Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle (Mauremys sinensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet Preparation
2.2. Experimental Animals and Feeding Management
2.3. Sample Collection and Preparation
2.4. Growth Target
2.5. Proximate Composition Analysis
2.6. Histological Analysis
2.7. Biochemical Determination
2.8. Gene Expression Measurement
2.9. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Muscle Composition
3.3. Physiological and Biochemical Index Analysis
3.4. Liver Histology
3.5. Antioxidant Enzyme Activity
3.6. Expression Levels of Inflammation, Antioxidants, and Apoptosis-Related Genes
3.6.1. Expression of Inflammation Genes
3.6.2. Expression of Antioxidant-Related Genes
3.6.3. Expression of Apoptosis-Related Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, L.; Lei, J.H.; Zhai, X.F.; Shi, H.T.; Wang, J.T. Chinese striped-neck turtles vocalize underwater and show differences in peak frequency among different age and sex groups. PeerJ 2023, 11, e14628. [Google Scholar] [CrossRef]
- Huang, Z.B.; Liang, L.Y.; Li, N.; Li, W.H.; Yu, Z.Y.; Zhang, J.L.; Shi, H.T.; Ding, L.; Hong, M.L. Ammonia exposure induces endoplasmic reticulum stress and apoptosis in chinese striped-necked turtle (Mauremys sinensis). Aquat. Toxicol. 2021, 237, 105903. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.Y.; Huang, Z.B.; Li, N.; Wang, D.M.; Ding, L.; Shi, H.T.; Hong, M.L. Effects of ammonia exposure on antioxidant function, immune response and NF-κB pathway in chinese strip-necked turtle (Mauremys sinensis). Aquat. Toxicol. 2020, 229, 105621. [Google Scholar] [CrossRef]
- Li, P.; Rao, D.; Wang, L. Mauremys sinensis. In The IUCN Red List of Threatened Species; International Association for Conservation of Nature: Cambridge, UK, 2021; p. e.T15026A547319. [Google Scholar] [CrossRef]
- Wu, X.; Ijaz, K.; Ai, X.Q.; Zhang, J.L.; Shi, H.T.; Ding, L.; Hong, M.L. Effects of butyl paraben on behavior and molecular mechanism of Chinese striped-necked turtle (Mauremys sinensis). Aquat. Toxicol. 2024, 268, 106841. [Google Scholar] [CrossRef]
- Blasio, L.D.; Santoro, R.; Ferri, V.; Battisti, C.; Soccini, C.; Egidi, A.; Scalici, M. First successful reproduction of the chinese striped-necked turtle Mauremys sinensis (Gray, 1834) in a European wetland. BioInvasions Rec. 2021, 10, 721–729. [Google Scholar] [CrossRef]
- Ijaz, K.; Huang, Z.B.; Liang, L.Y.; Li, N.; Ali, Z.; Ding, L.; Hong, M.L.; Shi, H.T. Ammonia stress influences intestinal histomorphology, immune status and microbiota of chinese striped-neck turtle (Mauremys sinensis). Ecotoxicol. Environ. Saf. 2021, 222, 112471. [Google Scholar]
- Yin, Y.R.; Xie, Z.Z.; Sun, X.; Wu, X.; Zhang, J.L.; Shi, H.T.; Ding, L.; Hong, M.L. Effect of butyl paraben on oxidative stress in the liver of Mauremys sinensis. Toxics 2023, 11, 915. [Google Scholar] [CrossRef]
- Chen, T.H.; Lue, K.Y. Population status and distribution of freshwater turtles in Taiwan. Oryx 2010, 44, 261–266. [Google Scholar] [CrossRef]
- Wang, Z.T.; Akamatsu, T.; Duan, P.X.; Zhou, L.; Yuan, J.; Li, J.; Lei, P.Y.; Chen, Y.W.; Yang, Y.N.; Wang, K.X.; et al. Underwater noise pollution in China’s Yangtze River criticallyendangers Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientalis). Environ. Pollut. 2020, 262, 114310. [Google Scholar] [CrossRef]
