 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs135918869 | CCDC59 | 5 | 1.32 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K. | No | 84,406 | 984 | Chinese Holstein | Farm CPU | China | [56] | |
BTA-67308-no-rs | GNAI3 | 3 | 6.32 × 10−6 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
ARS-BFGL-NGS-5218 | AP3B1 | 10 | 2.31 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
Body size | rs137415420 | DRD3 | 1 | 5.57 × 10−10 | Illumina 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] |
rs110574932 | DBH | 11 | 5.63 × 10−8 | Illumina 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] | |
rs42088986 | BTRC | 26 | 1.00 × 10−14 | Illumina 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] | |
BFCI | ARS–BFGL–NGS−39319 | MPDZ | 8 | 4.59 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] |
BovineHD1000015574 | AQP9 | 10 | 3.07 × 10−9 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1200008803 | HSPH1 | 12 | 3.72 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1300012605 | PYGB | 13 | 8.06 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
ARS–BFGL–NGS−66252 | MMEL1 | 16 | 2.79 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1600023101 | ATP6V1G3 | 16 | 9.44 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1700005623 | SLC7A11 | 17 | 2.82 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1900015024 | RBFOX3 | 19 | 4.34 × 10−7 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BTA−50244–no–rs | PTGER4 | 20 | 5.84 × 10−13 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD2200000513 | EOMES | 22 | 2.09 × 10−7 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] |
Traits | SNPs | Genes | Chr. | p Value | Genotype | Imputed | SNP Size | Sample Size | Breed | Model | Country | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BQ | rs109901274 | ARRDC3 | 7 | 9.10 × 10−11 | Bovine HD | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] |
rs109618368 | ARRDC3 | 7 | 9.10 × 10−11 | Bovine HD | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] | |
BTA-87372-no-rs | LOC100337296 | 1 | 9.49 × 10−3 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
BTA-117758-no-rs | C8H9orf30 | 15 | 9.49 × 10−3 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs29015846 | LOC112447952 | 8 | 1.99 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs133088614 | TMEM229A | 4 | 2.25 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs41845981 | POLE | 17 | 3.14 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs136017102 | XKR4 | 14 | 6.22 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs110949452 | CADPS | 22 | 7.67 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
ARS-BFGL-NGS-37048 | EVX1, HOXA13 | 4 | 1.49 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
Hapmap54735-ss46526095 | VAMP4 | 16 | 4.31 × 10−6 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
FA | ARS-BFGL-NGS-18261 | PLEKHB2 | 2 | 9.29 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
ARS-BFGL-NGS-73625 | NES | 3 | 9.29 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
Hapmap48448-BTA-71823 | MTPN | 4 | 9.29 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
RLSV | ARS-BFGL-NGS-97763 | DOCK10 | 2 | 9.42 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
Hapmap29973-BTA-129162 | PAG1 | 14 | 9.42 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
UA-IFASA-4800 | ZNF521 | 24 | 9.42 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs41565304 | ADIPOR2 | 5 | 1.11 × 10−9 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs43656945 | INPP4A | 11 | 2.32 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs136593856 | DNMT3A | 11 | 5.07 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs42791722 | ALDH1A2 | 10 | 7.40 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs42639670 | PCDH7 | 6 | 9.65 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
RLRV | rs134130409 | BARHL2 | 3 | 6.72 × 10−8 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] |
rs134139959 | FBXL7 | 20 | 1.11 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs41638134 | LOC107132214 | 1 | 6.11 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
ARS-BFGL-NGS-629 | MALRD1 | 13 | 1.05 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
HD | rs137022628 | ACTBL2 | 20 | 3.03 × 10−9 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] |
rs109652453 | SYCP2L | 23 | 4.22 × 10−8 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs42110372 | LOC112444670 | 27 | 3.11 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs109601642 | LOC101907219 | 20 | 4.64 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs41577664 | LOC112441589 | 15 | 7.43 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
