Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of Database
2.2. Trends in Academic Research
3. Results
3.1. Obstacles in Sustainable Aquaponic Farming
3.1.1. Lack of Professional Knowledge among Practitioners
3.1.2. Economic Challenges
3.1.3. Mosquito Breeding Ground
3.2. Information on the Maintainance and Management of Aquaponics Systems
3.2.1. Selecting Fish, Plant Species, and Stocking Density
3.2.2. System Construction
3.2.3. Water Quality Monitoring and Control
3.2.4. Fish Feed Selection and Plant Fertilization and Pest Control
3.3. Integration of IoT in Small-Scale Aquaponics
3.3.1. Remote Monitoring and Control of Aquaponics Systems
3.3.2. Key Parameters and Sensors
4. Discussion
4.1. IoT Solutions for Optimizing Aquaponics Systems
4.1.1. Parameter Optimization
4.1.2. Nutrient Optimization
4.1.3. Feeding Optimization
4.1.4. Energy Optimization
4.2. Establishing a Community for Knowledge Sharing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Suggested Range | Aquaculture Range | Hydroponic Range | Nitrification | High Level Effect | Low Level Effect | Sensor | Budget USD | References |
---|---|---|---|---|---|---|---|---|---|
pH | 6.0–8.0 | 7.5–8.5 | 5.5–7.0 | 7.0–8.5 | Disrupt the fish’s osmoregulation; reduced nutrient uptake by plant | Decrease the oxygen-holding capacity of water; growth of harmful bacteria | Multifunctional sensor (pH, light, moisture, TDS, etc.) | $2.10–$5.30 | [101,102,103,104] |
Water temperature | 21 °C–29 °C | 25 °C–32 °C | 18 °C–30 °C | 14 °C–34 °C | Heat stress; lower dissolved oxygen | Less active fish with poor feed conversion; reduced photosynthesis in plants | Water quality detector 5 in 1 (pH/EC/TDS/Salinity/Temperature) | $6.50–$13.20 | [77,105,106] |
Air temperature | 18 °C–30 °C | 15 °C–40 °C | 25 °C | 20 °C–30 °C | Oxygen demand of fish increases; plant prematurely flowers | Slow down the fish’s metabolism and rate of plant growth | Thermistor | $0.21–$2.10 | [101,107,108] |
Dissolved oxygen | 5.0–9.0 mg/L | 6.5–8.5 mg/L | 5.5–6.5 mg/L | 7.0–9.0 mg/L | Gas Bubble Disease in fish | Fish suffocate and die; anaerobic bacteria multiply | Dissolved oxygen meter | $73.40–$83.00 | [109] |
Relative humidity | 50–80% | 52–87% | 50–60% | 50–80% | Fungal diseases on plants | High transpiration causes water loss | Hygrometer | $7.99–$54.99 | [110,111,112] |
CO2 concentration | <20 ppm | <10 ppm | 1000–2000 ppm | – | Fish become lethargic due to insufficient oxygen; plants need more micronutrients | – | CO2 sensor | $69.99–$75.99 | [113,114,115] |
Light intensity | 300–500 lx | 20–40 lx | 300–400 lx | 350 lx | Increase cortisol levels in fish; higher anthocyanin and sugar in plants | Lower thyroid hormone levels; reduced shoot and root growth | Multifunctional sensor (pH, light, moisture, TDS, etc.) | $2.10–$5.30 | [20,105,116,117] |
Illumination duration | 12 h | 10–14 h | 12 h | 10–16 h | Scorched and pale leaves | Decreases total biomass and dry weight | – | – | [20,118,119,120] |
Flow speed | 0.8 L/min–8.0 L/min | 1.0 L/min–1.5 L/min | 2 L/min–4 L/min | – | Energy intensive; less nutrient contact for roots | Inadequate nutrient distribution; buildup of waste materials | Flow meter | $11.99–$29.99 | [103,121,122,123] |
Water hardness | 50–150 ppm | 50–150 ppm | 100–150 ppm | – | Reduced oxygen exchange in root zone | Lack of micronutrients for plant growth | Water hardness test kit | $8.99–$17.99 | [113,124] |
Total dissolved solid | 400–700 ppm | 400–600 ppm | 400–500 ppm | 750–1500 ppm | Increase water temperature; decrease photosynthesis | Lack some essential plant micronutrients | Multifunctional sensor (pH, light, moisture, TDS, etc.) | $2.10–$5.30 | [64,125,126] |
Nitrites | <1 mg/L | <1 mg/L | <5 mg/L | – | Induce stress; impairs oxygen uptake | – | 7 in 1 Aquarium Test Strips | $8.99–$19.99 | [66,127,128] |
Nitrates | 100–200 mg/L | 200–500 mg/L | 15–1000 mg/L | – | Algal blooms | Nutrient deficiency for plants | 7 in 1 Aquarium Test Strips | $8.99–$19.99 | [129,130,131,132] |
