Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bird Rearing and Group Description
2.1.1. Experiment 1
2.1.2. Experiment 2
2.2. Body Weight and Rectal Temperature
2.3. Biological Samples
2.4. Plasma Antioxidant Status
2.5. mRNA Quantification Using Real-Time Polymerase Chain Reaction
2.6. Statistical Analysis
3. Results
3.1. Experiment 1
3.1.1. Organ Weights
3.1.2. Plasma Antioxidant Capacity
3.2. Experiment 2
3.2.1. Body Weight and Organ Indices
3.2.2. Rectal Temperature
3.2.3. Plasma Antioxidant Capacity
3.2.4. Hepatic Gene Expression of Antioxidant-Related Gens
3.2.5. Hepatic Gene Expression of Heat Shock Proteins
3.2.6. Hepatic Gene Expression of NOX-Related Genes
3.2.7. Interrelationship between Core Body Temperature, Growth, Hepatic Gene Expression of Various Sets of Genes, and Plasma Antioxidant Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vleck, C.M.; Vleck, D. Patterns of metabolism and growth in avian embryos. Am. Zool. 1980, 20, 405–416. [Google Scholar] [CrossRef]
- Surai, P. Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo. Br. Poult. Sci. 1999, 40, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.; Cocchi, M. Lipid metabolism and the neonatal chicken. Prog. Lipid Res. 1990, 29, 107–140. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Speake, B.K. Distribution of carotenoids from the yolk to the tissues of the chick embryo. J. Nutr. Biochem. 1998, 9, 645–651. [Google Scholar] [CrossRef]
- Ncho, C.-M.; Goel, A.; Jeong, C.-M.; Youssouf, M.; Choi, Y.-H. In ovo injection of gaba can help body weight gain at hatch, increase chick weight to egg weight ratio, and improve broiler heat resistance. Animals 2021, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Oke, O.; Akosile, O.; Oni, A.; Opowoye, I.; Ishola, C.; Adebiyi, J.; Odeyemi, A.; Adjei-Mensah, B.; Uyanga, V.; Abioja, M. Oxidative stress in poultry production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Decuypere, E.; Buyse, J. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 144, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Biswal, J.; Vijayalakshmy, K.; Bhattacharya, T.K.; Rahman, H. Impact of heat stress on poultry production. World Poult. Sci. J. 2022, 78, 179–196. [Google Scholar] [CrossRef]
- Ncho, C.-M.; Goel, A.; Jeong, C.-M.; Gupta, V.; Choi, Y.-H. Effects of in ovo feeding of γ-aminobutyric acid on growth performances, plasma metabolites, and antioxidant status in broilers exposed to cyclic heat stress. Sustainability 2021, 13, 11032. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.-M.; Jeong, C.-M.; Gupta, V.; Jung, J.-Y.; Ha, S.-Y.; Yang, J.-K.; Choi, Y.-H. Effects of dietary supplementation of solubles from shredded, steam-exploded pine particles on the performance and cecum microbiota of acute heat-stressed broilers. Microorganisms 2022, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Kim, B.-J.; Ncho, C.-M.; Jeong, C.-M.; Gupta, V.; Jung, J.-Y.; Ha, S.-Y.; Lee, D.-H.; Yang, J.-K.; Choi, Y.-H. Dietary supplementation of shredded, steam-exploded pine particles decreases pathogenic microbes in the cecum of acute heat-stressed broilers. Animals 2021, 11, 2252. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Ncho, C.M.; Jeong, C.-M.; Gupta, V.; Jung, J.-Y.; Ha, S.-Y.; Yang, J.-K.; Choi, Y.-H. Dietary supplementation of solubles from shredded, steam-exploded pine particles modifies gut length and cecum microbiota in cyclic heat-stressed broilers. Poult. Sci. 2023, 102, 102498. [Google Scholar] [CrossRef] [PubMed]
- Ncho, C.M.; Goel, A.; Gupta, V.; Jeong, C.-M.; Choi, Y.-H. Impact of embryonic manipulations on core body temperature dynamics and survival in broilers exposed to cyclic heat stress. Sci. Rep. 2022, 12, 15110. [Google Scholar] [CrossRef]