rs134726669 | MRPL13 | 14 | 7.59 × 10−7 | Gene Seek Genomic Profiler Bovine 100 K | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
BTB-01928726 | INHBA | 4 | 2.08 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
LC | rs110597649 | RSPO4 | 2 | 4.13 × 10−13 | Illumina 50 K/HD | HD panel | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] |
rs134127590 | BTRC | 1 | 5.92 × 10−10 | Illumina 50 K/HD | HD panel | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] | |
FTLEG | BovineHD0100020157 | SNX4 | 1 | 2.07 × 10−7 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] |
ARS–BFGL–NGS−56584 | POFUT2 | 1 | 7.56 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD0300019080 | ADGRL2 | 3 | 1.06 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BTB−01326707 | LCORL | 6 | 3.16 × 10−11 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BTB−00124923 | FRK | 9 | 3.42 × 10−7 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1300012605 | PYGB | 13 | 3.23 × 10−9 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
Hapmap50322–BTA−34017 | CEBPB | 13 | 8.11 × 10−8 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1600000840 | KLHDC8A | 16 | 3.74 × 10−7 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD1600008381 | TMEM63A | 16 | 7.79 × 10−9 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BovineHD2000011811 | SUB1 | 20 | 4.11 × 10−11 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] | |
BTA−14388–rs29023151 | IL5RA | 22 | 8.59 × 10−10 | Illumina Bovine HD100 k Bead Chip | No | 95,256 | 1313 | Holstein | Farm CPU | China | [97] |
Traits | SNPs | Genes | Chr. | p Value | Genotype | Imputed | SNP Size | Sample Size | Breed | Model | Country | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LS | BovineHD0500017277 | NEDD1 | 5 | 2.90 × 10−7 | 50 K/HD | Mutual | 598,016 | 4578 | Chinese Holstein | GLM | China | [98] |
ARS-BFGL-NGS-20197 | HB6 | 7 | 5.71 × 10−7 | 50 K/HD | Mutual | 598,016 | 4578 | Chinese Holstein | GLM | China | [98] | |
BovineHD2800013502 | LOC100141022 | 28 | 4.71 × 10−7 | 50 K/HD | Mutual | 598,016 | 4578 | Chinese Holstein | GLM | China | [98] | |
ARS-BFGL-NGS-70552 | SERGEF | 15 | 8.95 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTB-00938945 | GPAM | 26 | 8.95 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs42946768 | CDH12 | 20 | 3.08 × 10−8 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs109073659 | PCDH9 | 12 | 2.23 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs43162548 | TARP | 4 | 2.99 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs133475777 | DTHD1 | 6 | 4.29 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
RA | BovineHD0100019488 | CCDC14 | 1 | 4.88 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] |
BTB-00003652 | GRIK1 | 1 | 1.76 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD0100041062 | BACE2 | 1 | 2.03 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD0200037025 | PDIK1L | 2 | 6.11 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
Hapmap38371-BTA-105598 | AMBN | 6 | 1.58 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD0700024393 | MSH3 | 7 | 4.32 × 10−9 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD0700024587 | SSBP2 | 7 | 1.04 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD0800030195 | SVEP1 | 8 | 2.25 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BTA-106078-no-rs | HIVEP2 | 9 | 9.84 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD1000013067 | MAP4K5 | 10 | 8.09 × 10−8 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD1000018043 | SLC24A5 | 10 | 7.73 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
Hapmap49737-BTA-75278 | PRKCH | 10 | 6.00 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
ARS-BFGL-NGS-116541 | LIG1 | 18 | 2.37 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD1800016250 | SYNGR4 | 18 | 7.28 × 10−8 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
ARS-BFGL-NGS-31529 | LMTK3 | 18 | 2.12 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD2200013812 | CACNA1D | 22 | 1.72 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD2200013926 | RFT1 | 22 | 5.34 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
ARS-BFGL-NGS-101981 | ADAP1 | 25 | 1.32 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD2600004135 | LOC522146 | 26 | 1.32 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD3000000680 | KLHL13 | 30 | 2.28 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BTA-21001-no-rs | MSL3 | 30 | 2.28 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BTA-94299-no-rs | MGST1 | 5 | 9.06 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-54462 | MIR365 | 25 | 9.06 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-102900 | AGPAT5 | 27 | 9.06 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