References
- Yanes, A.R.; Martinez, P.; Ahmad, R. Towards automated aquaponics: A review on monitoring, IOT, and smart systems. J. Clean. Prod. 2020, 263, 121571. [Google Scholar] [CrossRef]
- Effendi, H.; Utomo, B.A.; Darmawangsa, G.M. Phytoremediation of Freshwater Crayfish (Cherax quadricarinatus) culture wastewater with spinach (Ipomoea Aquatica) in Aquaponic System. AACL Bioflux 2015, 8, 421–430. [Google Scholar]
- Kasozi, N.; Abraham, B.; Kaiser, H.; Wilhelmi, B. The complex microbiome in aquaponics: Significance of the bacterial ecosystem. Ann. Microbiol. 2021, 71, 1. [Google Scholar] [CrossRef]
- Wahyuningsih, S.; Efendi, H.; Wardiatno, Y. Nitrogen removal of aquaculture wastewater in aquaponic recirculation system. Aquac. Aquar. Conserv. Legis. 2015, 8, 491–499. [Google Scholar]
- Lobillo-Eguíbar, J.; Fernández-Cabanás, V.M.; Bermejo, L.A.; Pérez-Urrestarazu, L. Economic Sustainability of small-scale aquaponic systems for food self-production. Agronomy 2020, 10, 1468. [Google Scholar] [CrossRef]
- Junge, R.; König, B.; Villarroel, M.; Komives, T.; Jijakli, M. Strategic points in Aquaponics. Water 2017, 9, 182. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper; Viale delle Terme di Caracalla: Rome, Italy, 2014; p. 589. [Google Scholar]
- Tyson, R.V.; Treadwell, D.D.; Simonne, E.H. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011, 21, 6–13. [Google Scholar] [CrossRef]
- Thaiparambil, N.A.; Radhakrishnan, V. Challenges in achieving an economically sustainable aquaponic system: A review. Aquac. Int. 2022, 30, 3035–3066. [Google Scholar] [CrossRef]
- Hao, X.; Jia, J.; Mi, J.; Yang, S.; Khattak, A.M.; Zheng, L.; Gao, W.; Wang, M. An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regul. 2020, 92, 319–331. [Google Scholar] [CrossRef]
- Adams, B.; Boyer, T.; Albrecht, M.; Ranglack, D.H.; Bickford, N. Micro-system aquaponics: Testing designs for increased productivity. J. Appl. Aquac. 2019, 32, 95–106. [Google Scholar] [CrossRef]
- Taha, M.F.; ElMasry, G.; Gouda, M.; Zhou, L.; Liang, N.; Abdalla, A.; Rousseau, D.; Qiu, Z. Recent advances of smart systems and internet of things (IOT) for aquaponics automation: A comprehensive overview. Chemosensors 2022, 10, 303. [Google Scholar] [CrossRef]
- Kyaw, T.Y.; Ng, A.K. Smart aquaponics system for urban farming. Energy Procedia 2017, 143, 342–347. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A decision support system for urban agriculture using digital twin: A case study with aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Serrano-Trujillo, A.; Esqueda-Elizondo, J.J.; Jiménez-Beristáin, L. Integration of low-cost digital tools for preservation of a sustainable agriculture system. Electronics 2022, 11, 964. [Google Scholar] [CrossRef]
- Liu, C.; Gu, B.; Sun, C.; Li, D. Effects of aquaponic system on fish locomotion by image-based Yolo V4 Deep Learning algorithm. Comput. Electron. Agric. 2022, 194, 106785. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing. 2022. Available online: https://www.r-project.org/ (accessed on 20 June 2024).
- Lajeunesse, M.J. Facilitating systematic reviews, data extraction and meta-analysis with the METAGEAR package for R. Methods Ecol. Evol. 2015, 7, 323–330. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. Prisma2020: An R package and shiny app for producing Prisma 2020- compliant flow diagrams, with interactivity for optimised digital transparency and Open synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Hao, Y.; Ding, K.; Xu, Y.; Tang, Y.; Liu, D.; Li, G. States, trends, and future of Aquaponics Research. Sustainability 2020, 12, 7783. [Google Scholar] [CrossRef]
- Food Security Information Network (FSIN). Global Report on Food Crises 2023. UN World Food Programme. 2023. Available online: https://www.wfp.org/publications/global-report-food-crises-2023 (accessed on 20 June 2024).
