Impact of Dietary Variations on Kuruma Shrimp (Penaeus japonicus) Assessed through Individual-Based Rearing and Insights into Individual Differences
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Acquisition
2.2. Culture System and Experimental Design
2.3. Growth Performance
2.4. Analysis of Enzyme Activity and Antioxidant Capacity
2.5. Dietary Proximate Composition Analysis
2.6. Dietary Amino Acid and Fatty Acids Composition
2.7. Intestinal Microbial Analysis
2.8. Statistical Analysis
3. Results
3.1. Nutrient Composition of the Diets
3.2. Shrimp Feeding and Growth Performance
3.3. Activities of Digestive Enzymes
3.4. Activities of Immunity Enzyme and Antioxidant Capacity
3.5. Diversity, Taxonomic Composition, and Co-Occurrence Network Analysis of Intestinal Microbiota
4. Discussion
4.1. Differences in Growth Performance and Molting under Different Dietary Conditions
4.2. Enzyme Activity and Antioxidant Capacity of Shrimp under Different Dietary Conditions
4.3. Effects of Different Dietary Structures on the Characteristics of Shrimp Intestinal Microbiota
4.4. Individual Variations in Growth and Feeding of Shrimp
4.5. The Influence of Molting on Shrimp Feeding
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinn, A.; Pratoomyot, J.; Griffiths, D.; Trong, T.; Vu, N.T.; Jiravanichpaisal, P.; Briggs, M. Asian shrimp production and the economic costs of disease. Asian Fish. Sci. 2018, 31, 29–58. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, H.; Wang, P.; Wei, Y.; Chen, C.; Hou, Y.; Deng, X.; Li, S.; Sun, S.; Cai, Q. The Multiple Influences of Natural Farming Environment on the Cultured Population Behavior of Kuruma Prawn, Penaeus japonicus. Animals 2022, 12, 3383. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action; Food and Agriculture Organization: Rome, Italy, 2024. [Google Scholar]
- Zheng, J.; Li, L.; Dong, H.; Mao, Y.; Su, Y.; Wang, J. Molecular cloning of heat shock protein 60 from Marsupenaeus japonicus and its expression profiles at early developmental stages and response to heat stress. Aquac. Res. 2018, 49, 301–312. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, W.; Zheng, L.; Wang, P.; Liu, Q.; Li, Z.; Li, T.; Wei, Y.; Mao, Y.; Yu, X. Identification of a group D anti-lipopolysaccharide factor (ALF) from kuruma prawn (Marsupenaeus japonicus) with antibacterial activity against Vibrio parahaemolyticus. Fish Shellfish. Immunol. 2020, 102, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, K.; Kitada, S. A review of kuruma prawn Penaeus japonicus stock enhancement in Japan. Fish. Res. 2006, 80, 80–90. [Google Scholar] [CrossRef]
- Alam, M.S.; Teshima, S.-i.; Ishikawa, M.; Hasegawa, D.; Koshio, S. Dietary arginine requirement of juvenile kuruma shrimp Marsupenaeus japonicus (Bate). Aquac. Res. 2004, 35, 842–849. [Google Scholar] [CrossRef]
- Bulbul, M.; Kader, M.A.; Asaduzzaman, M.; Ambak, M.A.; Chowdhury, A.J.K.; Hossain, M.S.; Ishikawa, M.; Koshio, S. Can canola meal and soybean meal be used as major dietary protein sources for kuruma shrimp, Marsupenaeus japonicus? Aquaculture 2016, 452, 194–199. [Google Scholar] [CrossRef]
- Bulbul, M.; Kader, M.A.; Koshio, S.; Ishikawa, M.; Yokoyama, S. Effect of replacing fishmeal with canola meal on growth and nutrient utilization in kuruma shrimp Marsupenaeus japonicus (Bate). Aquac. Res. 2014, 45, 848–858. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J. Isotopic techniques in aquaculture nutrition: State of the art and future perspectives. Rev. Aquac. 2022, 14, 456–476. [Google Scholar] [CrossRef]
- Deshimaru, O.; Shigeno, K. Introduction to the artificial diet for prawn Penaeus japonicus. Aquaculture 1972, 1, 115–133. [Google Scholar] [CrossRef]
- Deng, J.; Ma, S.; Niu, H.; Dong, S.; Su, Y. An experiment of shrimp (Fenneropenaeus chinensis) culture by inputting polychaetes (Perinereis aibuhitensis). Trans. Oceanol. Limnol. 2007, 2, 135–140. [Google Scholar]