apmap48553-BTA-10000 | LOC788619 | 7 | 9.06 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTB-01219012 | LOC100296765 | 7 | 9.06 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-31810 | LOC536255 | 11 | 9.06 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs43486059 | LOC781835 | 6 | 3.61 × 10−9 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs137244035 | FSTL4 | 7 | 1.88 × 10−8 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs43352090 | ATG4C | 3 | 9.91 × 10−8 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs43366267 | SH3BP4 | 3 | 4.11 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
PW | rs109478645 | ENSBTAG00000037537 | 18 | 6.48 × 10−9 | Bovine HD | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] |
BTB-00168895 | LOC781728 | 4 | 9.17 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
Hapmap40061-BTA-28737 | LOC616304 | 9 | 9.17 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
rs109578471 | USP6NL | 13 | 1.18 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs42051017 | LOC101907665 | 29 | 1.45 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
rs43430205 | CNTN3 | 22 | 2.24 × 10−7 | GGP Bovine 100 K | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [59] | |
RW | BTB-00752634 | LOC614209 | 14 | 3.16 × 10−6 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] |
ARS-BFGL-BAC-26802 | ANGPT1, LOC782496 | 14 | 5.65 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
ARS-BFGL-NGS-5369 | OSBP2 | 17 | 8.45 × 10−6 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] |
Traits | SNPs | Genes | Chr | p Value | Genotype | Imputed | SNP Size | Sample Size | Breed | Model | Country | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rear udder | RS-BFGL-NGS-111920 | LOC100337279 | 14 | 8.91 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
Hapmap50827-BTA-94026 | LOC100336384 | 24 | 8.91 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
Udder texture | BTA-41935-no-r | DRG1 | 17 | 8.72 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
BTB-01236227 | HTR1A | 20 | 8.72 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTB-01693574 | LOC104969871 | 2 | 1.96 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
BTB-01584048 | MIR2285K-4 | 26 | 7.57 × 10−7 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
CSL | BTB-00089278 | LRP2 | 2 | 8.74 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
BTB-01007411 | SEMA3E | 4 | 8.74 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-35982 | NAP1L1 | 5 | 8.74 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
ARS-BFGL-NGS-29118 | MACROD2 | 13 | 8.74 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
UA-IFASA-6670 | GABARAPL1 | 5 | 6.37 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD0900026424 | NOX3 | 9 | 5.03 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD1700021616 | LOC531152 | 17 | 9.77 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
BovineHD3000039710 | LOC782196 | 30 | 5.31 × 10−7 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
ARS-BFGL-BAC-29174 | STXBP6 | 21 | 1.16 × 10−9 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
Hapmap32447-BTC-033214 | GRID2 | 6 | 2.45 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD0600005127 | LOC112447148 | 6 | 3.02 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
Fore attachment | ARS-BFGL-NGS-114960 | NTM | 29 | 9.65 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
ARS-BFGL-NGS-118699 | LOC511409 | 8 | 1.96 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | MLM | Korea | [100] | |
RAW | BTB-01478363 | BAG1 | 20 | 9.24 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
Hapmap29824-BTA-137304 | SLC17A1, LRRC16A, | 23 | 3.76 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
RAH | ARS-BFGL-NGS-20052 | CDK5R2 | 2 | 9.04 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] |
Hapmap46979-BTA-32175 | LOC104973698 | 13 | 9.87 × 10−6 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | GLM | Korea | [100] | |
BTA-11097-rs29016861 | CDK1,RHOBTB1 | 28 | 1.52 × 10−5 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 38,720 | 2329 | Korean Holstein | GLM | Korea | [100] | |
rs109901274 | ARRDC3 | 7 | 2.88 × 10−10 | Bovine HD | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] | |