- Love, D.C.; Uhl, M.S.; Genello, L. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef]
- Kasozi, N.; Kaiser, H.; Wilhelmi, B. Effect of bacillus spp. on lettuce growth and root associated bacterial community in a small-scale aquaponics system. Agronomy 2021, 11, 947. [Google Scholar] [CrossRef]
- Ibrahim, L.A.; Shaghaleh, H.; El-Kassar, G.M.; Abu-Hashim, M.; Elsadek, E.A.; Alhaj Hamoud, Y. Aquaponics: A sustainable path to food sovereignty and enhanced water use efficiency. Water 2023, 15, 4310. [Google Scholar] [CrossRef]
- Dinev, T.; Velichkova, K.; Stoyanova, A.; Sirakov, I. Microbial pathogens in aquaponics potentially hazardous for human health. Microorganisms 2023, 11, 2824. [Google Scholar] [CrossRef]
- Siqwepu, O.; Salie, K.; Goosen, N. Evaluation of potassium diformate and potassium chloride in the diet of the African catfish, Clarias Gariepinus in a recirculating aquaculture system. Aquaculture 2020, 526, 735414. [Google Scholar] [CrossRef]
- Greenfeld, A.; Becker, N.; Bornman, J.F.; Angel, D.L. Identifying knowledge levels of aquaponics adopters. Environ. Sci. Pollut. Res. 2019, 27, 4536–4540. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, M.; Junge, R.; Komives, T.; König, B.; Plaza, I.; Bittsánszky, A.; Joly, A. Survey of aquaponics in Europe. Water 2016, 8, 468. [Google Scholar] [CrossRef]
- Folorunso, E.A.; Roy, K.; Gebauer, R.; Bohatá, A.; Mraz, J. Integrated Pest and disease management in Aquaponics: A metadata based review. Rev. Aquac. 2020, 13, 971–995. [Google Scholar] [CrossRef]
- Silva Araújo, L.; Keesman, K.J.; Goddek, S. Making aquaponics a business: A framework. Water 2021, 13, 2978. [Google Scholar] [CrossRef]
- Parajuli, S.; Narayan Bhattarai, T.; Gorjian, S.; Vithanage, M.; Raj Paudel, S. Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal. Appl. Energy 2023, 344, 121270. [Google Scholar] [CrossRef]
- Craig, S.; Helfrich, L. Understanding Fish Nutrition, Feeds, and Feeding. Understanding Fish Nutrition, Feeds, and Feeding. 2017. Available online: https://extension.rwfm.tamu.edu/wp-content/uploads/sites/8/2019/01/FST-269.pdf (accessed on 20 June 2024).
- John, J.; Mahalingam, P.R. Automated Fish Feed Detection in IOT based aquaponics system. In Proceedings of the 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, India, 1–3 July 2021. [Google Scholar]
- Bosma, R.H.; Lacambra, L.; Landstra, Y.; Perini, C.; Poulie, J.; Schwaner, M.J.; Yin, Y. The financial feasibility of producing fish and vegetables through aquaponics. Aquac. Eng. 2017, 78, 146–154. [Google Scholar] [CrossRef]
- Lothmann, R.; Sewilam, H. Potential of innovative marine aquaculture techniques to close nutrient cycles. Rev. Aquac. 2022, 15, 947–964. [Google Scholar] [CrossRef]
- Reidel, S.R. Innovative Marketing Techniques for Your Aquaponics Business. Friendly Aquaponics. 2023. Available online: https://friendlyaquaponics.com/innovative-marketing-techniques-for-your-aquaponics-business/ (accessed on 20 June 2024).
- Karimanzira, D.; Rauschenbach, T. Optimal utilization of renewable energy in aquaponic systems. Energy Power Eng. 2018, 10, 279–300. [Google Scholar] [CrossRef]
- Huzortey, A.A.; Kudom, A.A.; Mensah, B.A.; Sefa-Ntiri, B.; Anderson, B.; Akyea, A. Water quality assessment in mosquito breeding habitats based on dissolved organic matter and chlorophyll measurements by laser-induced fluorescence spectroscopy. PLoS ONE 2022, 17, e0252248. [Google Scholar] [CrossRef]
- dos Reis, I.C.; Codeço, C.T.; Degener, C.M.; Keppeler, E.C.; Muniz, M.M.; de Oliveira, F.G.; Cortês, J.J.; de Freitas Monteiro, A.; de Souza, C.A.; Rodrigues, F.C.; et al. Contribution of fish farming ponds to the production of immature anopheles spp. in a malaria-endemic Amazonian Town. Malar. J. 2015, 14, 1–12. [Google Scholar] [CrossRef]
- Kibret, S.; Wilson, G.G.; Ryder, D.; Tekie, H.; Petros, B. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa? PLoS ONE 2018, 13, e0196064. [Google Scholar] [CrossRef] [PubMed]
- Saleeza, S.N.; Norma-Rashid, Y.; Sofian-Azirun, M. Guppies as predators of common mosquito larvae in Malaysia. Southeast Asian J. Trop. Med. Public Health 2014, 45, 299. Available online: https://pubmed.ncbi.nlm.nih.gov/24968669/ (accessed on 20 June 2024). [PubMed]
- Silva-Filha, M.H.; Romão, T.P.; Rezende, T.M.; da Carvalho, K.; Gouveia de Menezes, H.S.; Alexandre do Nascimento, N.; Soberón, M.; Bravo, A. Bacterial toxins active against mosquitoes: Mode of action and resistance. Toxins 2021, 13, 523. [Google Scholar] [CrossRef]