- Ding, L.; Li, J.Y.; Xue, S.; Shi, H.T.; Hong, M.L. Effects of partial or total replacement of fish oil by soybean oil on intestinal morphology and microbiota structure of chinese striped-neck turtle (Mauremys sinensis). Chin. J. Anim. Nutr. 2017, 29, 1940–1948. [Google Scholar]
- Qiu, Z.Y.; Sheng, C.; Hong, M.L.; Shi, H.T. Effects of partial replacement of fish oil by soy bean oil on serve lipid metabolism and related enzyme activities in chinese strip-necked turtle Mauremys sinensis. Fish. Sci. 2015, 34, 453–458. [Google Scholar]
- Sheng, C.; Qiu, Z.Y.; Hong, M.L.; Shi, H.T. Effects of dietary lipid on fatty acid composition of different tissues in chinese strip-necked turtle Mauremys sinensis. Fish. Sci. 2017, 36, 341–346. [Google Scholar]
- Xu, J.; Xie, S.W.; Chi, S.Y.; Zhang, S.; Cao, J.M.; Tan, B.P. Short-term dietary antibiotics altered the intestinal microbiota and improved the lipid metabolism in hybrid grouper fed medium and high-lipid diets. Aquaculture 2022, 547, 737453. [Google Scholar] [CrossRef]
- Li, S.L.; Li, Z.Q.; Chen, N.S.; Jin, P.F.; Zhang, J.C. Dietary lipid and carbohydrate interactions: Implications on growth performance, feed utilization and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Aquaculture 2019, 498, 568–577. [Google Scholar] [CrossRef]
- Chen, L.G.; Chen, X.W.; Huang, X.; Song, B.L.; Wang, Y.; Wang, Y.G. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 2019, 62, 1420–1458. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.Y.; Su, N.N.; Wu, J.H.; Xu, M.L.; Sun, Z.Z.; Liu, Q.Y.; Chen, L.L.; Zhou, Y.Y.; Wang, A.L.; Ye, C.X. Dietary Radix Bupleuri extracts improves hepatic lipid accumulation and immune response of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀). Fish Shellfish. Immun. 2019, 88, 496–507. [Google Scholar] [CrossRef]
- Zhong, Y.W.; Pan, Y.X.; Liu, L.; Li, H.H.; Li, Y.L.; Jian Jiang, J.; Xiang, J.; Zhang, J.S.; Chu, W.Y. Effects of high fat diet on lipid accumulation, oxidative stress and autophagy in the liver of Chinese softshell turtle (Pelodiscus sinensis). Comp. Biochem. Phys. B 2020, 240, 110331. [Google Scholar] [CrossRef]
- Zhou, J.S.; Chen, H.J.; Ji, H.; Shi, X.C.; Li, X.X.; Chen, L.Q.; Du, Z.Y.; Yu, H.B. Effect of dietary bile acids on growth, body composition, lipid metabolism and microbiota in grass carp (Ctenopharyngodon idella). Aquacult. Nutr. 2017, 24, 802–813. [Google Scholar] [CrossRef]
- Yin, P.; Xie, S.W.; Zhuang, Z.X.; He, X.S.; Tang, X.P.; Tian, L.X.; Liu, Y.J.; Niu, J. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (Micropterus salmoides). Aquaculture 2021, 531, 735864. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Liu, W.B.; Zhou, M.; Dai, Y.J.; Xu, C.; Tian, H.Y.; Xu, W.N. Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat dietary in blunt snout bream Megalobrama amblycephala. Fish Shellfish Immun. 2016, 55, 165–172. [Google Scholar] [CrossRef]
- Jin, M.; Pan, T.T.; Cheng, X.; Zhu, T.T.; Sun, P.; Zhou, F.; Ding, X.Y.; Zhou, Q.C. Effects of supplemental dietary L-carnitine and bile acids on growth performance, antioxidant and immune ability, histopathological changes and inflammatory response in juvenile black seabream (Acanthopagrus schlegelii) fed high-fat diet. Aquaculture 2019, 504, 199–209. [Google Scholar] [CrossRef]