TL | rs110137797 | TMTC2 | 5 | 1.63 × 10−12 | Bovine HD | HD panel | 601,717 | 4841 | Holstein | MLM | Canada | [26] |
BTB-01255458 | PDIA6 | 10 | 9.11 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
FTL | BovineHD1500023818 | SBF2 | 15 | 9.69 × 10−8 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] |
BovineHD2100009187 | STXBP6 | 21 | 1.98 × 10−7 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
MGM | rs110171876 | TMTC2 | 5 | 7.22 × 10−8 | 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] |
rs133549245 | RASSF6 | 6 | 2.94 × 10−29 | 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] | |
rs137563207 | TBX5, RBM19 | 17 | 2.62 × 10−46 | 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] | |
rs41584904 | PITPNA | 19 | 4.97 × 10−8 | 50 K/HD | Mutual | 598,016 | 4578 | Brown Swiss | GLM | Switzerland | [98] | |
ATP | ARS-BFGL-NGS-101241 | MMS22L | 9 | 5.10 × 10−9 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] |
ARS-BFGL-NGS-43147 | E2F8 | 29 | 4.16 × 10−7 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
BovineHD1800006781 | CDH11 | 18 | 1.09 × 10−7 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
BovineHD0500031672 | PEX26 | 5 | 2.54 × 10−7 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
ARS-BFGL-NGS-16048 | TAMM41 | 22 | 3.14 × 10−9 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
ARS-BFGL-NGS-113245 | SLC39A11 | 19 | 8.92 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
PTP | Hapmap58721-rs29026738 | HIVEP3 | 3 | 3.05 × 10−8 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] |
12-88054488-G-A-rs42352402 | MYO16 | 12 | 6.02 × 10−8 | Bovine 100 K SNP | No | 84,906 | 984 | Chinese Holstein | Farm CPU | China | [58] | |
BTA-83107-no-rs | MIR2284O | 6 | 1.10 × 10−6 | Bovine LD V3 SNP | No | 20,632 | 421 | Chinese Holstein | MLM | China | [101] | |
ARS-BFGL-NGS-31730 | SH3RF3 | 11 | 8.64 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
BTB-01230622 | DCDC5 | 15 | 8.64 × 10−3 | BovineSNP50 Bead Chip/Illumina 54 K | Mutual | 52,166 | 1314 | Chinese Holstein | SMMA | China | [99] | |
AUA | DB-340-seq-rs208014256 | MGST1 | 5 | 4.48 × 10−8 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] |
Hapmap58214-rs29015775 | LOC101903734 | 22 | 8.34 × 10−8 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD2700005329 | MTUS1 | 27 | 1.90 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD0900028603 | PRKN | 9 | 6.48 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
PUAH | BovineHD2900000083 | E2F8 | 29 | 9.70 × 10−8 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] |
BovineHD1800011193 | CDH11 | 18 | 1.66 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD2200002408 | FOXP1 | 22 | 4.89 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
PUAW | BovineHD0700028083 | SLF1 | 7 | 2.26 × 10−9 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] |
BovineHD0500010522 | TMEM117 | 5 | 1.45 × 10−8 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD1500023322 | SBF2 | 15 | 6.19 × 10−8 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
UD | BTA-75047-No-rs | LGALS2 | 5 | 1.26 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] |
BovineHD0600024277 | GC | 6 | 2.92 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD0600001885 | UBE2K | 6 | 5.16 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD0900001933 | ADGRB3 | 9 | 5.98 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] | |
BovineHD2300001734 | GCLC | 23 | 9.36 × 10−7 | Bovine 100 K SNP | No | 84,407 | 984 | Chinese Holstein | Farm CPU | China | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, M.; Wang, B.; Yang, Z.; Lu, X. Genome-Wide Association Study as an Efficacious Approach to Discover Candidate Genes Associated with Body Linear Type Traits in Dairy Cattle. Animals 2024, 14, 2181. https://doi.org/10.3390/ani14152181
Long M, Wang B, Yang Z, Lu X. Genome-Wide Association Study as an Efficacious Approach to Discover Candidate Genes Associated with Body Linear Type Traits in Dairy Cattle. Animals. 2024; 14(15):2181. https://doi.org/10.3390/ani14152181
Chicago/Turabian StyleLong, Mingxue, Bo Wang, Zhangping Yang, and Xubin Lu. 2024. "Genome-Wide Association Study as an Efficacious Approach to Discover Candidate Genes Associated with Body Linear Type Traits in Dairy Cattle" Animals 14, no. 15: 2181. https://doi.org/10.3390/ani14152181
APA StyleLong, M., Wang, B., Yang, Z., & Lu, X. (2024). Genome-Wide Association Study as an Efficacious Approach to Discover Candidate Genes Associated with Body Linear Type Traits in Dairy Cattle. Animals, 14(15), 2181. https://doi.org/10.3390/ani14152181