- Bush, E.R.; Short, R.E.; Milner-Gulland, E.J.; Lennox, K.; Samoilys, M.; Hill, N. Mosquito net use in an artisanal East African fishery. Conserv. Lett. 2016, 10, 451–459. [Google Scholar] [CrossRef]
- Aldosery, A.; Vasconcelos, D.; Ribeiro, M.; Nunes, N.; Kostkova, P. Mosquito ovitraps IOT sensing system (Moiss): Internet of things-based system for continuous, real-time and autonomous environment monitoring. In Proceedings of the 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), Yokohama, Japan, 26 October–11 November 2022. [Google Scholar] [CrossRef]
- Terzi, A.; Sibillano, T.; De Caro, L.; Altamura, D.; Gallo, N.; Natali, M.L.; Sannino, A.; Salvatore, L.; Blasi, F.S.; Corallo, A.; et al. WAXS and SAXS investigation of collagen-rich diet effect on multiscale arrangement of type I collagen in tilapia skin fed in aquaponics plant. Crystals 2022, 12, 700. [Google Scholar] [CrossRef]
- Gallo, N.; Natali, M.L.; Quarta, A.; Gaballo, A.; Terzi, A.; Sibillano, T.; Giannini, C.; De Benedetto, G.E.; Lunetti, P.; Capobianco, L.; et al. Aquaponics-derived tilapia skin collagen for biomaterials development. Polymers 2022, 14, 1865. [Google Scholar] [CrossRef]
- Pinho, S.M.; David, L.H.; Garcia, F.; Keesman, K.J.; Portella, M.C.; Goddek, S. South American fish species suitable for aquaponics: A review. Aquac. Int. 2021, 29, 1427–1449. [Google Scholar] [CrossRef]
- Pérez-Urrestarazu, L.; Lobillo-Eguíba, J.; Fernández-Cañero, R.; Fernández-Cabanás, V.M. Food safety concerns in urban aquaponic production: Nitrate contents in leafy vegetables. Urban For. Urban Green. 2019, 44, 126431. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in Aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Rakocy, J. Ten Guidelines for Aquaponic Systems. 2007. Available online: https://cdn.aquaponicsassociation.org/uploads/2019/10/Aquaponics-Journal-10-Guidelines.pdf (accessed on 20 June 2024).
- Go Green Aquaponics. The Fish to Plant Ratio in Aquaponics. 2024. Available online: https://gogreenaquaponics.com/blogs/news/the-fish-to-plant-ratio-in-aquaponics?srsltid=AfmBOord8Plaq1NsVW2NoKb2kKgdhW4iFpIEIiVO_9Qg5DeBQDkGox0Y (accessed on 20 June 2024).
- Paudel, S.R. Nitrogen transformation in engineered aquaponics with water celery (Oenanthe javanica) and koi carp (Cyprinus carpio): Effects of plant to fish biomass ratio. Aquaculture 2020, 520, 734971. [Google Scholar] [CrossRef]
- Knaus, U.; Wenzel, L.C.; Appelbaum, S.; Palm, H.W. Aquaponics (s.l.) production of Spearmint (Mentha spicata) with African catfish (Clarias gariepinus) in northern Germany. Sustainability 2020, 12, 8717. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Nutrients use efficiency in coupled and decoupled aquaponic systems. Horticulturae 2023, 9, 1077. [Google Scholar] [CrossRef]
- Syarifudin, A.A.; Prayogo, P.; Suciyono, S.; Kenconojati, H.; Santanumurti, M.B.; Lamadi, A.; Weargo Jati, C. Performance of Climbing Perch (Anabas testudineus) and Bok Choy (Brassica chinensis) in aquaponics systems using nutrient film technique in Indonesian small-scale livestock. Pertanika J. Trop. Agric. Sci. 2023, 46, 1375–1390. [Google Scholar] [CrossRef]
- Estim, A.; Saufie, S.; Mustafa, S. Water quality remediation using aquaponics sub-systems as biological and mechanical filters in Aquaculture. J. Water Process Eng. 2019, 30, 100566. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haïssam Jijakli, M.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Filep, R.M.; Diaconescu, S.; Rahoveanu, A.T.; Marin, M.; Nicolae, C.G. Study on building a small-scale aquaponics system and the outset of it. Conf. Curr. Trends Nat. Sci. 2016, 5, 62–67. [Google Scholar]
- Menon, R.; Sahana, G.V.; Shruthi, V.; Suganya, R. Small Scale Aquaponic System. Int. J. Agric. Food Sci. Technol. 2013, 4, 941–946. [Google Scholar]
- Dbouk, H.M.; Khalife, F.G. Autonomous Solar-based aquaponics: Towards Agricultural Sustainability in Lebanon and the region. In Proceedings of the 5th International Conference on Renewable Energies for Developing Countries (REDEC), Marrakech, Morocco, 29–30 June 2020. [Google Scholar]
- Paising, T.; Techawongstien, S.; Lapjit, C. Effect of light-emitting diodes (LEDs) on growth of sweet basil (Ocimum basilicum) in an aquaponics system. Acta Hortic. 2020, 1298, 543–550. [Google Scholar] [CrossRef]