- Liu, S.; Liu, Y.; Yang, H.; You, K.; Chen, M.; Yu, L. Effects of Perinereis aibuhitensis and Eisenia foetida on growth and immune parameters of the shrimp Litopenaeus vannamei. J. Fish. Sci. China 2006, 13, 561–565. [Google Scholar]
- Shigueno, K. Problems on Prawn Culture in Japan; Overseas Technical Cooperation Agency: Tokyo, Japan, 1972. [Google Scholar]
- Kanazawa, A.; Shimaya, M.; Kawasaki, M.; Kashiwada, K.-i. Nutritional requirements of prawn. 1. Feeding on artificial diet. Bull. Jpn. Soc. Sci. Fish. 1970, 36, 949–954. [Google Scholar] [CrossRef]
- Deshimaru, O.; Kuroki, K. Studies on a purified diet for prawn. 1. Basal composition of diet. Bull. Jpn. Soc. Sci. Fish. 1974, 40, 413–419. [Google Scholar] [CrossRef]
- Alam, M.S.; Teshima, S.; Koshio, S.; Ishikawa, M. Effects of supplementation of coated crystalline amino acids on growth performance and body composition of juvenile kuruma shrimp Marsupenaeus japonicus. Aquac. Nutr. 2004, 10, 309–316. [Google Scholar] [CrossRef]
- Wang, W.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Hossain, M.S.; Moss, A.S. Effects of dietary astaxanthin supplementation on juvenile kuruma shrimp, Marsupenaeus japonicus. Aquaculture 2018, 491, 197–204. [Google Scholar] [CrossRef]
- Bulbul, M.; Kader, M.A.; Ambak, M.A.; Hossain, M.S.; Ishikawa, M.; Koshio, S. Effects of crystalline amino acids, phytase and fish soluble supplements in improving nutritive values of high plant protein based diets for kuruma shrimp, Marsupenaeus japonicus. Aquaculture 2015, 438, 98–104. [Google Scholar] [CrossRef]
- Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Abdul Kader, M. Growth performance of juvenile kuruma shrimp, Marsupenaeus japonicus (Bate) fed diets replacing fishmeal with soybean meal. Aquac. Res. 2015, 46, 572–580. [Google Scholar] [CrossRef]
- Oswald, A.T.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Moss, A.S.; Serge, D. Nutritional evaluation of Nannochloropsis powder and lipid as alternative to fish oil for kuruma shrimp, Marsupenaeus japonicus. Aquaculture 2019, 504, 427–436. [Google Scholar] [CrossRef]
- Le Vay, L.; Rodriguez, A.; Kamarudin, M.; Jones, D. Influence of live and artificial diets on tissue composition and trypsin activity in Penaeus japonicus larvae. Aquaculture 1993, 118, 287–297. [Google Scholar] [CrossRef]
- Jones, D.; Kurmaly, K.; Arshard, A. Penaeid shrimp hatchery trials using microencapsulated diets. Aquaculture 1987, 64, 133–146. [Google Scholar] [CrossRef]
- Hewitt, D.; Duncan, P.F. Effect of high water temperature on the survival, moulting and food consumption of Penaeus (Marsupenaeus) japonicus (Bate, 1888). Aquac. Res. 2001, 32, 305–313. [Google Scholar] [CrossRef]
- Rahman, S.H.A. Evaluation of various diets for the optimum growth and survival of larvae of the penaeid prawn Penaeus japonicus Bate. Aquac. Nutr. 1996, 2, 151–155. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Koshio, S.; Sakiyama, K.; Ishikawa, M.; Yokoyama, S.; Kader, M.A. Effects of polychaete extracts on reproductive performance of kuruma shrimp, Marsupenaeus japonicus Bate.–Part II. Ovarian maturation and tissue lipid compositions. Aquaculture 2012, 334, 65–72. [Google Scholar] [CrossRef]
- Dai, P.; Kong, J.; Meng, X.; Luo, K.; Lu, X.; Chen, B.; Cao, B.; Luan, S. Genotype by environment interaction for feed efficiency trait of the juvenile Pacific white shrimp Litopenaeus vannamei held in individuals vs. in groups. Aquaculture 2019, 500, 506–513. [Google Scholar] [CrossRef]
- Wu, J.; Namikoshi, A.; Nishizawa, T.; Mushiake, K.; Teruya, K.; Muroga, K. Effects of shrimp density on transmission of penaeid acute viremia in Penaeus japonicus by cannibalism and the waterborne route. Dis. Aquat. Org. 2001, 47, 129–135. [Google Scholar] [CrossRef]
- Schaefer, F.J.; Flues, S.; Meyer, S.; Peck, M.A. Inter- and intra-individual variability in growth and food consumption in pikeperch, Sander lucioperca L., larvae revealed by individual rearing. Aquac. Res. 2017, 48, 800–808. [Google Scholar] [CrossRef]