- Liao, Z.B.; Sun, B.; Zhang, Q.G.; Jia, L.L.; Wei, Y.L.; Liang, M.Q.; Xu, H.G. Dietary bile acids regulate the hepatic lipid homeostasis in tiger puffer fed normal or high-lipid diets. Aquaculture 2020, 519, 734935. [Google Scholar] [CrossRef]
- Xu, J.R.; Zheng, P.H.; Zhang, X.X.; Li, J.T.; Chen, H.Q.; Zhang, Z.L.; Hao, C.G.; Cao, Y.L.; Xian, J.A.; Lu, Y.P.; et al. Effects of Elephantopus scaber extract on growth, proximate composition, immunity, intestinal microbiota and resistance of the GIFT strain of Nile tilapia Oreochromis niloticus to Streptococcus agalactiae. Fish Shellfish Immun. 2022, 127, 280–294. [Google Scholar] [CrossRef]
- Li, J.T.; Zhao, Y.H.; Lv, Y.; Su, X.; Mei, W.L.; Lu, Y.P.; Zheng, P.H.; Zhang, Z.L.; Zhang, X.X.; Chen, H.Q.; et al. Evaluating the antioxidant properties of the leaves and stems of Alpinia oxyphylla in vitro and its growth-promoting, muscle composition change, and antioxidative stress function on juvenile Litopenaeus vannamei. Antioxidants 2023, 12, 1802. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.P.; Zheng, P.H.; Zhang, Z.L.; Li, J.T.; Li, J.J.; Li, T.; Wang, X.; Xu, J.R.; Wang, D.M.; Xian, J.A.; et al. Effects of dietary Radix bupleuri root extract on the growth, muscle composition, histology, immune responses and microcystin-LR stress resistance of juvenile red claw crayfish (Cherax quadricarinatus). Aquacult. Rep. 2023, 33, 101822. [Google Scholar] [CrossRef]
- Vargas, R.; Vásquez, I.C. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish. Fish Physiol. Biochem. 2017, 43, 1761–1773. [Google Scholar] [CrossRef]
- Xie, R.T.; Amenyogbe, E.; Chen, G.; Huang, J.S. Effects of feed fat level on growth performance, body composition and serum biochemical indices of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus polyphekadion). Aquaculture 2021, 530, 735813. [Google Scholar] [CrossRef]
- Boujard, T.; Gélineau, A.; Covès, D.; Corraze, G.; Dutto, G.; Gasset, E.; Kaushik, S. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 2004, 231, 529–545. [Google Scholar] [CrossRef]
- Panserat, S.; Cabanot, S.D.; Juan, E.P.; Srivastava, P.P.; Kolditz, C.; Piumi, F.; Esquerré, D.; Kaushik, S. Dietary fat level modifies the expression of hepatic genes in juvenile rainbow trout (Oncorhynchus mykiss) as revealed by microarray analysis. Aquaculture 2008, 275, 235–241. [Google Scholar] [CrossRef]
- Ding, T.; Xu, N.; Liu, Y.T.; Du, J.L.; Xiang, X.J.; Xu, D.; Liu, Q.D.; Yin, Z.Y.; Li, J.B.; Mai, K.S.; et al. Effect of dietary bile acid (BA) on the growth performance, body composition, antioxidant responses and expression of lipid metabolism-related genes of juvenile large yellow croaker (Larimichthys crocea) fed high-lipid diets. Aquaculture 2020, 518, 734768. [Google Scholar] [CrossRef]
- Rahimnejad, S.; Bang, I.C.; Park, J.Y.; Sade, A.; Choi, J.; Lee, S.M. Effects of dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile hybrid grouper, Epinephelus fuscoguttatus × E. lanceolatus. Aquaculture 2015, 446, 283–289. [Google Scholar] [CrossRef]
- Li, A.X.; Yuan, X.Y.; Liang, X.F.; Liu, L.W.; Li, J.; Li, B.; Fang, J.G.; Li, J.; He, S.; Xue, M.; et al. Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus). Aquaculture 2016, 457, 43–49. [Google Scholar] [CrossRef]
- Lowe, M.E. The triglyceride lipases of the pancreas. J. Lipid Res. 2002, 43, 2007–2016. [Google Scholar] [CrossRef]
- Zhang, B.H.; Yin, F.; Qiao, Y.N.; Guo, S.D. Triglyceride and triglyceride-rich lipoproteins in atherosclerosis. Front. Mol. Biosci. 2022, 9, 909151. [Google Scholar] [CrossRef]