- Pastor, Z.; Akim, R.; Do, J.; Singh, M.; Pastor, Z.; Alghamdi, G.; Nguyen, L.; Tong, Q.; Decuir, J.; Alnamlah, K.; et al. Aquaponics water monitoring and power system. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019. [Google Scholar]
- Jacob, N.K. IOT powered portable aquaponics system. In Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing, Cambridge, UK, 22–23 March 2017. [Google Scholar] [CrossRef]
- Espinosa Moya, E.A.; Angel Sahagún, C.A.; Mendoza Carrillo, J.M.; Albertos Alpuche, P.J.; Álvarez-González, C.A.; Martínez-Yáñez, R. Herbaceous plants as part of biological filter for aquaponics system. Aquac. Res. 2014, 47, 1716–1726. [Google Scholar] [CrossRef]
- Valiente, F.L.; Garcia, R.G.; Domingo, E.J.; Estante, S.M.; Ochaves, E.J.; Villanueva, J.; Balbin, J.R. Internet of things (IoT)-based mobile application for monitoring of automated aquaponics system. In Proceedings of the IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communi-cation and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018. [Google Scholar]
- Deswati, D.; Febriani, N.; Pardi, H.; Yusuf, Y.; Suyani, H. Applications of aquaponics on Pakcoy (Brassica rapa L.) and Nila Fish (Oreochromis niloticus) to the concentration of ammonia, nitrite, and nitrate. Orient. J. Chem. 2018, 34, 2447–2455. [Google Scholar] [CrossRef]
- Enduta, A.; Jusoh, A.; Ali, N.; Wan Nik, W.B. Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalination Water Treat. 2011, 32, 422–430. [Google Scholar] [CrossRef]
- Li, X.Q.; Xu, H.B.; Sun, W.T.; Xu, X.Y.; Xu, Z.; Leng, X.J. Grass carp fed a fishmeal-free extruded diet showed higher weight gain and nutrient utilization than those fed a pelleted diet at various feeding rates. Aquaculture 2018, 493, 283–288. [Google Scholar] [CrossRef]
- FAO. Nile Tilapia-Nutritional Requirements. Food and Agriculture Organization of the United States. 2024. Available online: https://www.fao.org/fishery/affris/species-profiles/nile-tilapia/nutritional-requirements/en/ (accessed on 20 June 2024).
- Radhakrishnan, G.; Shivkumar; Mannur, V.S.; Yashwanth, B.S.; Pinto, N.; Pradeep, A.; Prathik, M.R. Dietary protein requirement for maintenance, growth, and reproduction in fish: A review. J. Entomol. Zool. Stud. 2020, 8, 208–215. [Google Scholar]
- Webster, C.D.; Tiu, L.G.; Tidwell, J.H.; Van Wyk, P.; Howerton, R.D. Effects of dietary protein and lipid levels on growth and body composition of sunshine bass (Morone chrysops x M. saxatilis) reared in sages. Aquaculture 1995, 131, 291–301. [Google Scholar] [CrossRef]
- Romano, N.; Webster, C.; Datta, S.N.; Pande, G.S.; Fischer, H.; Sinha, A.K.; Huskey, G.; Rawles, S.D.; Francis, S. Black soldier fly (Hermetia illucens) frass on sweet-potato (Ipomea batatas) slip production with aquaponics. Horticulturae 2023, 9, 1088. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Khaoula, T.; Abdelouahid, R.A.; Ezzahoui, I.; Marzak, A. Architecture design of monitoring and controlling of IOT-based aquaponics system powered by Solar Energy. Procedia Comput. Sci. 2021, 191, 493–498. [Google Scholar] [CrossRef]
- Media’s, E.; Syufrijal; Rif’an, M. Internet of things (IOT): Blynk framework for smart home. KnE Soc. Sci. 2019, 3, 579. [Google Scholar] [CrossRef]
- Wan, S.; Zhao, K.; Lu, Z.; Li, J.; Lu, T.; Wang, H. A modularized IOT monitoring system with edge-computing for Aquaponics. Sensors 2022, 22, 9260. [Google Scholar] [CrossRef] [PubMed]
- Rostam Effendi, M.K.; Kassim, M.; Sulaiman, N.A.; Shahbudin, S. IOT Smart agriculture for aquaponics and maintaining goat stall system. Int. J. Integr. Eng. 2020, 12, 240. [Google Scholar] [CrossRef]
- Karimanzira, D.; Rauschenbach, T. An intelligent management system for aquaponics. Autom. 2021, 69, 345–350. [Google Scholar] [CrossRef]
- Farhan Mohd Pu’ad, M.; Azami Sidek, K.; Mel, M. Automated aquaponics maintenance system. J. Phys. Conf. Ser. 2020, 1502, 012021. [Google Scholar] [CrossRef]
- Mahmoud, M.M.M.; Darwish, R.; Bassiuny, A.M. Development of an economic smart aquaponic system based on IOT. J. Eng. Res. 2023. [Google Scholar] [CrossRef]
- Dhal, S.B.; Jungbluth, K.; Lin, R.; Sabahi, S.P.; Bagavathiannan, M.; Braga-Neto, U.; Kalafatis, S. A machine-learning-based IOT system for optimizing nutrient supply in commercial aquaponic operations. Sensors 2022, 22, 3510. [Google Scholar] [CrossRef] [PubMed]
- Abu-Khadrah, A.; Issa, G.F.; Aslam, S.; Shahzad, M.; Ateeq, K.; Hussain, M. IOT based smart fish-feeder and monitoring system. In Proceedings of the 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, 16–17 February 2022. [Google Scholar] [CrossRef]