- Yang, Z.; Wei, B.; Liu, Q.; Cheng, Y.; Zhou, J. Individual growth pattern of juvenile stages of the Chinese mitten crab (Eriocheir sinensis) reared under laboratory conditions. Aquac. Int. 2018, 26, 645–657. [Google Scholar] [CrossRef]
- Dai, P.; Luan, S.; Lu, X.; Luo, K.; Meng, X.; Cao, B.; Kong, J. Genetic assessment of residual feed intake as a feed efficiency trait in the Pacific white shrimp Litopenaeus vannamei. Genet. Sel. Evol. 2017, 49, 61. [Google Scholar] [CrossRef]
- Liang, M.; Dong, S.; Gao, Q.; Wang, F.; Tian, X. Individual variation in growth in sea cucumber Apostichopus japonicus (Selenck) housed individually. J. Ocean. Univ. China 2010, 9, 291–296. [Google Scholar] [CrossRef]
- Dai, P.; Luan, S.; Lu, X.; Luo, K.; Cao, B.; Meng, X.; Kong, J. Genetic evaluation of feed efficiency in the breeding population of Fenneropenaeus chinensis “Huanghai No. 2” using phenotypic, pedigree and genomic information. Aquac. Int. 2017, 25, 2189–2200. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists International; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, H.; Gao, X.; Wang, J. The intratumor microbiota signatures associate with subtype, tumor stage, and survival status of esophageal carcinoma. Front. Oncol. 2021, 11, 754788. [Google Scholar] [CrossRef]
- Naessens, E.; Lavens, P.; Gomez, L.; Browdy, C.; McGovern-Hopkins, K.; Spencer, A.; Kawahigashi, D.; Sorgeloos, P. Maturation performance of Penaeus vannamei co-fed Artemia biomass preparations. Aquaculture 1997, 155, 87–101. [Google Scholar] [CrossRef]
- Yang, D.; Wang, C.; Kou, N.; Xing, J.; Li, X.; Zhao, H.; Luo, M. Gonadal maturation in Litopenaeus vannamei fed on four different polychaetes. Aquac. Rep. 2022, 22, 100920. [Google Scholar] [CrossRef]
- Techaprempreecha, S.; Khongchareonporn, N.; Chaicharoenpong, C.; Aranyakananda, P.; Chunhabundit, S.; Petsom, A. Nutritional composition of farmed and wild sandworms, Perinereis nuntia. Anim. Feed. Sci. Technol. 2011, 169, 265–269. [Google Scholar] [CrossRef]
- Clarke, A. Lipid Synthesis and Reproduction in the Polar Shrimp Chorismus antarcticus. Mar. Ecol. Prog. Ser. 1982, 9, 81–90. [Google Scholar] [CrossRef]
- Medina, A.; Vila, Y.; Mourente, G.; Rodríguez, A. A comparative study of the ovarian development in wild and pond-reared shrimp, Penaeus kerathurus (Forskål, 1775). Aquaculture 1996, 148, 63–75. [Google Scholar] [CrossRef]
- Shan, H.; Zhao, X.; Zhou, Y.; Wang, T.; Ma, S. Effects of freeze-dried powder of the Antarctic krill Euphausia superba on the growth performance, molting and fatty acid composition of the Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 2019, 50, 2867–2878. [Google Scholar] [CrossRef]
- Wouters, R.; Lavens, P.; Nieto, J.; Sorgeloos, P. Penaeid shrimp broodstock nutrition: An updated review on research and development. Aquaculture 2001, 202, 1–21. [Google Scholar] [CrossRef]
- Meunpol, O.; Iam-Pai, S.; Suthikrai, W.; Piyatiratitivorakul, S.J.A. Identification of progesterone and 17α-hydroxyprogesterone in polychaetes (Perinereis sp.) and the effects of hormone extracts on penaeid oocyte development in vitro. Aquaculture 2007, 270, 485–492. [Google Scholar] [CrossRef]
- Kanazawa, A. Nutrition of penaeid prawns and shrimps. In Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimps, Iloilo City, Philippines, 4–7 December 1984; pp. 123–130. [Google Scholar]
- Kobayashi, S. Molting growth patterns of the Japanese mitten crab Eriocheir japonica (de Haan) under laboratory-reared conditions. J. Crustac. Biol. 2012, 32, 753–761. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Romano, N.; Allen, K.M.; Bowman, B.A.; Thompson, K.R.; Tidwell, J.H. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Rev. Fish. Sci. Aquac. 2018, 26, 254–273. [Google Scholar] [CrossRef]
- Lemos, D.; Weissman, D. Moulting in the grow-out of farmed shrimp: A review. Rev. Aquac. 2020, 13, 5–17. [Google Scholar] [CrossRef]