- Ncho, C.M.; Goel, A.; Gupta, V.; Jeong, C.-M.; Choi, Y.-H. Embryonic manipulations modulate differential expressions of heat shock protein, fatty acid metabolism, and antioxidant-related genes in the liver of heat-stressed broilers. PLoS ONE 2022, 17, e0269748. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.N.; Ramiah, S.K.; Zulkifli, I. Heat shock protein response to stress in poultry: A review. Animals 2023, 13, 317. [Google Scholar] [CrossRef] [PubMed]
- Tamzil, M.; Noor, R.; Hardjosworo, P.; Manalu, W.; Sumantri, C. Acute heat stress responses of three lines of chickens with different heat shock protein (HSP)-70 genotypes. Int. J. Poult. Sci. 2013, 12, 264–272. [Google Scholar] [CrossRef]
- Zulkifli, I.; Liew, P.; Israf, D.; Omar, A.; Hair-Bejo, M. Effects of early age feed restriction and heat conditioning on heterophil/lymphocyte ratios, heat shock protein 70 expression and body temperature of heat-stressed broiler chickens. J. Therm. Biol. 2003, 28, 217–222. [Google Scholar] [CrossRef]
- Kang, D.; Shim, K. Early heat exposure effect on the heat shock proteins in broilers under acute heat stress. Poult. Sci. 2021, 100, 100964. [Google Scholar] [CrossRef]
- Wen, C.; Chen, Y.; Leng, Z.; Ding, L.; Wang, T.; Zhou, Y. Dietary betaine improves meat quality and oxidative status of broilers under heat stress. J. Sci. Food Agric. 2019, 99, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Habibian, M.; Ghazi, S.; Moeini, M.M.; Abdolmohammadi, A. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int. J. Biometeorol. 2014, 58, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Hajati, H.; Hassanabadi, A.; Golian, A.; NASSIRI, M.H.; Nassiri, M. The effect of grape seed extract and vitamin C feed supplements carcass characteristics, gut morphology and ileal microflora in broiler chickens exposed to chronic heat stress. Iran. J. Appl. Anim. Sci. 2015, 5, 155–165. [Google Scholar]
- Gupta, V.; Ncho, C.M.; Goel, A.; Jeong, C.-M.; Choi, Y.-H. In ovo feeding of α-ketoglutaric acid improves hepatic antioxidant-gene expression, plasma antioxidant activities and decreases body temperature without affecting broiler body weight under cyclic heat stress. Poult. Sci. 2024, 103, 103749. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.; Vicuna, E.; Faulkner, O.; Huff, G.; Freeman, K.; Latorre, J.; Menconi, A.; Tellez, G.; Hargis, B.; Bielke, L. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with dextran sodium sulfate-(DSS-) induced gut leakage in broiler chickens. Poult. Sci. 2016, 95, 2565–2569. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Singh, A.K.; Yadav, S.; Berrocoso, J.F.D.; Mishra, B. Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Front. Vet. Sci. 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, M.; de Vries Reilingh, G.; de Vries, S.; Parmentier, H.; Lammers, A. Effects of early nutrition and sanitary conditions on antibody levels in early and later life of broiler chickens. Dev. Comp. Immunol. 2021, 117, 103954. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, M.; De Vries, S.; Lammers, A.; Clouard, C. Effects of early nutrition and transport of 1-day-old chickens on production performance and fear response. Poult. Sci. 2018, 97, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.; Pierzynowski, S. Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art-review article. J. Physiol. Pharmacol. 2008, 59, 91–106. [Google Scholar] [PubMed]
- Pierzynowski, S.; Sjodin, A. Perspectives of glutamine and its derivatives as feed additives for farm animals. J. Anim. Feed. Sci. 1998, 7, 79–91. [Google Scholar] [CrossRef]