- Silalahi, A.O.; Sinambela, A.; Panggabean, H.M.; Pardosi, J.T. Smart automated fish feeding based on IOT system using Lora TTGO SX1276 and Cayenne platform. EUREKA Phys. Eng. 2023, 3, 66–79. [Google Scholar] [CrossRef]
- Channa, A.A.; Munir, K.; Hansen, M.; Tariq, M.F. Optimisation of small-scale aquaponics systems using artificial intelligence and the IOT: Current status, challenges, and opportunities. Encyclopedia 2024, 4, 313–336. [Google Scholar] [CrossRef]
- Gillani, S.; Abbasi, R.; Martinez, P.; Ahmad, R. Review on energy efficient artificial illumination in Aquaponics. Clean. Circ. Bioecon. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Sunardi, A.; Suud, F.I.; Woro Agus, N.; Gunawan, I. IOT application on aquaponics system energy optimization. J. Phys. Conf. Ser. 2021, 1772, 012046. [Google Scholar] [CrossRef]
- Pattillo, D.A.; Cline, D.; Hager, J.; Roy, L.; Hanson, T. Challenges experienced by aquaponic hobbyists, producers, and educators. J. Ext. 2022, 60, 13. [Google Scholar] [CrossRef]
- Greenfeld, A.; Becker, N.; Bornman, J.F.; Angel, D.L. Identifying potential adopters of aquaponic farming. J. Environ. Plan. Manag. 2021, 66, 348–366. [Google Scholar] [CrossRef]
- Basumatary, B.; Verma, A.K.; Verma, M.K. Global research trends on aquaponics: A systematic review based on computational mapping. Aquac. Int. 2022, 31, 1115–1141. [Google Scholar] [CrossRef]
- Proksch, G.; Baganz, D. CITYFOOD: Research design for an international, transdisciplinary collaboration. Technol. Archit. Des. 2020, 4, 35–43. [Google Scholar] [CrossRef]
- Rahdriawan, M.; Arriani, R.R. Motives and dynamic of community-based aquaponics for urban farming in Semarang. IOP Conf. Ser. Earth Environ. Sci. 2020, 448, 012096. [Google Scholar] [CrossRef]
- Bernardi, P.D.; Azucar, D. Innovation in Food Ecosystems. SpringerLink. 2020. Available online: https://link.springer.com/book/10.1007/978-3-030-33502-1 (accessed on 20 June 2024).
- Shreejana, K.C.; Thapa, R.; Lamsal, A.; Ghimire, S.; Kurunju, K.; Shrestha, P. Aquaponics a modern approach for integrated farming and wise utilization of components for sustainability of food security: A review. Arch. Agric. Environ. Sci. 2022, 7, 121–126. [Google Scholar]
- Horn, E.K.; Joyce, A.; Chowdhury, R.B.; Caputo, S.; Jacobs, B.; Winkler, M.; Proksch, G. Translating environmental potential to economic reality: Assessment of commercial aquaponics through sustainability transitions theory. Circ. Econ. Sustain. 2023, 4, 523–554. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Oladimeji, S.A.; Solomon, S.G.; Olufeagba, S.O.; Ogah, S.I.; Ikhwanuddin, M. Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption. Food Sci. Nutr. 2022, 11, 1157–1165. [Google Scholar] [CrossRef]
- Ayipio, E.; Wells, D.E.; McQuilling, A.; Wilson, A.E. Comparisons between aquaponic and conventional hydroponic crop yields: A meta-analysis. Sustainability 2019, 11, 6511. [Google Scholar] [CrossRef]
- Suárez-Cáceres, G.P.; Fernández-Cabanás, V.M.; Lobillo-Eguíbar, J.; Pérez-Urrestarazu, L. Characterisation of aquaponic producers and small-scale facilities in Spain and Latin America. Aquac. Int. 2021, 30, 517–532. [Google Scholar] [CrossRef]
- Dos-Santos, M.J. Sustainable and commercial development of aquaponics through the certification in Europe. Ecocycles 2019, 5, 12–18. [Google Scholar] [CrossRef]
- Spellissy, R. Improving Beneficiary-Centered, Participatory Development Projects through Reciprocal Information Sharing and Mental Model Building. Deep Blue. Master’s Thesis, University of Michigan, Ann Arbor, MI, USA, 2016; 28p. [Google Scholar]
- Rot, A.; Sobińska, M. The potential of the internet of things in Knowledge Management System. Ann. Comput. Sci. Inf. Syst. 2018, 16, 63–68. [Google Scholar] [CrossRef]
- Tolentino, L.K.; Fernandez, E.O.; Jorda, R.L.; Amora, S.N.; Bartolata, D.K.; Sarucam, J.R.; Sobrepena, J.C.; Sombol, K.Y. Development of an IOT-based aquaponics monitoring and correction system with temperature-controlled greenhouse. In Proceedings of the 2019 International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 6–9 October 2019. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarita; Senthamilan, S.; Chatterjee, S. Optimum Condition of Water for Aquaculture. 2019. Available online: https://agriallis.com/wp-content/uploads/2019/11/OPTIMUM-CONDITION-OF-WATER-FOR-AQUACULTURE.pdf (accessed on 20 June 2024).