- Wang, W.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dawood, M.A.O.; Hossain, M.S.; Zaineldin, A.I. Interactive effects of dietary astaxanthin and cholesterol on the growth, pigmentation, fatty acid analysis, immune response and stress resistance of kuruma shrimp (Marsupenaeus japonicus). Aquac. Nutr. 2019, 25, 946–958. [Google Scholar] [CrossRef]
- Zhuang, Y.; Huang, H.; Liu, X.L.; Wang, N.A.; Zhong, G.F. Effect of bovine lactoferricin on the growth performance, digestive capacity, immune responses and disease resistance in Pacific white shrimp, Penaeus vannamei. Fish Shellfish. Immunol. 2022, 123, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Abdullah; Zhang, C.; Li, Y.; Zhang, H.; Wang, J.; Feng, F. Effects of dietary glycerol monolaurate on the growth performance, digestive enzymes, body composition and non-specific immune response of white shrimp (Litopenaeus vannamei). Aquac. Rep. 2020, 18, 100535. [Google Scholar] [CrossRef]
- Shao, J.; Liu, M.; Wang, B.; Jiang, K.; Wang, M.; Wang, L. Evaluation of biofloc meal as an ingredient in diets for white shrimp Litopenaeus vannamei under practical conditions: Effect on growth performance, digestive enzymes and TOR signaling pathway. Aquaculture 2017, 479, 516–521. [Google Scholar] [CrossRef]
- Muhlia-Almazán, A.; Garcıa-Carreno, F.L.; Sanchez-Paz, J.A.; Yepiz-Plascencia, G.; Peregrino-Uriarte, A.B. Effects of dietary protein on the activity and mRNA level of trypsin in the midgut gland of the white shrimp Penaeus vannamei. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2003, 135, 373–383. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Tao, X.; Yang, Y.; Sun, P.; Jin, M.; Zhou, Q.; Jiao, L. Effects of dietary montmorillonite supplementation on the growth performance, antioxidant capacity, intestinal barrier and microbiota composition in Marsupenaeus japonicus. Aquaculture 2022, 557, 738330. [Google Scholar] [CrossRef]
- Parrilla-Taylor, D.P.; Zenteno-Savín, T. Antioxidant enzyme activities in Pacific white shrimp (Litopenaeus vannamei) in response to environmental hypoxia and reoxygenation. Aquaculture 2011, 318, 379–383. [Google Scholar] [CrossRef]
- Wang, D.; Li, F.; Chi, Y.; Xiang, J. Potential relationship among three antioxidant enzymes in eliminating hydrogen peroxide in penaeid shrimp. Cell Stress Chaperones 2012, 17, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, S.; Li, Q.; Ji, X.; Zhang, L.; Hong, M. Purification and characterization of a novel fibrinolytic enzyme from the polychaete, Neanthes japonica (Iznka). Bioresour. Technol. 2010, 101, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Z.; Ganesan, K.; Yuan, Y.; Xu, B. Antioxidant activities of aqueous extracts and protein hydrolysates from marine worm Hechong (Tylorrhynchus heterochaeta). Foods 2022, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Yang, Q.; Tan, B.; Dong, X.; Chi, S.; Liu, H.; Zhang, S. Effects of replacing soybean meal with cottonseed meal on growth, feed utilization and non-specific immune enzyme activities for juvenile white shrimp, Litopenaeus vannamei. Aquac. Rep. 2020, 16, 100255. [Google Scholar] [CrossRef]
- Lee, S.Y.; Söderhäll, K. Early events in crustacean innate immunity. Fish Shellfish. Immunol. 2002, 12, 421–437. [Google Scholar] [PubMed]
- Soriano, E.L.; Ramírez, D.T.; Araujo, D.R.; Gómez-Gil, B.; Castro, L.I.; Sánchez, C.G. Effect of temperature and dietary lipid proportion on gut microbiota in yellowtail kingfish Seriola lalandi juveniles. Aquaculture 2018, 497, 269–277. [Google Scholar] [CrossRef]
- Guo, H.; Huang, L.; Hu, S.; Chen, C.; Huang, X.; Liu, W.; Wang, S.; Zhu, Y.; Zhao, Y.; Zhang, D. Effects of carbon/nitrogen ratio on growth, intestinal microbiota and metabolome of shrimp (Litopenaeus vannamei). Front. Microbiol. 2020, 11, 652. [Google Scholar] [CrossRef]
- Zheng, L.; Xie, S.; Zhuang, Z.; Liu, Y.; Tian, L.; Niu, J. Effects of yeast and yeast extract on growth performance, antioxidant ability and intestinal microbiota of juvenile Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2021, 530, 735941. [Google Scholar] [CrossRef]