- Gupta, V.; Ncho, C.M.; Goel, A.; Jeong, C.-M.; Choi, Y.-H. Effects of In Ovo Injection of α-Ketoglutaric Acid on Hatchability, Growth, Plasma Metabolites, and Antioxidant Status of Broilers. Antioxidants 2022, 11, 2102. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Duan, R.; Wang, L.; Hou, Y.; Tan, L.; Cheng, Q.; Liao, M.; Ding, B. Dietary α-ketoglutarate supplementation improves hepatic and intestinal energy status and anti-oxidative capacity of Cherry Valley ducks. Anim. Sci. J. 2017, 88, 1753–1762. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, L.; Ding, B.; Liu, Y.; Zhu, H.; Liu, J.; Li, Y.; Wu, X.; Yin, Y.; Wu, G. Dietary α-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 2010, 39, 555–564. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wu, J.; Tang, W.; Zhou, X.; Lin, Q.; Luo, F.; Yin, Y.; Li, T. Prevention of oxidative stress by α-ketoglutarate via activation of CAR signaling and modulation of the expression of key antioxidant-associated targets in vivo and in vitro. J. Agric. Food Chem. 2018, 66, 11273–11283. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Q.; Wang, C.a.; Li, J.; Chen, D.; Zhao, Z.; Luo, L.; Du, X. Effects of dietary α-ketoglutarate supplementation on the antioxidant defense system and HSP 70 and HSP 90 gene expression of hybrid sturgeon A cipenser schrenckii♀× A. baerii♂ exposed to ammonia-N stress. Aquac. Res. 2017, 48, 2266–2277. [Google Scholar] [CrossRef]
- Jyothi, P.; Riyaz, N.; Nandakumar, G.; Binitha, M. A study of oxidative stress in paucibacillary and multibacillary leprosy. Indian. J. Dermatol. Venereol. Leprol. 2008, 74, 80. [Google Scholar] [CrossRef] [PubMed]
- Ncho, C.M.; Goel, A.; Gupta, V.; Jeong, C.-M.; Choi, Y.-H. Effect of in ovo feeding of γ-aminobutyric acid combined with embryonic thermal manipulation on hatchability, growth, and hepatic gene expression in broilers. Anim. Biosci. 2023, 36, 284. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mortola, J.P. Gas exchange in avian embryos and hatchlings. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 153, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Ferket, R. Methods for early nutrition and their potential. World Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Gaya, L.; Costa, A.; Ferraz, J.B.S.; Rezende, F.; Mattos, E.; Eler, J.P.; Michelan Filho, T.; Mourão, G.B.; Figueiredo, L. Genetic trends of absolute and relative heart weight in a male broiler line. Genet. Mol. Res. 2007, 6, 1091–1096. [Google Scholar]
- Geng, A.; Guo, Y.; Yang, Y. Reduction of ascites mortality in broilers by coenzyme Q10. Poult. Sci. 2004, 83, 1587–1593. [Google Scholar] [CrossRef] [PubMed]
- Kjellman, U.W.; Björk, K.; Ekroth, R.; Karlsson, H.; Jagenburg, R.; Nilsson, F.N.; Svensson, G.; Wernerman, J. Addition of α-ketoglutarate to blood cardioplegia improves cardioprotection. Ann. Thorac. Surg. 1997, 63, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Zeng, Q.; Zhang, P.; Ma, Z.; Zhang, H.; Liu, Z.; Li, J.; Ren, H.; Xu, D. Alpha-ketoglutarate ameliorates pressure overload-induced chronic cardiac dysfunction in mice. Redox Biol. 2021, 46, 102088. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, H.; Peng, L.; He, W.; Li, S. Potential clinical applications of alpha-ketoglutaric acid in diseases. Mol. Med. Rep. 2022, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H.A.; Cohen, P.P. Metabolism of α-ketoglutaric acid in animal tissues. Biochem. J. 1939, 33, 1895. [Google Scholar] [CrossRef] [PubMed]