- Maucieri, C.; Nicoletto, C.; Schmautz, Z.; Sambo, P.; Komives, T.; Borin, M.; Junge, R. Vegetable intercropping in a small-scale aquaponic system. Agronomy 2017, 7, 63. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef]
- Tolentino, L.K.; Fernandez, E.O.; Amora, S.N.; Bartolata, D.K.; Sarucam, J.R.; Sobrepeña, J.C.; Sombol, K.Y. Yield evaluation of Brassica rapa, Lactuca sativa, and brassica integrifolia using image processing in an IOT-based aquaponics with temperature-controlled greenhouse. AGRIVITA J. Agric. Sci. 2020, 42, 393–410. [Google Scholar] [CrossRef]
- Deer, C.; Hu, B.; Dunn, B.; Dusci, J. Nitrification and Maintenance in Media Bed Aquaponics. Oklahoma State University. 2021. Available online: https://extension.okstate.edu/fact-sheets/nitrification-and-maintenance-in-media-bed-aquaponics.html (accessed on 20 June 2024).
- Abbasi, R.; Martinez, P.; Ahmad, R. Data Acquisition and Monitoring Dashboard for IOT enabled Aquaponics Facility. In Proceedings of the 10th International Conference on Control, Mechatronics and Automation (ICCMA), Luxembourg, 9–12 November 2022. [Google Scholar] [CrossRef]
- Abdelrahman, H.A.; Boyd, C.E. Effects of mechanical aeration on evaporation rate and water temperature in aquaculture ponds. Aquac. Res. 2018, 49, 2184–2192. [Google Scholar] [CrossRef]
- Lee, C.; Wang, Y.-J. Wang. Development of a cloud-based IOT monitoring system for fish metabolism and activity in Aquaponics. Aquac. Eng. 2020, 90, 102067. [Google Scholar] [CrossRef]
- Alkhalidi, A.; Khawaja, M.K.; Abusubaih, D. Energy efficient cooling and heating of aquaponics facilities based on regional climate. Int. J. Low-Carbon Technol. 2019, 15, 287–298. [Google Scholar] [CrossRef]
- Plaza, J.; Castro, E.; Sayes, C.; Leyton, Y.; Riquelme, C. Seriola lalandi cultivated on integrated system with water recirculation and photovoltaic energy in the coastal area of Atacama Desert. J. Appl. Aquac. 2021, 34, 642–657. [Google Scholar] [CrossRef]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.H.; Farhangi, M. Nutrient use in vertical farming: Optimal electrical conductivity of nutrient solution for growth of lettuce and Basil in hydroponic cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Masabni, J.; Sink, T. Water Quality in Aquaponics. 2020. Available online: https://extension.rwfm.tamu.edu/wp-content/uploads/sites/8/2020/10/Water-Quality-In-Aquaponics-Sink-Masabni.pdf (accessed on 20 June 2024).
- Hu, Y.; Ni, Q.; Wu, Y.; Zhang, Y.; Guan, C. Study on CO2 removal method in recirculating aquaculture waters. Procedia Eng. 2011, 15, 4780–4789. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.B. Effects of CO2 concentration, light intensity and nutrient level on growth of leaf lettuce in a plant factory. Acta Hortic. 2001, 548, 377–384. [Google Scholar] [CrossRef]
- Handeland, S.O.; Imsland, A.K.; Ebbesson, L.O.E.; Nilsen, T.O.; Hosfeld, C.D.; Baeverfjord, G.; Espmark, Å.; Rosten, T.; Skilbrei, O.T.; Hansen, T.; et al. Low light intensity can reduce Atlantic Salmon smolt quality. Aquaculture 2013, 384–387, 19–24. [Google Scholar] [CrossRef]
- Mohamed, A.; Welles, L.; Siggins, A.; Healy, M.; Brdjanovic, D.; Rada-Ariza, A.; Lopez-Vazquez, C. Effects of usbstrate stress and light intensity on enhanced biological phosphorus removal in a photo-activated sludge system. Water Res. 2021, 189, 116606. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-J.; Ho, Y.-S.; Wang, Y.-S. Illumination of different light wavelengths on growth performance and physiological response of juvenile Sweetfish, Plecoglossus altivelis. Aquac. Rep. 2023, 30, 101569. [Google Scholar] [CrossRef]
- Lu, S.; Li, Y.; Liu, X.; Cheng, G.; Yuan, Z.; Wu, F. Influence of light irradiation on nitrification in microalgal–bacterial systems for treating wastewater. Processes 2023, 11, 3453. [Google Scholar] [CrossRef]
- Yudina, L.; Sukhova, E.; Gromova, E.; Mudrilov, M.; Zolin, Y.; Popova, A.; Nerush, V.; Pecherina, A.; Grishin, A.A.; Dorokhov, A.A.; et al. Effect of Duration of LED Lighting on growth, photosynthesis and respiration in lettuce. Plants 2023, 12, 442. [Google Scholar] [CrossRef]