- Xiong, J.; Dai, W.; Zhu, J.; Liu, K.; Dong, C.; Qiu, Q. The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb. Ecol. 2017, 73, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.-j.; Tian, X.-l.; Dong, S.-l.; Fang, Z.-h.; Yang, G.J.A. Growth performance, immune response, and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture 2014, 420, 105–111. [Google Scholar] [CrossRef]
- Bruni, L.; Pastorelli, R.; Viti, C.; Gasco, L.; Parisi, G. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture 2018, 487, 56–63. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Y.; Dong, H.; Wang, Y.; Zhang, J. Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J. Therm. Biol. 2017, 66, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, X.; Zheng, Y.; Chen, J.; Tan, B.; Shi, L.; Zhang, S. Effects of replacing fish meal with cottonseed protein concentrate on the growth, immune responses, digestive ability and intestinal microbial flora in Litopenaeus vannamei. Fish Shellfish. Immunol. 2022, 128, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, C.; Dong, J.; Li, W.; Tian, Y.; Hu, J.; Ye, X. Comparative Analysis of the Gut Microbiota of Mandarin Fish (Siniperca chuatsi) Feeding on Compound Diets and Live Baits. Front. Genet. 2022, 13, 797420. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yi, H.; Liu, S.; Zhang, Y.; Su, Y.; Liu, X.; Bi, S.; Lai, H.; Zeng, Z.; Li, G. Probiotics improve eating disorders in mandarin fish (Siniperca chuatsi) induced by a pellet feed diet via stimulating immunity and regulating gut microbiota. Microorganisms 2021, 9, 1288. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yi, H.; Liu, S.; Zhang, Y.; Su, Y.; Liu, X.; Bi, S.; Lai, H.; Zeng, Z.; Li, G. Promotion of pellet-feed feeding in mandarin fish (Siniperca chuatsi) by Bdellovibrio bacteriovorus is influenced by immune and intestinal flora. Aquaculture 2021, 542, 736864. [Google Scholar] [CrossRef]
- Niu, G.-J.; Yan, M.; Li, C.; Lu, P.-y.; Yu, Z.; Wang, J.-X. Infection with white spot syndrome virus affects the microbiota in the stomachs and intestines of kuruma shrimp. Sci. Total Environ. 2022, 839, 156233. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012, 6, 1848–1857. [Google Scholar] [CrossRef]
- Murphy, E.; Cotter, P.; Healy, S.; Marques, T.M.; O'sullivan, O.; Fouhy, F.; Clarke, S.; O'toole, P.; Quigley, E.M.; Stanton, C. Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models. Gut 2010, 59, 1635. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Xu, C.; Wang, X.; Wang, S.; Zhao, Q.; Zhang, M.; Qin, J.G.; Chen, L. Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Rev. Fish. Sci. Aquac. 2018, 26, 381–399. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Meirelles, P.M.; Mino, S.; Suda, W.; Oshima, K.; Hattori, M.; Thompson, F.L.; Sakai, Y.; Sawabe, T.; Sawabe, T. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Sci. Rep. 2016, 6, 21631. [Google Scholar] [CrossRef] [PubMed]
- Barreto-Curiel, F.; Ramirez-Puebla, S.T.; Ringø, E.; Escobar-Zepeda, A.; Godoy-Lozano, E.; Vazquez-Duhalt, R.; Sanchez-Flores, A.; Viana, M.T. Effects of extruded aquafeed on growth performance and gut microbiome of juvenile Totoaba macdonaldi. Anim. Feed. Sci. Technol. 2018, 245, 91–103. [Google Scholar] [CrossRef]
- Derome, N.; Gauthier, J.; Boutin, S.; Llewellyn, M. Bacterial opportunistic pathogens of fish. In The Rasputin Effect: When Commensals Symbionts Become Parasitic; Springer International Publishing: Cham, Switzerland, 2016; pp. 81–108. [Google Scholar]
- Imaizumi, K.; Tinwongger, S.; Kondo, H.; Hirono, I. Analysis of microbiota in the stomach and midgut of two penaeid shrimps during probiotic feeding. Sci. Rep. 2021, 11, 9936. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhu, J.; Dai, W.; Dong, C.; Qiu, Q.; Li, C. Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environ. Microbiol. 2017, 19, 1490–1501. [Google Scholar] [CrossRef]