- Legendre, F.; MacLean, A.; Appanna, V.; Appanna, V. Biochemical pathways to α-ketoglutarate, a multi-faceted metabolite. World J. Microbiol. Biotechnol. 2020, 36, 123. [Google Scholar] [CrossRef] [PubMed]
- Tickle, P.G.; Hutchinson, J.R.; Codd, J.R. Energy allocation and behaviour in the growing broiler chicken. Sci. Rep. 2018, 8, 4562. [Google Scholar] [CrossRef] [PubMed]
- Marder, J.; Arad, Z. Panting and acid-base regulation in heat stressed birds. Comp. Biochem. Physiol. Part A Physiol. 1989, 94, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, E.; Świątkiewicz, S.; Arczewska-Włosek, A.; Wojtysiak, D.; Dobrowolski, P.; Domaradzki, P.; Świetlicka, I.; Donaldson, J.; Hułas-Stasiak, M.; Muszyński, S. Alpha-ketoglutarate: An effective feed supplement in improving bone metabolism and muscle quality of laying hens: A preliminary study. Animals 2020, 10, 2420. [Google Scholar] [CrossRef] [PubMed]
- Ai, F.; Wang, L.; Li, J.; Xu, Q. Effects of a-ketoglutarate (AKG) supplementation in low phosphorous diets on the growth, phosphorus metabolism and skeletal development of juvenile mirror carp (Cyprinus carpio). Aquaculture 2019, 507, 393–401. [Google Scholar] [CrossRef]
- Lin, X.; Jin, B.; Wang, H.; Zhao, Y. Effects of diet α-ketoglutarate (AKG) supplementation on the growth performance, antioxidant defense system, intestinal digestive enzymes, and immune response of grass carp (Ctenopharyngodon idellus). Aquac. Int. 2020, 28, 511–524. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, H.; Sun, H. Effects of low-protein diet supplementation with alpha-ketoglutarate on growth performance, nitrogen metabolism and mTOR signalling pathway of skeletal muscle in piglets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Barekatain, R.; Wu, S.; Choct, M.; Swick, R. Dietary L-glutamine supplementation improves growth performance, gut morphology, and serum biochemical indices of broiler chickens during necrotic enteritis challenge. Poult. Sci. 2018, 97, 1334–1341. [Google Scholar] [CrossRef] [PubMed]
- Kadono, H.; Besch, E. Telemetry measured body temperature of domestic fowl at various ambient temperatures. Poult. Sci. 1978, 57, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, D.; Hunter, R.R.; Nute, G.R.; Mitchell, M.; Hocking, P.M. Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: Implications for meat quality. Poult. Sci. 2001, 80, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.; Washburn, K. The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. Poult. Sci. 1998, 77, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.-Y.; Yang, L.; Fu, Y.-Q.; Feng, J.-H.; Zhang, M.-H. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 2010, 89, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Habashy, W.S.; Milfort, M.C.; Rekaya, R.; Aggrey, S.E. Expression of genes that encode cellular oxidant/antioxidant systems are affected by heat stress. Mol. Biol. Rep. 2018, 45, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiao, H.; Song, Z.; Zhao, J.; Wang, X.; Lin, H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J. Anim. Sci. 2015, 93, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, X.; Huang, J.; Huan, C.; Li, C. H2O2-induced oxidative stress impairs meat quality by inducing apoptosis and autophagy via ROS/NF-κB signaling pathway in broiler thigh muscle. Poult. Sci. 2022, 101, 101759. [Google Scholar] [CrossRef] [PubMed]
- Madkour, M.; Salman, F.M.; El-Wardany, I.; Abdel-Fattah, S.A.; Alagawany, M.; Hashem, N.M.; Abdelnour, S.A.; El-Kholy, M.S.; Dhama, K. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J. Therm. Biol. 2022, 103, 103169. [Google Scholar] [CrossRef] [PubMed]