- Li, T.J.; Guo, W.; Zhou, Z.X. Adipose triglyceride lipase in hepatic physiology and pathophysiology. Biomolecules 2022, 12, 57. [Google Scholar] [CrossRef]
- Kjær, M.A.; Vegusdal, A.; Berge, G.M.; Galloway, T.F.; Hillestad, M.; Krogdahl, A.; Holm, H.; Ruyter, B. Characterisation of lipid transport in Atlantic cod (Gadus morhua) when fasted and fed high or low fat diets. Aquaculture 2009, 288, 325–336. [Google Scholar] [CrossRef]
- Adjoumani, J.J.Y.; Wang, K.Z.; Zhou, M.; Liu, W.B.; Zhang, D.D. Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet. Fish Physiol. Biochem. 2017, 43, 1733–1745. [Google Scholar] [CrossRef]
- Browning, J.D.; Szczepaniak, L.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 2004, 40, 1387–1395. [Google Scholar] [CrossRef]
- Ellis, T.; Yildiz, H.Y.; Olmeda, J.L.; Spedicato, M.T.; Tort, L.; Øverli, Ø.; Martins, C.I.M. Cortisol and finfish welfare. Fish Physiol. Biochem. 2012, 38, 163–188. [Google Scholar] [CrossRef]
- Borges, P.; Oliveira, B.; Casal, S.; Dias, J.; Conceição, L.; Valente, L.M.P. Dietary lipid level affects growth performance and nutrient utilisation of Senegalese sole (Solea senegalensis) juveniles. Brit. J. Nutr. 2009, 102, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG clinical guideline: Evaluation of abnormal liver Chemistries. Am. J. Gastroenterol. 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Kumar, V.; Yang, G.; Kajbaf, K.; Rubio, M.B.; Overturf, K.; Brezas, A.; Hardy, R. Bile acid metabolism in fish: Disturbances caused by fishmeal alternatives and some mitigating effects from dietary bile inclusions. Rev. Aquacult. 2020, 12, 1792–1817. [Google Scholar] [CrossRef]
- Huang, Q.L.; Tan, X.Y.; Wu, Q.M.; Zhao, H.Q.; Chen, H.J.; Yu, X.X.; Wang, J.T.; Huang, X.Y.; Huang, Y.R.; Wei, J.; et al. Lipid accumulation product is a valid predictor of hepatic steatosis and nonalcoholic fatty liver disease. Biomark. Med. 2024, 18, 123–135. [Google Scholar] [CrossRef]
- Walther, T.C.; Farese, R.V., Jr. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 2012, 81, 687–714. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Cohen, D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2019, 8, 1–8. [Google Scholar]
- Tan, X.H.; Sun, Z.Z.; Chen, S.; Chen, S.L.; Huang, Z.; Zhou, C.P.; Zou, C.Y.; Liu, Q.Y.; Ye, H.Q.; Lin, H.Z.; et al. Effects of dietary dandelion extracts on growth performance, body composition, plasma biochemical parameters, immune responses and disease resistance of juvenile golden pompano Trachinotus ovatus. Fish Shellfish Immun. 2017, 66, 198–206. [Google Scholar] [CrossRef]
- Zheng, X.J.; Huang, F.J.; Zhao, A.H.; Lei, S.; Zhang, Y.J.; Xie, G.X.; Chen, T.L.; Qu, C.; Rajani, C.; Dong, B.; et al. Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biol. 2017, 15, 120. [Google Scholar] [CrossRef]
- Wu, N.; Song, Y.L.; Wang, B.; Zhang, X.Y.; Zhang, X.J.; Wang, Y.L.; Cheng, Y.Y.; Chen, D.D.; Xia, X.L.; Lu, Y.S.; et al. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies. Sci. Rep. 2016, 6, 36048. [Google Scholar] [CrossRef]
- Seibel, H.; Baßmann, B.; Rebl, A. Blood will tell: What hematological analyses can reveal about fish welfare. Fron. Vet. Sci. 2021, 8, 616955. [Google Scholar] [CrossRef]