- Berry, D.; Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014, 5, 219. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, J.; Tu, Q.; Deng, Y.; Qiu, Q.; Xiong, J. Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication. Chemosphere 2017, 177, 317–325. [Google Scholar] [CrossRef]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Aanyu, M.; Schrama, J.W.; Verreth, J.A.J. Size distribution in African catfish (Clarias gariepinus) affects feeding behaviour but not growth. Aquaculture 2005, 250, 300–307. [Google Scholar] [CrossRef]
- Alanärä, A.; Burns, M.D.; Metcalfe, N.B. Intraspecific resource partitioning in brown trout: The temporal distribution of foraging is determined by social rank. J. Anim. Ecol. 2001, 70, 980–986. [Google Scholar] [CrossRef]
- Galkanda-Arachchige, H.S.C.; Hussain, A.S.; Davis, D.A. Improvement in laboratory research: Effects of stocking density, variation and sample size on outcomes of growth studies with shrimp. Aquac. Res. 2021, 53, 843–850. [Google Scholar] [CrossRef]
- Rodríguez-Olague, D.; Ponce-Palafox, J.T.; Castillo-Vargasmachuca, S.G.; Arámbul-Muñoz, E.; de los Santos, R.C.; Esparza-Leal, H.M. Effect of nursery system and stocking density to produce juveniles of whiteleg shrimp Litopenaeus vannamei. Aquac. Rep. 2021, 20, 100709. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, Q. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis. Aquaculture 2006, 256, 608–616. [Google Scholar] [CrossRef]
- Besson, M.; Allal, F.; Chatain, B.; Vergnet, A.; Clota, F.; Vandeputte, M. Combining individual phenotypes of feed intake with genomic data to improve feed efficiency in sea bass. Front. Genet. 2019, 10, 219. [Google Scholar] [CrossRef]
- De Verdal, H.; Vandeputte, M.; Mekkawy, W.; Chatain, B.; Benzie, J.A. Quantifying the genetic parameters of feed efficiency in juvenile Nile tilapia Oreochromis niloticus. BMC Genet. 2018, 19, 105. [Google Scholar] [CrossRef]
- Yu, W.; Liu, J.; Yu, F.; Shen, Y.; Gong, S.; Lu, Y.; Peng, W.; Wang, Y.; Gan, Y.; Xiao, Q.; et al. Heritability and genetic correlation for residual feed intake of Pacific abalone Haliotis discus hannai. Aquaculture 2022, 553, 738060. [Google Scholar] [CrossRef]
- Kolstad, K.; Grisdale-Helland, B.; Gjerde, B. Family differences in feed efficiency in Atlantic salmon (Salmo salar). Aquaculture 2004, 241, 169–177. [Google Scholar] [CrossRef]
- Santana, M.H.A.; Oliveira, G.A.; Gomes, R.C.; Silva, S.L.; Leme, P.R.; Stella, T.R.; Mattos, E.C.; Rossi, P.; Baldi, F.S.; Eler, J.P.; et al. Genetic parameter estimates for feed efficiency and dry matter intake and their association with growth and carcass traits in Nellore cattle. Livest. Sci. 2014, 167, 80–85. [Google Scholar] [CrossRef]
- Henryon, M.; Jokumsen, A.; Berg, P.; Lund, I.; Pedersen, P.B.; Olesen, N.J.; Slierendrecht, W.J. Genetic variation for growth rate, feed conversion efficiency, and disease resistance exists within a farmed population of rainbow trout. Aquaculture 2002, 209, 59–76. [Google Scholar] [CrossRef]
- Chan, S.-M.; Rankin, S.M.; Keeley, L.L. Characterization of the molt stages in Penaeus vannamei: Setogenesis and hemolymph levels of total protein, ecdysteroids, and glucose. Biol. Bull. 1988, 175, 185–192. [Google Scholar] [CrossRef]
- Moss, D.R.; Moss, S.M. Effects of Gender and Size on Feed Acquisition in the Pacific White Shrimp Litopenaeus vannamei. J. World Aquac. Soc. 2006, 37, 161–167. [Google Scholar] [CrossRef]
- Bardera, G.; Usman, N.; Owen, M.; Pountney, D.; Sloman, K.A.; Alexander, M.E. The importance of behaviour in improving the production of shrimp in aquaculture. Rev. Aquac. 2019, 11, 1104–1132. [Google Scholar] [CrossRef]
- Molina, C.; Cadena, E.; Orellana, F. Alimentación de Camarones en Relación a la Actividad Enzimática Como una Respuesta Natural al Ritmo Circadiano y Ciclo de Muda. 2000. Available online: https://www.dspace.espol.edu.ec/xmlui/bitstream/handle/123456789/8784/20030813.pdf (accessed on 24 February 2023).