- Diamahesa, W.A.; Masumoto, T.; Jusadi, D.; Setiawati, M. Growth and protein content of Ulva prolifera maintained at different flow rates in integrated aquaculture system. J. Ilmu Dan Teknol. Kelaut. Trop. 2017, 9, 429–441. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Shao, Y.; An, P.; Yamamoto, S.; Ibaraki, Y. Effect of nutrient solution flow rate on hydroponic plant growth and root morphology. Plants 2021, 10, 1840. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae 2020, 6, 9. [Google Scholar] [CrossRef]
- Niu, Y.; Lu, H.; Yang, L.; Shao, L.; Hu, J. High-sensitivity microfiber interferometer water hardness sensor. Measurement 2022, 201, 111710. [Google Scholar] [CrossRef]
- Galasso, H.L.; Owatari, M.S.; Arana, L.A.; Lapa, K.R. Effects of scaled-down dissolved air flotation system on suspended solids removal from Penaeus Vannamei culture under biofloc conditions. Aquac. Eng. 2024, 104, 102396. [Google Scholar] [CrossRef]
- Wu, S.; Maskaly, J. Study on the effect of total dissolved solids (TDS) on the performance of an SBR for COD and nutrients removal. J. Environ. Sci. Health Part A 2017, 53, 146–153. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Nitrite implications and its management strategies in Aquaculture: A Review. Rev. Aquac. 2019, 12, 878–908. [Google Scholar] [CrossRef]
- Hoque, M.M.; Ajwa, H.A.; Smith, R. Nitrite and ammonium toxicity on lettuce grown under hydroponics. Commun. Soil Sci. Plant Anal. 2007, 39, 207–216. [Google Scholar] [CrossRef]
- Hasan, Z.; Dhahiyat, Y.; Andriani, Y.; Zidni, I. Short communication: Water quality improvement of Nile tilapia and catfish polyculture in aquaponics system. Nusant. Biosci. 2017, 9, 83–85. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, Z.; Zou, Y.; Zhang, J.; Zhu, Z.; Zhang, J.; Nie, L. Improving nitrogen utilization efficiency of aquaponics by introducing algal-bacterial consortia. Bioresour. Technol. 2017, 245, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, C.F.; Cancino-Madariaga, B.; Torrejón, C.; Villegas, P.P. Separation of nitrite and nitrate from water in aquaculture by nanofiltration membrane. Desalination Water Treat. 2016, 57, 26050–26062. [Google Scholar] [CrossRef]
- Cao, X.; Wu, L.; Ling, Y.; Li, X.; Zhu, Y.; Jin, Q. Uptake and uptake kinetics of nitrate, ammonium and glycine by Pakchoi seedlings (Brassica campestris L. ssp. Chinensis L. makino). Sci. Hortic. 2015, 186, 247–253. [Google Scholar] [CrossRef]
Characteristics | Small-Scale | Commercial |
---|---|---|
Size | Few to hundred liters fish tank | Several thousand liters fish tank, with several acres |
Location | Indoors or backyards | Large greenhouse |
Investment | Relatively low | Require high capital investment |
Expertise | Easier to manage with less skills | Skilled workers required |
Market | Personal consumption/Locally | Larger markets |
IoT technology | Basic | Advanced |
Variety | Diverse range of crops and fish species in small quantity | Specific high-value crops and fish species for market demand |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamnuri, M.A.H.b.; Qiu, S.; Rizalmy, M.A.A.b.; He, W.; Yusoff, S.; Roeroe, K.A.; Du, J.; Loh, K.-H. Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review. Animals 2024, 14, 2555. https://doi.org/10.3390/ani14172555
Zamnuri MAHb, Qiu S, Rizalmy MAAb, He W, Yusoff S, Roeroe KA, Du J, Loh K-H. Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review. Animals. 2024; 14(17):2555. https://doi.org/10.3390/ani14172555
Chicago/Turabian StyleZamnuri, Muhammad Aiman Hakim bin, Shuting Qiu, Muhammad Akmal Arif bin Rizalmy, Weiyi He, Sumiani Yusoff, Kakaskasen Andreas Roeroe, Jianguo Du, and Kar-Hoe Loh. 2024. "Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review" Animals 14, no. 17: 2555. https://doi.org/10.3390/ani14172555
APA StyleZamnuri, M. A. H. b., Qiu, S., Rizalmy, M. A. A. b., He, W., Yusoff, S., Roeroe, K. A., Du, J., & Loh, K. -H. (2024). Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review. Animals, 14(17), 2555. https://doi.org/10.3390/ani14172555