- Lu, Y.P.; Zheng, P.H.; Zhang, X.X.; Wang, L.; Li, J.T.; Zhang, Z.L.; Xu, J.R.; Cao, Y.L.; Xian, J.A.; Wang, A.L.; et al. Effects of dietary trehalose on growth, trehalose content, non-specific immunity, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). Fish Shellfish. Immun. 2021, 119, 524–532. [Google Scholar] [CrossRef]
- Dai, Y.J.; Cao, X.F.; Zhang, D.D.; Li, X.F.; Liu, W.B.; Jiang, G.Z. Chronic inflammation is a key to inducing liver injury in blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. Dev. Comp. Immunol. 2019, 97, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.L.; Zhou, Y.L.; Zhao, H.; Chen, W.Y.; Chen, Y.J.; Lin, S.M. Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides. Aquaculture 2019, 506, 394–400. [Google Scholar] [CrossRef]
- Tang, T.; Hu, Y.; Peng, M.; Chu, W.Y.; Hu, Y.J.; Zhong, L. Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella). Comp. Biochem. Phys. B 2019, 234, 34–40. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Zheng, Y.Y.; He, T.P.; Guo, H.G.; Li, J.B.; Zhang, J.J. Establishment of a non-alcoholic fatty liver disease model by high fat diet in adult zebrafish. Anim. Models Exp. Med. 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.L.; Wang, L.N.; Zhang, D.D.; Liu, W.B.; Xu, W.N. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Physiol. Biochem. 2017, 43, 65–76. [Google Scholar] [CrossRef]
- Liu, Y.K.; Zhou, X.X.; Liu, B.; Gao, Q.; Sun, C.X.; Zhou, Q.L.; Zheng, X.C.; Liu, B. Effects of high fat in the diet on growth, antioxidant, immunity and fat deposition of Macrobrachium rosenbergii post-larvae. Fish Shellfish Immun. 2022, 129, 13–21. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Feng, L.; Jiang, W.D.; Kuang, S.Y.; Jiang, J.; Li, S.H.; Tang, L.; Zhou, X.Q. Effects of dietary arginine supplementation on growth performance, flesh quality, muscle antioxidant capacity and antioxidant-related signalling molecule expression in young grass carp (Ctenopharyngodon idella). Food Chem. 2015, 167, 91–99. [Google Scholar] [CrossRef]
- Tan, X.H.; Sun, Z.Z.; Liu, Q.Y.; Ye, H.Q.; Zou, C.Y.; Ye, C.X.; Wang, A.L.; Lin, H.Z. Effects of dietary ginkgo biloba leaf extract on growth performance, plasma biochemical parameters, fish composition, immune responses, liver histology, and immune and apoptosis-related genes expression of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) fed high lipid diets. Fish Shellfish Immun. 2018, 72, 399–409. [Google Scholar]
- Chen, L.; Feng, L.; Jiang, W.D.; Jiang, J.J.; Wu, P.; Zhao, J.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. Fish Shellfish Immun. 2015, 47, 470–484. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, L.; Liu, Y.; Jiang, W.J.; Wu, P.; Jiang, J.; Zhang, Y.Z.; Zhou, X.Q. Effect of dietary isoleucine on the immunity, antioxidant status, tight junctions and microflora in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immun. 2014, 41, 663–673. [Google Scholar] [CrossRef]
- Nepal, D.; Gazeley, D. Role of IL-6 and IL-6 targeted therapy in systemic lupus erythematosus. Rheumatology 2023, 62, 3804–3810. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Chi, C.; Kim, H.J.; Yun, S.; Park, S.C.; Sukumaran, V. Effect of guava leaves on the growth performance and cytokine gene expression of Labeo rohita and its susceptibility to Aeromonas hydrophila infection. Fish Shellfish Immun. 2015, 46, 217–224. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, I.C. Induction of TNF-α by Filifactor alocis in THP-1 macrophagic cells. Arch. Oral Biol. 2023, 155, 105806. [Google Scholar] [CrossRef]
- Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 family cytokines in cancer and immunotherapy. Cancers 2021, 13, 167. [Google Scholar] [CrossRef]
- Dan, X.M.; Zhang, T.W.; Li, Y.W.; Li, A.X. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans Vaccine. Fish Shellfish Immun. 2013, 34, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Rymuszka, A.; Adaszek, Ł. Pro- and anti-inflammatory cytokine expression in carp blood and head kidney leukocytes exposed to cyanotoxin stress—An in vitro study. Fish Shellfish Immun. 2012, 33, 382–388. [Google Scholar] [CrossRef]
- Hooper, L.V.; Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Z.; Liu, Y.; Jiang, J.; Wu, P.; Jiang, W.D.; Li, S.H.; Tang, L.; Kuang, S.Y.; Feng, L.; Zhou, X.Q. Effects of dietary isoleucine on the immune response, antioxidant status and gene expression in the head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immun. 2013, 35, 572–580. [Google Scholar] [CrossRef]
- Jiang, J.H.; Chen, Y.H.; Yu, R.X.; Zhao, X.P.; Wang, Q.; Cai, L.M. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis and immunotoxicity during zebrafish embryo development. Environ. Toxicol. Phar. 2016, 42, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.Z.; Han, F.; Xu, Y.H.; Shi, Y.X. Molecular mechanisms of IRE1α-ASK1 pathway reactions to unfolded protein response in DRN neurons of post-traumatic stress disorder rats. J. Mol. Neurosci. 2017, 61, 531–541. [Google Scholar] [CrossRef]
- Russo, A.; Cardile, V.; Graziano, A.C.E.; Avola, R.; Bruno, M.; Rigano, D. Involvement of Bax and Bcl-2 in induction of apoptosis by essential oils of three lebanese Salvia species in human prostate cancer cells. Int. J. Mol. Sci. 2018, 19, 292. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Ye, C.X.; Guo, Z.X.; Wang, A.L. Immune and physiological responses of pufferfish (Takifugu obscurus) under cold stress. Fish Shellfish Immun. 2017, 64, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ausman, L.M.; Russell, R.M.; Greenberg, A.S.; Wang, X.D. Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax. J. Nutr. 2008, 138, 1866–1871. [Google Scholar] [CrossRef]
Items | Group | |||||
---|---|---|---|---|---|---|
CG | HF-1 | HF-2 | HF-3 | HF-4 | HF-5 | |
Fish meal | 424.0 | 424.0 | 424.0 | 424.0 | 424.0 | 424.0 |
Soybean meal | 170.0 | 170.0 | 170.0 | 170.0 | 170.0 | 170.0 |
Wheat flour | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 |
Gluten | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
Fish oil | 10.0 | 35.0 | 60.0 | 85.0 | 110.0 | 135.0 |
Choline chloride | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Calcium dihydrogen phosphate | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Vitamin premix a | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Mineral premix b | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Sodium carboxymethyl cellulose | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Antioxidant | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Phagostimulant | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin C ester | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Microcrystalline cellulose | 135.0 | 110.0 | 85.0 | 60.0 | 35.0 | 10.0 |