- Vega-Villasante, F.; Nolasco-Soria, H.; Civera-Cerecedo, R.; González-Valdés, R.; Oliva-Suárez, M. Alternativa para la alimentación del camarón en cultivo: El manejo de la muda. Avances en Nutrición Acuicola. 2000. Available online: https://nutricionacuicola.uanl.mx/index.php/acu/article/view/280/0 (accessed on 24 February 2023).
Ingredient (g/100 g) | Pellet Diet | Live Food |
---|---|---|
Proximate analysis | ||
Crude protein | 46.73 | 59.00 |
Crude lipid | 8.90 | 10.73 |
Moisture | 10.16 | 80.10 |
Essential amino acids | ||
Threonine | 1.52 | 1.74 |
Methionine | 0.82 | 0.88 |
Valine | 1.91 | 2.00 |
Isoleucine | 1.57 | 1.79 |
Leucine | 2.85 | 3.08 |
Phenylalanine | 1.67 | 1.92 |
Histidine | 0.99 | 0.97 |
Lysine | 2.72 | 3.57 |
Arginine | 2.18 | 2.90 |
Non-essential amino acids | ||
Aspartic acid | 3.44 | 4.62 |
Serine | 1.33 | 1.50 |
Glutamic acid | 5.30 | 6.83 |
Glycine | 2.33 | 2.54 |
Alanine | 2.32 | 4.00 |
Cysteine | 0.32 | 0.39 |
Tyrosine | 1.04 | 1.40 |
Proline | 1.87 | 2.88 |
TAA | 34.16 | 43.01 |
EAA | 16.22 | 18.86 |
NEAA | 17.94 | 24.15 |
EAA/TAA | 47.49 | 43.85 |
NEAA/TAA | 52.51 | 56.15 |
Fatty acids (% fatty acids) | ||
C14:0 | 0.02 | 0.30 |
C16:0 | 1.89 | 1.64 |
C16:1n7 | 0.13 | 0.28 |
C18:0 | 0.57 | 0.44 |
C18:1n9 | 0.92 | 0.96 |
C18:2n6 | 1.27 | 1.22 |
C18:3n3 | 0.09 | 0.15 |
C20:4n6 | 0.22 | 0.07 |
C20:5n3 (DHA) | 0.18 | 0.44 |
C22:1n9 | 0.02 | 0.02 |
C22:6n3 (EPA) | 0.03 | 0.62 |
∑SFA | 2.47 | 2.37 |
∑MUFA | 1.05 | 1.23 |
∑PUFA | 1.35 | 1.36 |
∑HUFA | 0.42 | 1.13 |
DHA + EPA | 0.21 | 1.06 |
N | NF | F | |
---|---|---|---|
IBW/g | 2.17 ± 0.14 | 2.11 ± 0.15 | 2.21 ± 0.24 |
FBW/g | 4.20 ± 0.43 a | 4.20 ± 0.42 a | 3.18 ± 0.41 b |
WG/% | 93.96 ± 14.35 a | 98.20 ± 9.86 a | 45.51 ± 18.43 b |
SGR %/day | 2.27 ± 0.25 a | 2.35 ± 0.17 a | 1.26 ± 0.43 b |
FER | 0.13 ± 0.02 a | 0.28 ± 0.06 b | 0.20 ± 0.05 c |
PER | 0.98 ± 0.17 a | 1.06 ± 0.22 a | 0.44 ± 0.12 b |
FC/% | 42.46 ± 2.37 | 41.70 ± 1.78 | 41.22 ± 1.51 |
SR/% | 100.00 a | 100.00 a | 85.00 b |
3MR/% | 100.00 a | 100.00 a | 57.89 b |
Digestive Enzyme | Groups | ||
---|---|---|---|
N | NF | F | |
ASM (U/g prot) | 0.83 ± 0.08 a | 0.76 ± 0.02 a | 0.70 ± 0.05 b |
Trypsin (U/mg prot) | 117.63 ± 46.13 a | 85.52 ± 10.01 b | 78.79 ± 2.93 c |
Lipase (U/g prot) | 88.96 ± 14.35 a | 83.20 ± 9.86 a | 60.18 ± 8.43 b |
Immunity Enzyme | Groups | ||
---|---|---|---|
N | NF | F | |