- Archana, P.; Aleena, J.; Pragna, P.; Vidya, M.; Niyas, A.; Bagath, M.; Krishnan, G.; Manimaran, A.; Beena, V.; Kurien, E. Role of heat shock proteins in livestock adaptation to heat stress. J. Dairy Vet. Anim. Res. 2017, 5, 00127. [Google Scholar]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Xi, L.; Liu, H.-C.; Odle, J.; Luo, X. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus). PLoS ONE 2014, 9, e102204. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Yu, J.; Bao, E. Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. Br. Poult. Sci. 2009, 50, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhao, Y.; Wang, H.; Jin, B.; Tang, D.; Wu, Q. Effects of dietary α-ketoglutarate on heat shock protein 70 and peroxisome proliferator activated receptor γ mRNA expressions of grass carp (Ctenopharynodon idellus). Chin. J. Anim. Nutr. 2014, 26, 1379–1386. [Google Scholar]
- Altan, Ö.; Pabuçcuoğlu, A.; Altan, A.; Konyalioğlu, S.; Bayraktar, H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Velvizhi, S.; Dakshayani, K.B.; Subramanian, P. Effects of α-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Nutrition 2002, 18, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Niemiec, T.; Sikorska, J.; Harrison, A.; Szmidt, M.; Sawosz, E.; Wirth-Dzieciolowska, E.; Wilczak, J.; Pierzynowski, S. Alpha-ketoglutarate stabilizes redox homeostasis and improves arterial elasticity in aged mice. J. Physiol. Pharmacol. 2011, 62, 37. [Google Scholar] [PubMed]
No. | Gene | Sequence | Accession Number | Reference |
---|---|---|---|---|
1. | GAPDH | F: TTGGCATTGTGGAGGGTCTTA | NM_204305.1 | [13] |
R: GTGGACGCTGGGATGATGTT | ||||
2. | β-actin | F: ACCGGACTGTTACCAACA | NM_205518.1 | [41] |
R: GACTGCTGCTGACACCTT | ||||
3. | NRF2 | F: CAGAAGCTTTCCCGTTCATAGA | NM_205117 | [41] |
R: GACATTGGAGGGATGGCTTAT | ||||
4. | CAT | F: ACCAAGTACTGCAAGGCGAA | NM_001031215.1 | [41] |
R: TGAGGGTTCCTCTTCTGGCT | ||||
5. | SOD | F: AGGGGGTCATCCACTTCC | NM_205064.1 | [42] |
R: CCCATTTGTGTTGTCTCCAA | ||||
6. | GPX1 | F: AACCAATTCGGGCACCAG | NM_001277853.2 | [5] |
R: CCGTTCACCTCGCACTTCTC | ||||
7. | HSP70 | F: GCTGAACAAGAGCATCAATCCA | AY143693.1 | [42] |
R: CAGGAGCAGATCTTGCACATTT | ||||
8. | HSP90 | F: CCCGAGCAAGCTGGATTCT | NM_001109785 | [18] |
R: GGTCATCCCTATGCCGGTATC | ||||
9. | NOX1 | F: GCGAAGACGTGTTCCTGTAT | NM_001101830.1 | [39] |
R: GAACCTGTACCAGATGGACTTC | ||||
10. | NOX4 | F: CCTCTGTGCTTGTACTGTGTAG | NM_001101829.1 | [39] |
R: GACATTGGAGGGATGGCTTAT |
Parameters | Treatments | Pooled SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | AL | AH | ANOVA | Lin | Quad | ||
Absolute organ weight (g) | |||||||
Liver | 1.823 | 1.820 | 1.758 | 0.05 | 0.854 | 0.612 | 0.799 |
Yolk sac | 2.797 | 2.183 | 2.578 | 0.14 | 0.201 | 0.541 | 0.097 |
Intestine | 4.235 | 4.695 | 4.577 | 0.12 | 0.301 | 0.269 | 0.277 |
Gizzard | 4.160 a | 4.895 b | 4.833 b | 0.12 | 0.015 | 0.020 | 0.077 |
Proventriculus | 0.713 | 0.748 | 0.697 | 0.03 | 0.804 | 0.833 | 0.537 |
Heart | 0.402 a | 0.425 ab | 0.495 b | 0.01 | 0.012 | 0.004 | 0.349 |
Relative organ weight (g/100 g BW) | |||||||
Liver | 3.523 | 3.377 | 3.267 | 0.09 | 0.499 | 0.232 | 0.922 |
Yolk sac | 5.433 | 4.077 | 4.788 | 0.28 | 0.150 | 0.370 | 0.087 |
Intestine | 8.171 | 8.708 | 8.504 | 0.18 | 0.486 | 0.460 | 0.347 |
Gizzard | 8.048 a | 9.085 b | 8.983 ab | 0.19 | 0.037 | 0.040 | 0.119 |
Proventriculus | 1.379 | 1.394 | 1.291 | 0.06 | 0.752 | 0.544 | 0.649 |
Heart | 0.779 a | 0.790 ab | 0.920 b | 0.03 | 0.035 | 0.021 | 0.222 |
Parameters | Treatments | Pooled SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
CON-NT | CON-HT | AL-HT | AH-HT | ANOVA 1 | Lin 2 | Quad 2 | ||
Initial body weight | 521.00 | 521.33 | 533.67 | 536.00 | 9.33 | 0.921 | 0.613 | 0.846 |