Total | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 | 1000.0 |
Nutrient levels c (%) | ||||||
Crude protein | 37.63 | 37.48 | 37.54 | 37.37 | 37.40 | 37.34 |
Crude lipid | 6.74 | 9.08 | 11.32 | 13.56 | 15.99 | 18.07 |
Ash | 12.53 | 12.34 | 12.22 | 12.04 | 11.96 | 11.83 |
Moisture | 8.33 | 8.25 | 8.44 | 8.39 | 8.56 | 8.39 |
Energy (MJ kg−1) | 17.42 | 17.77 | 18.03 | 18.34 | 18.67 | 18.91 |
Target Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | Genbank Number | Primer Efficiency (%) |
---|---|---|---|---|
Bcl-2 | ATCCAAGACAACGGAGGCTG | CAGATAAGCGCCAAGGGTGA | XM_034762099.1 | 98.04 |
Caspase-3 | GGACTGCAATCAGGTCAAGA | CTGGCTGTATTCCAGAGTCC | XM_024194340.1 | 96.65 |
BAX | ATCAACGTCTTCGTGGGGTC | ATGATGAGCTGGGTGTCGAA | XM_034792450.1 | 93.46 |
mn-sod | GGGTCACATCAACCACACCA | AAAGGAGCCAAAGTCACGCT | XM_034765292.1 | 98.04 |
cat | GGCATTGAACCTAGCCCTGA | GTCCTAAACGGTGTCGGTGA | XM_034769697.1 | 94.46 |
gsh-px | TCCCTATAGACCGGTCCTGC | TCCCCTGAGATTTCCCCTGT | XM_005295795.5 | 93.07 |
IFN-γ | CCCGGCTACAAGTAAATCGC | GCTTTCAGTTAGGCTGTCGTTC | XM_034754901.1 | 92.44 |
TNF-α | TCCATTCCTCTCCGGCATAC | AGATGGACTCGAACCACACC | XM_008176809.1 | 99.95 |
TGF-β1 | GTCGCTCTACAACAGCACCC | TGCACCTCCTTGGCGT | XM_005310533.2 | 93.30 |
IL-6 | CCTCCCCAAGATCACAGAGG | CTGGAGATTCCGCTCAAGCA | XM_008170880.2 | 94.86 |
IL-10 | TGCTGGACCTGAAGCAGACA | ATGGTTTGGTTCCTCTTCTCGC | XM_034769759.1 | 92.28 |
IL-12 | AGCAAGTCAGAAGCAAGAGG | ATAATCTGCCTTGGGGAGGAC | XM_005300109.2 | 99.08 |
β-actin | GCACCCTGTGCTGCTTACA | CACAGTGTGGGTGACACCAT | XM_039490283.1 | 98.16 |
CG (1%) | HF-1 (3.5%) | HF-2 (6%) | HF-3 (8.5%) | HF-4 (11%) | HF-5 (13.5%) | |
---|---|---|---|---|---|---|
IW/g | 65.32 ± 0.53 | 65.44 ± 0.35 | 64.78 ± 0.30 | 65.29 ± 0.33 | 65.60 ± 0.32 | 65.50 ± 0.43 |
FW/g | 102.99 ± 0.98 a | 113.59 ± 0.76 b | 119.08 ± 0.50 c | 127.45 ± 0.52 d | 119.40 ± 0.35 c | 118.28 ± 0.99 c |
SR % | 100 | 100 | 100 | 100 | 100 | 100 |
WGR % | 57.69 ± 2.21 a | 73.59 ± 0.41 b | 83.83 ± 1.23 c | 95.22 ± 0.73 d | 82.03 ± 0.54 c | 80.59 ± 1.25 c |
SGR % | 0.65 ± 0.020 a | 0.79 ± 0.003 b | 0.87 ± 0.010 c | 0.96 ± 0.005 d | 0.86 ± 0.004 c | 0.84 ± 0.010 c |
FCR | 1.82 ± 0.026 e | 1.62 ± 0.015 d | 1.51 ± 0.017 b | 1.45 ± 0.009 a | 1.56 ± 0.006 bc | 1.59 ± 0.024 cd |
HSI % | 8.37 ± 0.38 a | 9.05 ± 0.34 ab | 9.16 ± 0.41 ab | 9.76 ± 0.21 bc | 10.44 ± 0.17 c | 9.78 ± 0.16 bc |
VSI % | 19.26 ± 0.69 a | 20.36 ± 0.49 a | 22.83 ± 0.41 b | 22.94 ± 0.16 b | 23.83 ± 1.43 b | 23.16 ± 0.17 b |
Group | Moisture, % | Ash, % | Crude Protein, % | Crude Lipid, % |
---|---|---|---|---|
CG (1%) | 80.79 ± 0.51 | 6.87 ± 0.37 ab | 81.75 ± 0.60 c | 8.23 ± 0.50 a |
HF-1 (3.5%) | 80.49 ± 0.23 | 7.2 ± 0.13 b | 81.36 ± 1.20 bc | 9.12 ± 0.32 ab |
HF-2 (6%) | 79.9 ± 0.45 | 6.82 ± 0.40 ab | 80.81 ± 0.37 abc | 9.73 ± 0.34 bc |
HF-3 (8.5%) | 80.75 ± 0.15 | 6.69 ± 0.23 ab | 79.51 ± 0.19 ab | 10.51 ± 0.45 c |
HF-4 (11%) | 80.52 ± 0.22 | 6.59 ± 0.20 ab | 79.09 ± 0.44 a | 11.94 ± 0.16 d |
HF-5 (13.5%) | 80.86 ± 0.34 | 6.33 ± 0.16 a | 79.31 ± 0.35 a | 11.81 ± 0.18 d |
CG (1%) | HF-1 (3.5%) | HF-2 (6%) | HF-3 (8.5%) | HF-4 (11%) | HF-5 (13.5%) | |
---|---|---|---|---|---|---|
Blood lipid | - | - | - | - | - | - |
TG (mmol/L) | 1.88 ± 0.09 a | 4.94 ± 0.52 bc | 4.15 ± 0.03 b | 5.79 ± 0.02 cd | 6.30 ± 0.50 d | 6.39 ± 0.32 d |
TC (mmol/L) | 3.74 ± 0.10 a | 3.82 ± 0.03 a | 4.14 ± 0.03 a | 4.81 ± 0.38 b | 5.16 ± 0.07 b | 5.28 ± 0.17 b |