AKP (U/g prot) | 0.31 ± 0.09 a | 0.37 ± 0.14 a | 0.20 ± 0.07 b |
PO (ng/mL) | 17.35 ± 1.27 a | 17.09 ± 1.16 a | 14.45 ± 0.85 b |
LZM (U/mg prot) | 19.02 ± 3.32 | 18.37 ± 1.26 | 18.36 ± 8.46 |
T-SOD (U/mg prot) | 188.95 ± 49.07 a | 121.87 ± 12.56 b | 87.31 ± 2.52 c |
CAT (U/mg prot) | 13.33 ± 13.87 a | 8.15 ± 7.76 b | 8.78 ± 9.35 b |
GSH-Px (U/mg prot) | 244.48 ± 51.56 a | 143.47 ± 48.36 b | 119.81 ± 33.43 c |
GSH (U/mg prot) | 405.59 ± 153.84 a | 501.94 ± 112.20 a | 155.74 ± 39.43 b |
MDA (U/mg prot) | 16.63 ± 7.96 | 23.07 ± 9.97 | 14.86 ± 7.81 |
Items (%) | N | NF | F |
---|---|---|---|
ASV Number | 110–185 | 38–220 | 44–192 |
Shannon | 1.97 ± 0.82 | 1.74 ± 1.03 | 2.07 ± 0.93 |
Chao1 | 136.25 ± 40.95 | 121.72 ± 92.74 | 138.98 ± 84.50 |
Simpson | 0.48 ± 0.22 | 0.47 ± 0.27 | 0.55 ± 0.24 |
Items | N | NF | F |
---|---|---|---|
Number of nodes | 181 | 113 | 111 |
Number of edges | 4755 | 2897 | 1727 |
Positive correlation number | 4662 | 2862 | 1669 |
Negative correlation number | 93 | 35 | 58 |
Average degree | 52.54 | 51.27 | 31.11 |
Network density | 0.29 | 0.45 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Ai, C.; Cheng, W.; Huang, H.; Hou, Y.; Deng, X.; Li, S.; Liu, Y.; Xu, P.; Mao, Y. Impact of Dietary Variations on Kuruma Shrimp (Penaeus japonicus) Assessed through Individual-Based Rearing and Insights into Individual Differences. Animals 2024, 14, 2267. https://doi.org/10.3390/ani14152267
Chen C, Ai C, Cheng W, Huang H, Hou Y, Deng X, Li S, Liu Y, Xu P, Mao Y. Impact of Dietary Variations on Kuruma Shrimp (Penaeus japonicus) Assessed through Individual-Based Rearing and Insights into Individual Differences. Animals. 2024; 14(15):2267. https://doi.org/10.3390/ani14152267
Chicago/Turabian StyleChen, Chuanxi, Chunxiang Ai, Wenzhi Cheng, Huiyang Huang, Yiling Hou, Xiaojie Deng, Siqi Li, Yue Liu, Peng Xu, and Yong Mao. 2024. "Impact of Dietary Variations on Kuruma Shrimp (Penaeus japonicus) Assessed through Individual-Based Rearing and Insights into Individual Differences" Animals 14, no. 15: 2267. https://doi.org/10.3390/ani14152267
APA StyleChen, C., Ai, C., Cheng, W., Huang, H., Hou, Y., Deng, X., Li, S., Liu, Y., Xu, P., & Mao, Y. (2024). Impact of Dietary Variations on Kuruma Shrimp (Penaeus japonicus) Assessed through Individual-Based Rearing and Insights into Individual Differences. Animals, 14(15), 2267. https://doi.org/10.3390/ani14152267