Final body weight | 531.00 | 513.00 | 519.67 | 526.00 | 8.48 | 0.903 | 0.615 | 0.994 |
ΔBW | 10.00 b | −8.33 a | −14.00 a | −10.00 a | 2.83 | 0.005 | 0.816 | 0.442 |
Parameters | Treatments | Pooled SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
CON-NT | CON-HT | AL-HT | AH-HT | ANOVA 1 | Lin 2 | Quad 2 | ||
Absolute organ weight (g) | ||||||||
Liver | 21.06 | 22.11 | 20.42 | 22.44 | 0.64 | 0.691 | 0.872 | 0.306 |
Spleen | 0.51 | 0.47 | 0.51 | 0.51 | 0.02 | 0.908 | 0.553 | 0.821 |
Bursa of Fabricius | 0.98 | 0.91 | 0.95 | 0.92 | 0.05 | 0.964 | 0.958 | 0.781 |
Proventriculus | 3.17 | 3.25 | 3.04 | 3.21 | 0.12 | 0.945 | 0.902 | 0.492 |
Gizzard | 8.05 | 8.94 | 8.47 | 7.96 | 0.22 | 0.419 | 0.165 | 0.976 |
Heart | 4.04 | 4.08 | 3.59 | 4.08 | 0.14 | 0.565 | 0.997 | 0.187 |
Relative organ weight (g/100 g BW) | ||||||||
Liver | 3.97 | 4.32 | 3.93 | 4.30 | 0.13 | 0.604 | 0.963 | 0.290 |
Spleen | 0.10 | 0.09 | 0.10 | 0.10 | 0.00 | 0.969 | 0.696 | 0.814 |
Bursa of Fabricius | 0.18 | 0.18 | 0.18 | 0.17 | 0.01 | 0.979 | 0.937 | 0.779 |
Proventriculus | 0.60 | 0.63 | 0.59 | 0.61 | 0.02 | 0.883 | 0.612 | 0.433 |
Gizzard | 1.52 | 1.75 | 1.64 | 1.54 | 0.05 | 0.405 | 0.205 | 0.962 |
Heart | 0.76 | 0.79 | 0.69 | 0.78 | 0.02 | 0.344 | 0.816 | 0.063 |
Parameters | Treatments | Pooled SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
CON-NT | CON-HT | AL-HT | AH-HT | ANOVA 1 | Lin 2 | Quad 2 | ||
RTi | 41.60 | 41.67 | 41.65 | 41.65 | 0.05 | 0.979 | 0.919 | 0.955 |
RTf | 41.48 a | 42.80 b | 42.45 b | 42.87 b | 0.14 | 0.001 | 0.818 | 0.124 |
ΔRT | −1.2 a | 1.13 b | 0.80 b | 1.22 b | 0.15 | 0.002 | 0.822 | 0.247 |
Set of Genes | MANOVA | Multivariate Planned Contrast | |||
---|---|---|---|---|---|
CON-NT vs. CON-HT | CON-HT vs. AL-HT | CON-HT vs. AH-HT | CON-HT vs. AL-HT and AH-HT | ||
Antioxidant-related genes | 0.073 | 0.681 | 0.193 | 0.079 | 0.233 |
Heat shock proteins | <0.001 | 0.006 | 0.012 | 0.315 | 0.036 |
NOX-related genes | <0.001 | <0.001 | 0.108 | 0.292 | 0.116 |
Parameters | Treatments | Pooled SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
CON-NT | CON-HS | AL-HS | AH-HS | ANOVA 1 | Lin 2 | Quad 2 | ||
Antioxidant-related genes | ||||||||
NRF2 | 1.00 | 1.20 | 0.70 | 0.76 | 0.09 | 0.175 | 0.071 | 0.167 |
CAT | 1.00 | 1.36 | 1.98 | 1.10 | 0.16 | 0.103 | 0.606 | 0.073 |
SOD | 1.00 | 1.01 | 0.86 | 1.33 | 0.13 | 0.638 | 0.406 | 0.359 |
GPX1 | 1.00 | 0.80 | 0.98 | 1.31 | 0.12 | 0.575 | 0.139 | 0.793 |
NOX-related genes | ||||||||
NOX1 | 1.00 a | 3.21 b | 2.67 b | 2.56 ab | 0.25 | 0.006 | 0.306 | 0.695 |
NOX4 | 1.00 a | 2.91 b | 3.56 b | 3.19 b | 0.25 | 0.001 | 0.564 | 0.234 |
HSP-related genes | ||||||||
HSP70 | 1.00 a | 1.61 b | 1.59 b | 1.51 b | 0.08 | 0.009 | 0.491 | 0.805 |
HSP90 | 1.00 b | 0.93 b | 0.24 a | 0.59 ab | 0.10 | 0.008 | 0.136 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, V.; Goel, A.; Ncho, C.M.; Jeong, C.-M.; Choi, Y.-H. Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers. Animals 2024, 14, 2243. https://doi.org/10.3390/ani14152243
Gupta V, Goel A, Ncho CM, Jeong C-M, Choi Y-H. Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers. Animals. 2024; 14(15):2243. https://doi.org/10.3390/ani14152243
Chicago/Turabian StyleGupta, Vaishali, Akshat Goel, Chris Major Ncho, Chae-Mi Jeong, and Yang-Ho Choi. 2024. "Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers" Animals 14, no. 15: 2243. https://doi.org/10.3390/ani14152243
APA StyleGupta, V., Goel, A., Ncho, C. M., Jeong, C. -M., & Choi, Y. -H. (2024). Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers. Animals, 14(15), 2243. https://doi.org/10.3390/ani14152243