HDL (mmol/L) | 1.52 ± 0.02 c | 1.46 ± 0.14 c | 1.38 ± 0.11 c | 1.14 ± 0.03 b | 0.86 ± 0.01 a | 1.01 ± 0.03 ab |
LDL (mmol/L) | 1.70 ± 0.04 ab | 1.55 ± 0.02 a | 1.74 ± 0.02 b | 1.99 ± 0.12 c | 2.21 ± 0.04 d | 2.24 ± 0.02 d |
Blood glucose | - | - | - | - | - | - |
GLU (mmol/L) | 3.57 ± 0.09 a | 3.70 ± 0.15 ab | 4.07 ± 0.15 cd | 4.33 ± 0.03 d | 4.00 ± 0.06 bc | 3.73 ± 0.03 ab |
Liver function | - | - | - | - | - | - |
ALT (U/L) | 4.03 ± 0.04 a | 5.11 ± 2.01 a | 5.67 ± 0.33 ab | 6.14 ± 0.3 ab | 8.25 ± 0.58 bc | 10.33 ± 0.33 c |
AST (U/L) | 65.00 ± 0.58 ab | 58.33 ± 0.67 a | 77.00 ± 8.08 b | 94.33 ± 0.88 c | 92.33 ± 3.28 c | 94.67 ± 4.33 c |
TP (g/L) | 21.93 ± 0.24 c | 20.6 ± 0.23 b | 22.47 ± 0.24 c | 29.77 ± 0.63 d | 19.90 ± 0.10 b | 15.97 ± 0.03 a |
ALB (g/L) | 8.37 ± 0.07 e | 7.53 ± 0.09 c | 8.07 ± 0.13 d | 10.83 ± 0.07 f | 7.10 ± 0.01 b | 5.67 ± 0.03 a |
GLO (μmol/L) | 13.57 ± 0.18 bc | 13.07 ± 0.15 b | 14.40 ± 0.12 c | 18.93 ± 0.62 d | 12.80 ± 0.10 b | 10.30 ± 0.06 a |
TBIL (μmol/L) | 0.80 ± 0.30 | 0.67 ± 0.22 | 0.83 ± 0.22 | 1.17 ± 0.07 | 0.77 ± 0.27 | 0.80 ± 0.31 |
DBIL (μmol/L) | 0.10 ± 0.01 a | 0.20 ± 0.06 ab | 0.23 ± 0.07 ab | 0.27 ± 0.07 b | 0.30 ± 0.06 b | 0.33 ± 0.07 b |
I-BIL (/L) | 0.70 ± 0.30 | 0.47 ± 0.27 | 0.57 ± 0.19 | 0.87 ± 0.09 | 0.43 ± 0.23 | 0.57 ± 0.24 |
r-GT (U/L) | 1.67 ± 0.88 a | 2.00 ± 0.58 a | 4.67 ± 1.67 ab | 7.33 ± 0.88 bc | 11.33 ± 2.33 c | 11.33 ± 2.40 c |
CG (1%) | HF-1 (3.5%) | HF-2 (6%) | HF-3 (8.5%) | HF-4 (11%) | HF-5 (13.5%) | |
---|---|---|---|---|---|---|
TG (mmol/gprot) | 1.53 ± 0.10 a | 1.72 ± 0.06 ab | 1.81 ± 0.11 b | 1.82 ± 0.04 b | 1.80 ± 010 b | 1.81 ± 0.06 b |
TC (mmol/gprot) | 0.94 ± 0.03 a | 0.82 ± 0.04 a | 1.10 ± 0.05 b | 1.10 ± 0.03 b | 1.18 ± 0.04 b | 1.17 ± +0.10 b |
HDL (mmol/gprot) | 0.45 ± 0.01 c | 0.45 ± 0.01 c | 0.41 ± 0.01 b | 0.41 ± 0.01 b | 0.38 ± 0.01 a | 0.41 ± 0.01 b |
LDL (mmol/gprot) | 0.41 ± 0.02 a | 0.43 ± 0.01 ab | 0.47 ± 0.02 ab | 0.47 ± 0.03 ab | 0.50 ± 0.03 b | 0.58 ± 0.04 c |
ALT (U/gprot) | 10.58 ± 3.05 | 5.10 ± 3.51 | 6.76 ± 1.33 | 12.84 ± 3.22 | 13.52 ± 0.84 | 13.92 ± 3.43 |
AST (U/gprot) | 19.42 ± 9.34 | 19.00 ± 1.44 | 30.53 ± 1.01 | 26.95 ± 4.15 | 22.68 ± 4.93 | 34.48 ± 3.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Lu, Y.; Chen, H.; Zheng, P.; Zhang, X.; Zhang, Z.; Ding, L.; Wang, D.; Xu, C.; Ai, X.; et al. Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle (Mauremys sinensis). Animals 2024, 14, 2511. https://doi.org/10.3390/ani14172511
Li J, Lu Y, Chen H, Zheng P, Zhang X, Zhang Z, Ding L, Wang D, Xu C, Ai X, et al. Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle (Mauremys sinensis). Animals. 2024; 14(17):2511. https://doi.org/10.3390/ani14172511
Chicago/Turabian StyleLi, Juntao, Yaopeng Lu, Huiqin Chen, Peihua Zheng, Xiuxia Zhang, Zelong Zhang, Li Ding, Dongmei Wang, Chi Xu, Xiaoqi Ai, and et al. 2024. "Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle (Mauremys sinensis)" Animals 14, no. 17: 2511. https://doi.org/10.3390/ani14172511
APA StyleLi, J., Lu, Y., Chen, H., Zheng, P., Zhang, X., Zhang, Z., Ding, L., Wang, D., Xu, C., Ai, X., Zhang, Q., Xian, J., & Hong, M. (2024). Effects of Dietary Fish Oil Supplementation on the Growth, Proximate Composition, and Liver Health of Chinese Stripe-Necked Turtle (Mauremys sinensis). Animals, 14(17), 2511. https://doi.org/10.3390/ani14172511